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Abstract

An estimator is proposed for semiparametric linear regression models with

left truncated and right censored dependent variables. The estimator is

derived from a moment condition following the principles of Newey (2001)

on conditional moment conditions. Consistency of the estimator is shown

and simulation is used for illustration of the small sample properties.
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1 Introduction

Consider a linear regression model for the response variable Y ∗i

Y ∗i = XT
i β + εi, i = 1, 2, ..., n∗, (1)

where Xi and β are p-dimensional vectors of explanatory variables and parame-

ters, respectively, and the errors εi, defined as εi = Y ∗i −XT
i β, are independent

and identically distributed random terms with mean zero and constant finite

variance.

If the observations of (Y ∗i , X
T
i ) are obtained only for the part of the popula-

tion for which Y ∗i > t and if the observed response variable is min{s, Y ∗i }, then

data is left truncated and right censored (LTRC). Here t is the known trun-

cation point and s is the known censoring point. For simplicity let t = 0 and

let Yi, i = 1, . . . , n, denote the observed response variable, i.e., when Y ∗i > 0,

Yi = min(s, Y ∗i ) is observed.

The least squares estimator (LSE) is biased and inconsistent for estimation

of β in (1) with LTRC data. The reason is that E[Y − XTβ|X] is a function

of X and not equal to zero in general. Past research has mostly focused on

estimators for data which are either censored or truncated but not both. Re-

views of estimators for truncated and censored regression models are found in

Lee and Kim (1998) and Honoré and Powell (1994), respectively. It is, however,

desirable to develop a new, alternative estimator for LTRC data as well. LTRC

data is frequently encountered in studies of durations such as survival or failure

times. Duration studies are used in disciplines such as biometrics, epidemiology,

and econometrics.

The most widely used regression method for survival data is based on Cox’s

proportional hazards model (Cox, 1972), which is also applicable for analysing

LTRC data. An alternative model to Cox’s model for survival analysis is the ac-

celerated failure time (AFT) model, where the logarithm (or another increasing

function) of the survival or failure time is regressed on the explanatory variables

(Kalbfleisch and Prentice, 1980). The AFT model is therefore a special case of

(1). By specifying a distribution, up to unknown parameters, for εi in (1), a
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maximum likelihood (ML) estimator of β can be defined for LTRC data.

Without any assumption of the parametric distribution of the error term in

(1) the model is said to be semiparametric, and an estimator not utilising any

parametric assumption is called a semiparametric estimator. Karlsson (2006)

considered generalisations of the quadratic mode regression estimator (QME)

of Lee (1993) and the winsorized mean estimator (WME) of Lee (1992), two

semiparametric estimators for the truncated and the censored regression models,

respectively. The purpose of this paper is to propose a semiparametric estimator

of regression models using a similar approach as the one used in Karlsson (2006).

The formulation of the estimator builds on the principles on moment conditions

as presented in Newey (2001), who considers moment conditions for estimation

of truncated and censored regressions, respectively. In this paper a moment

condition is formulated for the case of LTRC regression data. In effect, the

proposed estimator can be interpreted as a combination of the generalizations

of the QME and the WME estimators.

Model assumptions and the derivation of the estimator are presented in the

next section. Consistency properties are considered in Section 3, and Section 4

includes results from a simulation study. A discussion of the results and topics

for future research are given in the final section.

2 The estimator

Consider the conditional moment restriction

E[m(Y ∗ −XTβ)|X] = E[m(ε)|X] = 0, (2)

where m(·) is a known scalar function. In the latent model (1) the conditional

moment restriction (2) implies the moment condition E[Xm(Y ∗ −XTβ)] = 0.

This can be interpreted as a first order condition for E[q(Y ∗ − XTβ)], where

q(ε) =
∫ ε
0
m(u)du, to have a minimum at the true parameter vector β0. Min-

imisation of the sample analogue to this expectation yields an estimator of β

(cf. Newey, 2001).
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Newey (2001) presented conditions on the function m(·) for consistent esti-

mation of semiparametric censored and truncated regression models. For the

right censored regression model m(ε) must be constant for all ε which are large

enough and for the left truncated regression model m(ε) must be zero for all ε

which are small enough.

The conditional moment restriction proposed here for linear regression mod-

els with LTRC data is

E[m(ε)|X] = E[1[−cL ≤ ε ≤ cU ]ε+ 1[ε > cU ]cU |X] = 0, (3)

where cL > 0 and cU > 0 are constants chosen by the researcher and 1[A]

denotes an indicator function such that 1[A] = 1 if condition A holds, otherwise

it is equal to 0.

This moment restriction is a combination of the two conditional moment

restrictions used by Karlsson (2006) for estimation of slope parameters of left

truncated and right censored regression models. Those estimators are general-

izations of the quadratic mode estimator (Lee, 1993) and the winsorized mean

estimator (Lee, 1992).

For LTRC data, the moment condition

E
[
X1[cL < XTβ < s− cU ]m(Y −XTβ)

]
= 0,

where m(·) is defined in (3), is a first order condition for a solution to the

minimisation of

E
[
q
(
Y −min

(
max

(
XTβ, cL

)
, s− cU

))]
(4)

where q(·) is obtained by intergration of m(·) defined in (3) (cf. Newey, 2001).

Note that 1[cL < α < s− cU ]m(Y − α) = − d
dαq(Y −min (max (α, cL) , s− cU ),

for a scalar α, except at α = cL and α = s − cU . An estimator, β̂LTRC , and

objective function Q(β) can be derived from the sample analogue to (4). In the

present case, the estimator of β and the objective function are

β̂LTRC = arg min
β∈B

Qn(β) (5)
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where

Qn(β) =
n∑
i=1

Qi(β)

= arg min
β∈B

1
n

n∑
i=1

{1[cL < XT
i β < s− cU ]q(Yi −XT

i β)

+ 1[XT
i β ≤ cL]q(Yi − cL) + 1[XT

i β ≥ s− cU ]q(Yi − (s− cU ))},

and

q(z) =
∫ z

0

m(u)du = 1[−cL ≤ z ≤ cU ]
1
2
z2

+ 1[z < −cL]
1
2
c2L + 1[z > cU ](cUz −

1
2
c2U )

3 Consistency

To establish consistency of the estimator β̂LTRC defined in (5), the following

assumptions are made:

(A.1) The true unknown parameter vector is denoted β0. The vector of ex-

planatory variables Xi includes a constant, i.e., β0 includes a intercept.

There exist a unique constant µ such that, when added to the intercept of

β0, the conditional moment restriction (3) with ε− µ = Y − (XTβ0 + µ)

as argument of the function m(·) is satisfied. The true parameter vector

with the constant µ added to the intercept is denoted βµ. The vector βµ

belongs to the interior of a compact parameter set B ⊂ Rp.

(A.2) The censoring point, s, is larger than cL + cU .

(A.3) The probability that a latent observation is untruncated is positive, i.e.,

1 − F (−Xβ0) ≥ ϕ > 0, where F (·) denotes the conditional cumulative

distribution function of the error term given X.

(A.4) E[||Xi||4] < K <∞.

(A.5) 1
n

∑n
i=1E[1[cL + λ1 < XTβµ < s− cU − λ2]XiX

T
i ] is a positive definite

matrix with the smallest eigenvalue bounded from below by v > 0 for

sufficiently large n and some λj > 0, j = 1, 2.

4
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Most of the assumptions made here are similar to those made by, for example,

Powell (1986) and Lee (1993). A.3 and A.4 are included to ensure the existence

of finite moments of certain functions used in the proof of consistency. A.5 plays

a similar role as the assumption of a non-singular design matrix XTX in least

squares estimation.

A somewhat stringent assumption is the assumption of existence of a unique

µ satisfying the moment condition (3). This is similar to the ”single crossing”

property of the moment conditions considered by Newey (2001). The uniqueness

can be obtained from appropriate assumptions on the thresholds and the density

function f(·).

Theorem 1 (Strong Consistency) If (A.1)-(A.5) are satisfied then β̂LTRC

defined in (5) is a consistent estimator of βµ, i.e., β̂LTRC
a.s.→ βµ.

The proof of theorem is based on Lemmas 2.2 and 2.3 in White (1980), by

first showing convergence of Qn(β) = 1
n

∑n
i=1Qi(β) in (5) to its expectation,

E[Qn(β)] , uniformly over B and then that E[Qn(β)] attains a unique minimum

at β = βµ. (Details of the proof will be sent by the authors upon request.)

4 Small sample properties

Consistency of an estimator is a desirable property. However, asymptotic prop-

erties do not guarantee desirable finite sample behaviour. It is therefore nec-

essary to also study the properties of the estimator in small sample situations.

This is done here by means of simulations.

In the simulation study 5000 samples were generated from the latent model

Y ∗i = βI + β1X1i + β2X2i + 10εi, (6)

where X1 is Uniform(-2.5, 2.5), X2 is Uniform(0,10) and the slope parameters

are 2 and 3. The intercept, βI , and the censoring point, s, were varied to

achieve the same rate of truncation and censoring regardless of error distribu-

tion. Two error distributions were considered: the standard normal and the

standard Gumbel distributions. For the standard normal distribution βI = 2
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and s = 35 and for the standard Gumbel distribution βI = −2 and s = 40. The

rates of truncation and censoring were both about 10 percent. The subroutine

DUMPOL of the IMSL Fortran 90 MP Library was used to calculate (5).

Results from using two different combinations of thresholds are reported in

Table 1. The lower threshold was chosen to equal the error standard deviation

in the normal case, adapting to the suggestion by Lee (1993) for the QME

estimator. The upper threshold was chosen to be less than the lower threshold by

experience from initial simulations. The Mean square error (MSE) and relative

bias are given in the table.

The results show that both bias and MSE of the estimator decrease as the

sample size increases. This is in accordance with the consistency property of

the estimator. For the first set of threshold values (cL = 10 and cU = 2),

bias and MSE results are similar between distributions. For the second set of

threshold values (cL = 10 and cU = 5), results are much better in the normal

case compared with the Gumbel distribution case.

For comparison, the parameters of (6) were also estimated using the max-

imum likelihood estimator assuming a normal distribution for the dependent

variable. The ML estimator under left truncation at 0 and right censoring at s

is

β̂ML = arg max
β∈B

L(β, η|y,X)

where

L(β, η|y,X) =
n∏
i=1

(
f(yi −XT

i β|η)
)zi
(
1− F (s−XT

i β|η)
)(1−zi)(

1− F (−XT
i β|η)

) (7)

and zi equals 1 if observation i is uncensored and 0 if it is censored, and f(·)

and F (·) denote the probability density and cumulative density function of the

error term, respectively.

The relative bias and MSE of the ML estimator are also found in Table 1.

As could be expected, the bias and MSE are much smaller for the ML estimator

than the LTRC estimator when the likelihood function in (7) is correctly spec-

ified, i.e., the normal error case. Also, both bias and MSE of the ML estimator

decreases when the sample size increases. However, with a misspecified likeli-
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hood function, i.e., the Gumbel case, the bias of the LTRC estimator is lower

for the first set, but not for the second set, of threshold values compared to the

bias of the ML estimator. When the sample size is 10000 this holds for second

set of threshold values too. Note also that for both sets of threshold values the

bias of the LTRC decreases when the sample size increases while the bias of the

ML estimator does not. For sample sizes n = 500 and n = 1000 the MSE of the

ML estimator is lower than the MSE of the LTRC estimator for both sets of

threshold values. The MSE of both the ML and the LTRC estimators decreases

but the relative decrease is larger for the LTRC estimator and when n = 10000

the MSE is lower for the LTRC estimator, at least for the first set of threshold

values.

5 Discussion

This paper contributes with a proposal for a semiparametric estimator of linear

regression models with LTRC data. Such an estimator is a valuable complement

to parametrically defined estimators since semiparametric estimators are based

on milder assumptions on the error distribution. Therefore the estimator can

be used, for instance, as an alternative to ML estimators when information on

the distribution is scarce.

The estimator proposed is shown to be strongly consistent using mild as-

sumptions on the error distribution and the distribution of the regressors. The

finite sample properties of the estimator are studied in a small simulation study.

The results obtained on bias and MSE show that the estimator also works in

finite samples. However, it is also concluded that the choice of threshold values

are important for the properties of the estimator. The first set of thresholds

used is associated with much lower bias and MSE measures compared with the

second set of thresholds.

The selection of threshold values is rather ad hoc. Here the lower threshold

was set based on a suggestion by Lee (1993). The upper thresholds were decided

from a small set of simulations in the normal case. It is reasonable to assume
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that the efficiency of the estimator can be improved by better choice of threshold

values. Thus, additional results on how to select the threshold values are needed.

For future applications it is also necessary to study the asymptotic distribu-

tion of the estimator. Histograms of the estimates of the slope parameters show

that the sampling distributions converge to bell-shaped forms as the sample size

increases in the simulation study. These result indicate that the small sample

distribution can be approximated with a normal distribution. It is expected

that the estimator can be shown to have an asymptotic normal distribution.
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Table 1: Average MSE and relative bias of estimates of the slope parameters.
5000 replicates.

n MSE Rel. bias

Normal LTRC, cL = 10, cU = 2 500 β1 0.441 0.019
β2 0.272 0.022

1000 β1 0.211 0.014
β2 0.123 0.013

10000 β1 0.020 0.002
β2 0.012 0.002

LTRC, cL = 10, cU = 5 500 β1 0.549 0.058
β2 0.263 0.055

1000 β1 0.251 0.035
β2 0.119 0.031

10000 β1 0.022 0.002
β2 0.011 0.002

ML 500 β1 0.136 0.002
β2 0.046 0.001

1000 β1 0.067 0.002
β2 0.022 0.001

10000 β1 0.007 0.001
β2 0.001 -0.003

Gumbel LTRC, cL = 10, cU = 2 500 β1 0.431 0.018
β2 0.263 0.028

1000 β1 0.209 0.011
β2 0.123 0.013

10000 β1 0.019 0.001
β2 0.013 -0.001

LTRC, cL = 10, cU = 5 500 β1 1.687 0.121
β2 0.956 0.145

1000 β1 0.717 0.071
β2 0.365 0.074

10000 β1 0.048 0.002
β2 0.018 0.002

ML 500 β1 0.285 0.054
β2 0.153 0.073

1000 β1 0.147 0.055
β2 0.103 0.073

10000 β1 0.025 0.051
β2 0.048 0.068
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