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A sequential estimation procedure for the parameter of
an exponential distribution under asymmetric loss

function
Alicja Jokiel-Rokita

Institute of Mathematics and Computer Science, Wroc law University of Technology, Wroc law, Poland

Abstract

A problem of Bayesian sequential estimating an unknown parameter of an exponential distri-
bution is considered. It is supposed that the loss associated with the error of estimation is
asymmetric (LINEX) and the cost of observing the process is a linear function of time and the
number of observations. A Bayes sequential procedure for estimating the unknown parameter is
presented.

Key words: Bayesian estimation, Bayes sequential procedure, LINEX loss function, optimal stopping

1. Introduction

This paper deals with the problem of estimating sequentially the parameter ϑ of the
exponential distribution defined by the density

f(x;ϑ) = ϑ exp(−ϑx)1(0,∞)(x). (1)

The prior knowledge about the parameter ϑ is that it has a gamma G(α, β) distribution
with the density function πα,β of the form

πα,β(ϑ) =
βα

Γ(α)
ϑα−1 exp(−βϑ)1(0,∞)(ϑ),

where α, β > 0 are known parameters.

Email address: alicja.jokiel-rokita@pwr.wroc.pl (Alicja Jokiel-Rokita).

Preprint submitted to Statistics & Probability Letters 18 April 2008



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

We want to estimate the parameter ϑ on the basis of at most n independent obser-
vations X1, . . . , Xn from the distribution given by (1). If the estimate is determined
at time t, the values of X1, . . . , Xn not exceeding t are exactly known, whereas the
other Xi are only known to be larger than t. The estimator ϑ̂t of the parameter ϑ used
if the observation process is stopped at time t must be Ft-measurable, where Ft :=
σ{(X1 ∧ t,1(0,t](X1)), . . . , (Xn ∧ t,1(0,t](Xn))}, for t ≥ 0.

If observation is stopped at time t, the loss incurred is defined by

Lt(ϑ, ϑ̂t) = L(ϑ, ϑ̂t) + cAN(t) + cT t,

where L(ϑ, ϑ̂t) denotes the loss associated with the error of estimation, when ϑ is the
true value of the parameter and ϑ̂t is the chosen Ft-measurable estimate, N(t) :=∑n
i=1 1(0,t](Xi), cA, cT are known nonnegative constants. We assume the following asym-

metric linear exponential (LINEX) loss function

L(ϑ, ϑ̂t) = b{exp[a(ϑ̂t − ϑ)]− a(ϑ̂t − ϑ)− 1}, (2)

where a 6= 0 is a shape parameter and b > 0 is a factor of proportionality.
The purpose of this article is to determine the optimal Bayes stopping time and the

corresponding Bayes sequential estimator of the unknown parameter ϑ.
The problem under consideration (with the estimation loss function ϑ−r(ϑ̂t − ϑ)2 for

some r ≥ 0) has been treated in the paper of Chen and Wardrop (1980), where so-called
infinitesimal look-ahead (ILA) stopping rule is seen to be optimal in certain cases and
studied asymptotically. In the case r = 0 (the quadratic loss function) the ILA rule is
not optimal for some values n and α. In this case Stadje (1990) gave an optimal solution
in rather explicit form by using the ”free boundary method”. In the model considered in
this paper, the ILA stopping time turns out also to be not optimal for some values n and
α, namely for n − α > 1. Using an analogous method as in the paper of Stadje (1990),
we present an optimal solution to the problem stated.

2. The results

Let ϑ,X1, . . . , Xn be defined on the probability space (Ω, F ,Pα,β). Denote by Eα,β(·)
the expectation with respect to Pα,β . Our task is to find a stopping time σ relative to
(Ft)t≥0 and a family of estimators (ϑ̂t)t≥0 such that the risk

Eα,β(Lσ(ϑ, ϑ̂σ)) = Eα,β
{
b{exp[a(ϑ̂σ − ϑ)]− a(ϑ̂σ − ϑ)− 1}+ cAN(σ) + cTσ

}

is minimized.
Denote U(t) :=

∑n
i=1(Xi ∧ t).

Lemma 1 The conditional distribution of ϑ given Ft is the gamma distribution G(N(t)
+α, U(t) + β).

Let us assume that a > −β. The following lemma gives the form of the Bayes estimator
of the parameter ϑ with respect to a priori gamma distribution G(α, β) under the LINEX
loss function.
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Lemma 2 Under the loss function given by (2) and for any stopping time t the esti-
mator

ϑ̂t =
N(t) + α

a
ln
(

1 +
a

U(t) + β

)
(3)

is Bayes with respect to a priori gamma G(α, β) distribution and its posterior risk is of
the form

R(πα,β , ϑ̂t) = b [N(t) + α]
[

a

U(t) + β
− ln

(
1 +

a

U(t) + β

)]
. (4)

Proof: The form (3) of the Bayes estimator we obtain by using the general formula given
in Zellner (1986). A straightforward calculation shows that the posterior risk R(πα,β , ϑ̂t)
is of the form (4). 2

Lemma 2 implies that the sequential procedure can be identified with the stopping
time. Thus we have to find a stopping time σ relative to (Ft)t≥0 which minimizes the
expectation

Eα,β
[
R(πα,β , ϑ̂τ ) + cAN(τ) + cT τ

]

over all such stopping times τ (relative to (Ft)t≥0), where R(πα,β , ϑ̂t) is given by (4).
Denote

g(j, x) := b(j + α)
[

a

x+ β
− ln

(
1 +

a

x+ β

)]
+ cAj, (5)

for (j, x) ∈ E := {0, 1, . . . , n} × [0,∞).
Lemma 3 The process (N(t), U(t)), t ≥ 0, with values in E is a stationary Markov

one. It is also strong Markov. If φ : E → R is a given function such that φ(j, ·) ∈ C1[0,∞)
and φ(j, ·) and φ′(j, ·) are bounded for j = 0, 1, . . . , n, then φ belongs to the domain DI
of the weak infinitesimal generator I of the process (N(t), U(t)), and we have

Iφ(j, x) = [φ(j + 1, x)− φ(j, x)](n− j)(α+ j)(β + x)−1 + (n− j)φ′(j, x),

where φ(n+ 1, x) := φ(n, x) and φ′(j, x) := d
dxφ(j, x). 2

For the proof of this lemma see Stadje (1990).
Theorem 1 The stopping time σ defined by

σ = inf{t ≥ 0 : ∃j ∈ {0, . . . , n}, N(t) = j, U(t) ≥ γj}
is optimal, the boundaries being determined by γj = 0, j = 0, . . . , n− 1, when ψ(j, x) > 0
for all x ∈ [0,∞) or γj is a unique root of the equation ψ(j, x) = 0, and γn = 0, where

3
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ψ(j, x) := φ(j + 1, x)− g(j + 1, x) + b ln
(

β + x

β + x+ a

)

+
ab

β + x+ a
+

cT (β + x)
(n− j)(α+ j)

+ cA,
(6)

g(j, x) is given by (5),

φ(n, x) := g(n, x), (7)

φ(j, x) := (β + x)α+j

[
gj(x) +

∫ γj

x

α+ j

(β + t)α+j+1
φ(j + 1, t)dt

]
, (8)

for j = 0, . . . , n− 1, where

gj(x) :=
cT

(n− j)(α+ j − 1)
[
(β + x)−α−j+1 − (β + γj)−α−j+1

]
+

cAj

(β + γj)α+j

+
b(α+ j)

(β + γj)α+j

[
a

β + γj
+ ln

(
β + γj

β + γj + a

)]
,

(9)

when α+ j 6= 1, and

gj(x) := − cT
n− j ln(β + x) +

ab

(β + γj)2
+

b

β + γj
ln

β + γj
β + γj + a

+
cAj

(β + γj)α+1
+

cT
n− j ln(β + γj),

(10)

when α+ j = 1.
Proof: By Dynkin’s identity (Dynkin (1965)) it can be shown that if φ : E → R satisfies

the following conditions
(i) φ ∈ DI ,
(ii) φ(j, x) ≤ g(j, x) and Iφ(j, x) ≥ −cT , (j, x) ∈ E,

(iii) φ(j, x) < g(j, x)⇒ Iφ(j, x) = −cT , (j, x) ∈ E,
then the stopping time

σ = inf{t ≥ 0 : φ(N(t), U(t)) = g(N(t), U(t))} (11)

satisfies Eα,β [g(N(σ), U(σ)) + cTσ] = inftEα,β [g(N(t), U(t)) + cT t] = φ(0, 0), provided

Eα,β(σ) <∞. (12)

For the stopping time σ, given by (11), condition (12) is satisfied, because

4
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Eα,β(σ) ≤ Eα,β(max(X1, . . . , Xn)) <∞.
The form of the ”payoff function”

g(j, x) + cT t = b(j + α)
[

a

x+ β
− ln

(
1 +

a

x+ β

)]
+ cAj + cT t

suggests that one stops at time t iff U(t) = x is large. This idea leads to the consideration
of stopping times of the following form σ = inf{t ≥ 0 : ∃j ∈ {0, . . . , n};N(t) = j, U(t) ≥
γj}, where γn = 0 and γ0, . . . , γn−1 are constants. Thus we should look for the constants
γ0, . . . , γn−1 and the function φ : E → R satisfying condition (i) and having the following
properties

φ(n, x) = g(n, x) = b(n+ α)
[

a

x+ β
− ln

(
1 +

a

x+ β

)]
+ cAn, (13)

φ(j, x) = g(j, x), when x ≥ γj , (14)

Iφ(j, x) ≥ −cT , when x ≥ γj , (15)

φ(j, x) ≤ g(j, x), when x ≤ γj , (16)

Iφ(j, x) = [φ(j + 1, x)− φ(j, x)](n− j)(α+ j)(β + x)−1 + (n− j)φ′(j, x)

= −cT , when x ≤ γj .
(17)

Condition (17) is a recursive system of differential equations for φ(n − 1, ·), . . . , φ(0, ·),
and (13) gives φ(n, ·) = g(n, ·). To treat this system in a convenient way it turns out that
if one sets

φ(j, x) = fj(x)[gj(x) +
∫ γj

x

hj(t)φ(j + 1, t)dt],

condition (17) gives equations for fj , gj and hj which can be easily solved. Namely, for
j = 0, . . . n− 1,

fj(x) = (β + x)α+j ,

gj is given by formulas (9), (10), and

5
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hj(x) =
α+ j

(β + x)α+j+1
.

We shall now determine the constants γ0, . . . , γn−1 such that φ ∈ DI and conditions
(14)–(16) hold. For the function ψ defined by (6) it is easily checked that

ψ(j, x) = φ(j + 1, x)− g(j, x)− ab
[

1
β + x

− 1
β + x+ a

]
+

cT (β + x)
(n− j)(α+ j)

,

and for x ≤ γj

∫ γj

x

(β + t)−α−j−1ψ(j, t)dt = [φ(j, x)− g(j, x)]/(α+ j)(β + x)α+j . (18)

Further, when x ≥ γj ,

Iφ(j, x) = −cT + ψ(j, x)(n− j)(α+ j)(β + x)−1. (19)

In an analogous way as in the paper of Stadje (1990), it can be shown that for certain
constants γj

x < γj ⇒ ψ(j, x) ≤ 0 (20)

and

x ≥ γj ⇒ ψ(j, x) ≥ 0. (21)

It follows from (18) and (20) that φ(j, x) ≤ g(j, x) for x ∈ [0, γj ]. If γj > 0, it follows from
(18) that the lefthand derivative of φ(j, x) at x = γj is equal to its righthand derivative
g′(j, x). Thus it is clear that φ(j, ·) ∈ C1[0,∞) and that φ(j, ·) and φ′(j, ·) are bounded.
Thus we have φ ∈ DI . Equation (19) and implication (21) yield Iφ ≥ −cT . Thus the
function φ given by (7) and (8) satisfies conditions (13)–(17). This completes the proof
of the theorem. 2

Corollary 1 If n− α ≤ 1, the constants γ0, . . . , γn satisfy 0 = γn ≤ γn−1 ≤ . . . ≤ γ0.
If n − α > 1, we have 0 = γn ≤ γn−1 ≤ . . . ≤ γi+1 ≥ γi ≥ . . . ≥ γ0, where i =

[(n− α− 1)/2].
Proof: The theorem can be proved in an analogous way as Theorem 2 in the paper of

Stadje (1990).

3. Description of the optimal stopping time and a numerical example

The optimal stopping time derived in this paper can be described as follows. Suppose
first that one has observed the n units up to time t and no failure has occurred. Then one

6
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stops at t iff t ≥ γ0/n. Suppose next that up to time t exactly one failure has happened
and one has not stopped yet. Then one stops at t if X(1) + (n − 1)t ≥ γ1. In general,
if up to the current time t exactly j units have failed, i.e., t ∈ [X(j), X(j+1)), where
j ∈ {0, 1, . . . , n− 1}, one stops iff

U(t) = X(1) + . . .+X(j) + (n− j)t ≥ γj .
Finally let us look at an explicit example. Consider the case n = 2, a = b = 1, α = β = 1,
cA = cT = 0.1. We shall compute γ0 and γ1, (γ2 = 0 by definition). First we have to find
γ1 which is the unique solution to the equation

ψ(1, x) = 0, (22)

or γ1 = 0, when equation (22) has no solution. Function ψ(1, x) is of the form

ψ(1, x) = φ(2, x)− g(2, x) + ln
(
x+ 1
x+ 2

)
+
x+ 1

20
+

1
x+ 2

+
1
10
,

where

φ(2, x) = g(2, x) =
3

x+ 1
+ ln

(
x+ 1
x+ 2

)
+

1
5
.

Thus

ψ(1, x) = ln
(
x+ 1
x+ 2

)
+
x+ 1

20
+

1
x+ 2

+
1
10
,

and γ1 = 0.0163. The boundary γ0 is the unique solution to the equation

ψ(0, x) = 0, (23)

or γ1 = 0, when equation (23) has no solution. Function ψ(0, x) is of the form

ψ(0, x) = φ(1, x)− g(1, x) + ln
(
x+ 1
x+ 2

)
+
x+ 1

20
+

1
x+ 2

+
1
10
,

where

φ(1, x) =
1

(x+ 1)2

[
g1(x) +

∫ γ1

x

6
(t+ 1)4

+
1

25(t+ 1)3
dt

∫ γ1

x

6
(t+ 1)3

ln
(
t+ 1
t+ 2

)
dt

]
,

where

g1(x) =
1

10(x+ 1)
+

2
(γ1 + 1)3

+
2

(γ1 + 1)2
ln
(
γ1 + 1
γ1 + 2

)
+

1
10(γ1 + 1)2

− 1
10(γ1 + 1)

,

7
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and

g(1, x) =
2

x+ 1
+ 2 ln

(
x+ 1
x+ 2

)
+

1
10
.

Equation (23) has the solution γ0 = 0.0163. So, when we have observed two units up to
time t and no failure has occurred, then we stop at time t iff t ≥ γ0/2 = 0.00815 and we
take ln[1+1/(γ0 +1)] as the estimator of the parameter ϑ. If only one failure has occured
up to time t and we have not stopped yet, then we stop at time t iff X(1)+t ≥ γ1 = 0.0163
and we take 2 ln[1 + 1/(γ1 + 1)] as the estimator of the parameter ϑ. If the second failure
has occured at time t and we have not stopped yet, then we stop immediately and we
take 3 ln[1 + 1/(x1 + t+ 1)] as the estimator of the parameter ϑ.
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