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Abstract

Cassini radar observations show that Titan’s spin is slightly faster than synchronous

spin. Angular momentum exchange between Titan’s surface and the atmosphere

over seasonal time scales corresponding to Saturn’s orbital period of 29.5 year is the

most likely cause of the observed non-synchronous rotation. We study the effect of

Saturn’s gravitational torque and torques between internal layers on the length-of-

day (LOD) variations driven by the atmosphere. Because static tides deform Titan

into an ellipsoid with the long axis approximately in the direction to Saturn, non-

zero gravitational and pressure torques exist that can change the rotation rate of

Titan. For the torque calculation, we estimate the flattening of Titan and its interior

layers under the assumption of hydrostatic equilibrium. The gravitational forcing

by Saturn, due to misalignment of the long axis of Titan with the line joining the

mass centers of Titan and Saturn, reduces the LOD variations with respect to those

for a spherical Titan by an order of magnitude. Internal gravitational and pressure

coupling between the ice shell and the interior beneath a putative ocean tends to

reduce any differential rotation between shell and interior and reduces further the

LOD variations by a few times. For the current estimate of the atmospheric torque,

we obtain LOD variations of a hydrostatic Titan that are more than 50 times smaller

than the observations indicate when a subsurface ocean exists and more than 100

times smaller when Titan has no ocean. Moreover, Saturn’s torque causes the ro-

tation to be slower than synchronous in contrast to the Cassini observations. The

calculated LOD variations could be increased if the atmospheric torque is larger

than predicted and or if fast viscous relaxation of the ice shell could reduce the

gravitational coupling, but it remains to be studied if a two order of magnitude

increase is possible and if these effects can explain the phase difference of the pre-

dicted rotation variations. Alternatively, the large differences with the observations

may suggest that non-hydrostatic effects in Titan are important. In particular, we
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show that the amplitude and phase of the calculated rotation variations are similar

to the observed values if non-hydrostatic effects could strongly reduce the equatorial

flattening of the ice shell above an internal ocean.

Key words: Titan, interiors, rotational dynamics, ice

1 Introduction

Cassini radar observations over the last few years have shown that the rotation

rate of Saturn’s moon Titan differs from synchronous rotation and leads to a

shift of 0.36◦ per year in apparent longitude (Lorenz et al. 2008). This shift is

thought to be due to long-periodic exchanges of angular momentum between

Titan’s surface and atmosphere. By using their general circulation model of

the atmosphere, Tokano and Neubauer (2005) predicted periodic length-of-

day (LOD) variations of a solid Titan with main period of 14.74 yrs and an

amplitude about a factor 5 or more smaller than the observed shift. However, if

Titan has an ocean and the rotation of the shell could be considered decoupled

from the interior, the atmosphere would only force rotation variations of the

shell and the amplitude of the surface rotation variations would be close to

the observed value (Tokano and Neubauer 2005). Therefore, Lorenz et al.

(2008) take the Cassini radar data as evidence for the existence of an internal

ocean. Noyelles (2008) suggests that the apparent faster rotation could also be

possible for an entirely solid Titan if a long period wobble were to be resonantly

excited, which would require fine-tuning of Titan’s moment of inertia.

In the above theoretical predictions of the LOD variations, two gravitational

effects on the spin of Titan are neglected. First, Saturn exerts a gravitational

torque on Titan, which tends to reduce periodic deviations from synchronous
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rotation. Due to the proximity of Saturn, this torque can be larger than the

atmospheric torque causing the LOD variations. Second, the shell cannot be

considered to perform LOD variations decoupled from the interior beneath an

ocean because of several interactions between the different internal layers of

Titan. Although electromagnetic and viscous interactions at the boundaries of

the internal ocean can most likely be neglected (Tokano and Neubauer 2005,

Lorenz et al. 2008), the gravitational interaction between the shell and the

interior is important (Karatekin et al. 2008).

Both gravitational torques exist by virtue of the flattened form of Titan and

can only influence the rotation rate of Titan when the equatorial principal

moments of inertia of Titan are different (non-zero equatorial flattening). Due

to static tides generated by Saturn, which stretch Titan in the direction to

Saturn and cause a contraction in the direction perpendicular to Saturn, the

almost synchronously rotating Titan has a significant equatorial flattening

that is of the same order of magnitude as the polar flattening. Karatekin et al.

(2008) showed that the internal gravitational torque reduces the amplitude of

the main periodic rotation variation of Titan due to the atmosphere by about

an order of magnitude.

Besides gravitational effects, ocean pressure also influences the LOD variations

of Titan. Variations in the gravitational field due to relative rotation of differ-

ent internal layers and to orientation changes with respect to the direction to

Saturn induce an additional pressure field in the putative subsurface ocean.

This incremental pressure acts on the aspherical boundaries of the ocean and

so exerts a torque on both the ice shell and the interior. Pressure counter-

acts the gravitational torques due to Saturn and internal misalignment and

therefore reduces the total torques.
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The plan of the paper is as follows. In Sect. 2, we study the effect of the

gravitational torque of Saturn on Titan’s LOD variations if Titan rotates

rigidly, which is a good approximation for an entirely solid Titan without

internal ocean. The effects of an ocean on rotation are introduced in Sect. 3.

We explain how internal gravitational torques and pressure torques can be

determined and derive differential equations that govern the LOD variations

of Titan. LOD variations are calculated for different models of the internal

structure of Titan, and we determine the relative importance of the different

torques. The results are compared to the observations in the discussion Sect.

4 and conclusions are presented in the final section.

2 Saturn’s gravitational torque

For the calculation of Saturn’s gravitational torque on Titan, we neglect Ti-

tan’s small obliquity, recently determined from Cassini radar images to be

about 0.3◦ (Stiles et al. 2008), and assume that Titan’s rotation axis is per-

pendicular to the orbital plane around Saturn. We also assume principal axis

rotation with Titan rotating about its shortest (polar) principal axis, which

corresponds to the largest principal moment of inertia C. The polar compo-

nent of Saturn’s gravitational torque on Titan Γgrav, which can change Titan’s

rotation rate, can then be expressed as (e.g. Murray and Dermott 1999)

Γgrav =
3

2
(B − A)

GMS

d3
sin 2ψ = Kgrav

(
a

d

)3

sin 2ψ (1)

where A < B are the two principal moments of inertia of Titan in the equato-

rial plane, G is the universal gravitational constant, MS the mass of Saturn, d

the distance between the mass centers of Titan and Saturn, and ψ the angle
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between the long axis of Titan (associated with the smallest moment of inertia

A) and the direction from Titan to Saturn (ψ = f − φ, where f is Titan’s

true anomaly and φ the orientation angle between the long axis of Titan and

the line of apsides). We denote the strength of the gravitational coupling by

Kgrav = 3(B −A)GMS/(2a3) ≈ 3n2(B −A)/2, where a is the semi-major axis

of Titan’s orbit, and n Titan’s mean motion.

The main geophysical parameter in the gravitational torque is the equatorial

moment of inertia difference B−A of Titan. We calculate it by assuming that

Titan is in hydrostatic equilibrium so that Clairaut theory can be used. For a

given spherical reference model of the interior structure of Titan with density

profile ρ(r0), where r0 is the radial coordinate from the center of the model,

the equatorial flattening β of the model due to the static tides generated by

Saturn can be determined from Clairaut’s second-order differential equation

d2β

dr2
0

+
6

r0

ρ

ρ

dβ

dr0
− 6

r2
0

(
1 − ρ

ρ

)
β = 0, (2)

and the associated boundary condition

dβ

dr0
(R) =

1

R

[
15

2
q − 2β(R)

]
(3)

(Van Hoolst et al. 2008, for Clairaut theory, see, e.g. Jeffreys 1952, Moritz

1990). Here, R = 2575 km is the mean radius of Titan, q = (ω2R3)/(GM)

the ratio of the centrifugal acceleration to the gravitational acceleration, M =

1.346× 1023 kg the total mass of Titan, and ρ is the mean density in a sphere

of radius r0. The flattening β(r0) = [a(r0) − b(r0)]/a(r0), where a(r0) > b(r0)

are the lengths of the two principal axes in the equator plane of the ellipsoidal

surface with mean radius r0. The equatorial moment of inertia difference B−A
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can then be calculated by integration over the radial coordinate:

B − A =
8π

15

∫ R

0
ρ(r′0)

d(βr′50 )

dr′0
dr′0. (4)

We consider two models of the interior structure of Titan, representative of

two different classes of models, for the numerical evaluation of our results (see

Table 1). The first model (Sohl et al. 2003) has an outer ice shell of density

917 kg m−3 and thickness 68.7 km. Beneath the ice shell is a 223.76 km thick

ammonia-water ocean with a density of 950 kg m−3. The deep interior consists

of a high-pressure (HP) ice layer with a density of 1310 kg m−3 and a rock-iron

core with a density of 3813.31 kg m−3. The interface between the core and the

HP ice layer is at a radial coordinate of 1670.807 km. The model has a mean

moment of inertia factor I/(MR2) = 0.304, typical for this kind of strongly

differentiated interior structure models (Sohl et al. 2003). The second model

is chosen to have a low-density interior (Fortes et al. 2007) and has a mean

moment of inertia I/(MR2) = 0.360. We follow Fortes et al. (2007) and choose

a core consisting of hydrated rock, a high-pressure ice mantle, an ocean of

aqueous ammonium sulfate, and a shell of low-pressure ice, methane clathrate

and ammonium sulfate. The densities of the layers are ρs = 1065 kg m−3,

ρo = 1350 kg m−3, ρm = 1400 kg m−3, and ρc = 2325.1 kg m−3. The interface

radii are ro = 2495 km, rm = 2350 km, rc = 2124.03 km. Subscripts s, o, m,

and c denote the ice shell, ocean, ice mantle, and core, respectively.

For model 1, B − A = 2.68 1031 kg m2 and Kgrav = 8.35 1020 Nm, whereas for

model 2, we have B−A = 4.07 1031 kg m2 and Kgrav = 1.27 1021 Nm. Models 1

and 2 can be considered close to end-member models of the interior structure

of Titan in terms of the degree of differentiation. Therefore, we consider the

above values representative for a hydrostatic Titan and conclude that B − A
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is on the order of 1031 kg m2 and that the strength of the gravitational torque

by Saturn Kgrav is typically 1021 Nm.

Saturn’s gravitational torque changes in time with the angle ψ between the

long axis of Titan and the direction to Saturn and with the distance d between

Saturn and Titan. The magnitude of the torque can be estimated from the

maximum value of the angle ψ, which changes for two reasons. First, during the

orbital motion (with a period of 15.945 days) the long axis of a synchronously

rotating Titan is approximately oriented towards the empty focus of the ellip-

tical orbit instead of to Saturn and ψ changes between 0 and 2e (Murray and

Dermott 1999), where e = 0.0292 is the eccentricity of the orbit. On Titan’s

equator, this deviation of the direction of the long axis from the direction to

Saturn corresponds to about 150km. As seen from Saturn, Titan therefore

not always shows exactly the same face and periodically exposes regions with

slightly larger and smaller longitude than the half of its surface it would show

if the orbit were circular. These variations are equivalent to the geometrical

librations of the Moon. The maximum torque at maximum misalignment 2e

and distance a for the models considered is Γgrav = 1.48 1020 Nm.

The atmosphere of Titan also changes the angle ψ by changing the rotation

rate (or equivalently LOD) and therefore changing the orientation of the long

axis φ as a function of time. Cassini radar observations show that the orienta-

tion change with respect to synchronous rotation is 0.36◦ per year over the last

years (Stiles et al. 2008). By assuming this to be due to the atmosphere with

main period at 14.74 yr (half the orbital period of Saturn), we can estimate the

amplitude of the periodic variation in ψ. The smallest atmosphere-induced am-

plitude, corresponding to a current rotation rate close to its maximum value,

is about 0.015 rad and leads to variations of the orientation of the long axis
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at the equator with an amplitude of about 40 km. The strength of the torque

associated with this maximum misalignment and at distance a is 2.51 1019 Nm

for model 1 and 3.84 1019 Nm for model 2.

Instead of using the orientation angle φ for the study of small changes in the

spin of Titan, we introduce the small rotation angle γ = φ − Ma, where Ma

is the mean anomaly and write ψ = f − γ − Ma. By expanding Expression

(1) for the torque as a series in mean anomaly Ma and eccentricity e by using

well-known expansions for (a/d)3, cos f , and sin f (Cayley 1861), we have

Γgrav = −3

2
(B − A)n2

+∞∑
k=−∞

X−3,2
−k (e) sin [2γ + (2 + k)Ma], (5)

where the eccentricity functions X−3,2
−k (e) are Hansen coefficients (Hansen

1855, Hughes 1981), and n = 4.5607 10−6s−1 is the mean motion of Titan’s or-

bit. We linearize this expression in eccentricity and angle γ. Since the Hansen

coefficients Xn,m
k are of order e|k−m| in eccentricity (e.g. Plummer 1918), only

Hansen coefficients X−3,2
−k (e) in Eq. (2) with index k equal to -1, -2, and -3 have

to be retained. These are X−3,2
1 (e) = −e/2, X−3,2

2 (e) = 1, X−3,2
3 (e) = 7e/2,

up to first order in eccentricity, and we then have

Γgrav = 6en2(B − A) sin Ma − 3n2(B − A)γ. (6)

The first term in the right-hand side corresponds to the periodic forcing at

the main libration period of 15.945 days. The second term in the right-hand

side will have an impact on the LOD variations at 14.74 yrs.

The changes in the rotation angle γ due to atmospheric forcing and the gravita-

tional torque of Saturn can be obtained from the angular momentum equation

Cγ̈ + 3n2(B − A)γ = 6en2(B − A) sin Ma + Γ(t), (7)
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where C is the polar moment of inertia of Titan. The time-variable atmo-

spheric torque is principally semi-annual Γ(t) = ΓA sin(ωAt + fA) with an

amplitude ΓA = 1.6× 1017 N m (Tokano and Neubauer 2005, Karatekin et al.

2008). Time is measured from September 1980, the frequency ωA = 2π/14.74

years = 1.35× 10−8 s−1 and the phase fA = 5.11 rad. The atmospheric torque

is about 200 times smaller than Saturn’s gravitational torque at maximum

misalignment due to the LOD variations.

Eq. (7) is the equation for a forced oscillator. At the main atmospheric forcing

period, the solution for the variations in the rotation angle can be expressed

as γ = g sin ωAt, with

g =
ΓA

3n2(B − A) − ω2
AC

. (8)

For model 1, the amplitude of the rotation variation is 9.87 10−5 rad (see Table

2). This corresponds to a maximum orientation shift of about 0.0024◦ per year,

which is more than 100 times smaller than the observed rotation variation.

For model 2, the LOD variations are even smaller (g = 6.46 10−4 rad) because

of the larger flattening of the model and thus the larger restoring gravitational

torque.

For a spherical Titan, the gravitational torque of Saturn on Titan vanishes

and the amplitude of the rotation variation would be

g = − ΓA

ω2
AC

. (9)

We have g = −3.23 10−3 rad for model 1, and g = −2.73 10−3 rad for model

2. From comparison with the values of the general solution above, it follows

that the Saturn torque reduces the LOD variations by a factor of about 30-40.

An important further difference is that the rotation angle variations are 180◦

out of phase with the atmospheric torque for a spherical Titan (see the minus
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sign in Eq. 9), whereas they are in phase when gravitational coupling with

Saturn is taken into account. It follows that Saturn forces Titan’s rotation

angle variations to be in phase with the atmospheric torque. As for any forced

harmonic oscillator, they are in phase because the normal (or free) frequency

is larger than the forcing frequency (ωA = 1.35×10−8 s−1). The free frequency

ωf is given by

ωf = n

√
3(B − A)

C
(10)

(see, e.g., Murray and Dermott 1999) and is equal to 7.85×10−8 s−1 for model

1 and 8.89 × 10−8 s−1 for model 2.

The atmospheric torque model (Tokano and Neubauer 2005) shows that the

atmospheric torque is negative over the last few years with minimum in 2009

(Karatekin et al. 2008). Therefore, landmarks are predicted to be shifted west-

wards with maximum in 2009, and the rotation is predicted to be slower than

synchronous until 2009, contrary to the Cassini observations (Stiles et al.

2008). Both the phase difference and the too small amplitude suggest that

a solid Titan without ocean cannot be reconciled with the observed rotation

variations. In the next section, we study whether an ocean can change this

situation.

3 Internal coupling

When a subsurface ocean exists in Titan, the shell can perform rotation vari-

ations different from those of the interior. However, the shell cannot be con-

sidered to be rotationally decoupled from the interior since it is coupled with

the underlying ocean and interior through viscous, electromagnetic, pressure

and gravitational torques. The viscous torques due to friction forces on the
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boundaries of the internal ocean can most likely be neglected because of the

small ocean viscosity [Lorenz et al. 2008, Tokano and Neubauer 2005]. We also

neglect electromagnetic coupling between the ocean and the shell and between

the ocean and the interior because of the absence of a self-generated magnetic

field in Titan. The coupling between the three internal regions considered is

then due to the gravitational force and the pressure force of the liquid on the

ocean boundaries. The effect of internal gravitational coupling on Titan’s ro-

tation has been studied by Karatekin et. (2008) and will be readdressed here.

We first explain how these couplings can be taken into account and then study

the LOD variations of Titan’s shell.

3.1 Internal gravitational and pressure coupling

When Titan has a subsurface ocean, the differential rotations of the ocean

and interior (consisting of a solid mantle and core) with respect to the shell

have to be taken into account in the angular momentum equation for Titan.

Since we only consider variations in the rotation rate of Titan, and not in its

orientation, we only need to study components of physical quantities along

the polar rotation axis, which we take as the z-axis. The z-component of the

angular momentum equation for Titan can be written as

Csφ̈s + Coφ̈o + Ciφ̈i = Γt. (11)

Here, the rotation angles φj , with respect to a direction fixed in inertial space,

of the shell, ocean and interior are used, and Cj is the polar principal moment

of inertia of the shell (j = s), ocean (j = o) and interior (j = i). The z-

component of the total torque on Titan Γt is the sum of the atmospheric

torque Γ and the external Saturn torque Γgrav. The latter can be expressed as
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as the sum of the three torques of Saturn on the three internal layers of Titan

(see Eq. 1):

Γgrav =
3

2

GMS

d3
[(Bs − As) sin 2ψs + (Bo − Ao) sin 2ψo + (Bi − Ai) sin 2ψi] ,

(12)

with ψj the angle between the long axis of Titan’s layer j (associated with

the smallest moment of inertia Aj of layer j) and the direction from Titan to

Saturn (ψj = f − φj).

To be able to solve Eq. (11), we introduce angular momentum equations for

the ocean and the interior. We have

Coφ̈o =Γo, (13)

Ciφ̈i =Γi. (14)

The z-components of the total torques on the ocean (Γo) and interior (Γi)

are due to Saturn and to internal gravitational forces and pressure forces on

the boundary of the region considered. Internal gravitational coupling arises

when the principal axes of the shell are not aligned with those of the interior.

Such a misalignment occurs when the atmosphere or Saturn’s gravitational

torque forces the shell and interior to change their rotation. As a consequence,

the internal gravitational field in Titan changes and different internal regions

exert a torque on each other. Variations in the gravity field also cause pressure

changes in the ocean that give rise to pressure torques.

The z-component of the total torque on the ocean Γo due to internal gravi-

tational coupling, external gravitational coupling by Saturn, and pressure P ,

can be expressed as

Γo = −
∫

Vo

(	r × ρo∇Φ)z dV −
∫

Vo

(
	r × ρo∇W ext

)
z
dV +

∫
So

(	r × n̂)z PdS, (15)

14
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where Φ is Titan’s gravitational potential, W ext the external gravitational

potential due to Saturn, n̂ is the outward unit normal on the ocean surface, Vo

the volume of the ocean and So its boundary, which consists of the boundary

with the interior below and the boundary with the ice shell above. The pressure

torque can be calculated by using the Navier-Stokes equation for the ocean,

which we assume to be inviscid. In a reference frame rotating with the shell

rotation rate 	ωs, we have

∇P = −ρo∇Φ − ρo∇W ext − ρo∇Ψ − ρo
d	vo

dt
− 2ρo	ωs × 	vo − ρo	̇ωs × 	r, (16)

where Ψ is the centrifugal potential and 	vo the ocean velocity with respect to

the reference frame considered. By assuming the perturbed flow in the ocean

to be essentially a small rigid rotation (or a Poincaré flow, Poincaré 1910,

Mathews et al. 1991, Dehant and Mathews 2007), and rewriting the torque

expression as a surface integral over the boundary of the ocean by using a

consequence of Gauss’ theorem

∫
V

	r ×∇fdV =
∫

S
f	r × n̂dS, (17)

the total torque on the ocean reduces to zero in an approximation correct up

to the first order in the small differential rotations of the shell, ocean and

interior with respect to equilibrium synchronous rotation (see Hinderer et al.

1982 and Mathews et al. 2001 for details of this calculation in the case of the

torque on the Earth’s fluid outer core, see also Van Hoolst 2007). Here, it is

assumed that the boundaries between the interior, the ocean, and the shell are

ellipsoidal and we neglect any topography. The angular momentum equation

for the ocean then simplifies to

Coφ̈o = 0, (18)
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which means that the ocean does not take part in the rotation variations of

Titan.

The z-component of the torque on the interior can be expressed as

Γi = −
∫

Vi

(	r × ρi∇Φ)z dV −
∫

Vi

(
	r × ρi∇W ext

)
z
dV −

∫
Si

(	r × n̂)z PdS, (19)

where Vi is the volume of the interior (mantle+core) and Si the boundary

between the interior and the ocean. By using the Navier-Stokes equation for

the ocean in the pressure term and transforming the surface integral to a

volume integral by applying Gauss’ theorem (17), we have

Γi = −
∫

Vi

(ρi − ρo)
[
	r ×∇

(
Φ + W ext

)]
z
dV. (20)

Eq. (20) shows that the ocean pressure torque counteracts the gravitational

torques and that the total torque on the interior is smaller than the sum of

the gravitational torques. For a constant density interior, the volume integral

can easily be transformed to a surface integral by re-applying Identity (17).

We then have

Γi = −ρi

(
1 − ρo

ρi

) ∫
Si

(	r × n̂)z

(
Φ + W ext

)
dS. (21)

In this case, the ocean pressure reduces the total torque on the interior with

respect to the gravitational torque by a factor 1−ρo/ρi. The last four, inertial

terms in the Navier-Stokes Eq. (16) do not contribute to the torque because,

as can most easily be seen from the surface integral in Eq. (21), they are

orthogonal to a spherical harmonic of degree and order 2 and the z-component

of the vectorial product 	r× n̂ is proportional to a spherical harmonic of degree

and order 2 for an ellipsoidal boundary.

An expression for the internal gravitational torque on the interior beneath
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the ocean due to Titan’s self-gravity follows from the internal gravitational

potential due to the ice shell, the ocean, and the interior, and is different

from zero only for misalignment of the principal axes of the internal regions

considered. For a homogeneous interior, it is easiest to calculate the surface

integral (21), for a differentiated interior the volume integral (20) must be

calculated. Since the z-component of the vectorial product 	r×n̂ is proportional

to a spherical harmonic of degree two and order two (Van Hoolst and Dehant

2002):

(	r × n̂)z =
1

3
riβiP

2
2 (cos θ) sin 2λ′, (22)

where P 2
2 is the associated Legendre function of degree two and order two and θ

is co-latitude, only those terms in the gravitational potential proportional to a

spherical harmonic of degree two and order two contribute to the gravitational

torque. Here, ri is the mean radius and βi the equatorial flattening of the

interior. The angle λ′ is measured in a coordinate frame fixed to the interior

and differs from the angle λ in the shell reference frame by the orientation

difference between the interior and the shell. Following Jeffreys (1952, see also

Buffett 1996), the internal gravitational potential in the interior due to the

ocean and the shell can be expressed as

Φ(r, θ, λ) =−4πG
∫ R

ri

ρ(r′0)r
′
0dr′0

−2πG

15
r2

∫ R

ri

ρ(r′0)
∂β(r′0)

∂r′0
dr′0P

2
2 (cos θ) cos 2λ. (23)

The first term represents the spherically-symmetric part of the gravitational

potential and does not contribute to the torque. The gravitational field gen-

erated by the mass of the interior doesn’t contribute either to the torque

as it is aligned with the mass of the interior. Therefore, only the ocean and

ice shell contribute. However, the ocean mass in a thin layer with spherical

17



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
outer surface around the interior also doesn’t contribute since it has the same

orientation as the interior.

By substituting Expression (23) for the gravitational potential into Eq. (20)

and by taking into account the ellipsoidal form and the difference in orienta-

tion of the interior beneath the ocean and the shell, the z-component of the

gravitational torque modified by ocean pressure ΓΦ,P on the interior due to

misalignment of the interior and the shell can be expressed as

ΓΦ,P =
4πG

5

[
ρβ + ρoβm

]
[(Bi − Ai) − (B′

i − A′
i)] sin 2(φs − φi), (24)

where

ρβ =
∫ R

rm

ρ(r′0)
dβ

dr′0
dr′0. (25)

Eq. (24) is equal to the internal gravitational torque expression for the Earth

given by Xu et al. (2000, see also Buffett 1996), although these authors do not

mention explicitly that it also includes the effect of pressure. Here, B′
i −A′

i is

the moment of inertia difference for the volume of the interior with a constant

density ρo. Applied to our Titan interior models with an interior divided into

four homogeneous layers, we have

ΓΦ,P =
4πG

5

8π

15
[ρsβs + (ρo − ρs)βo]

×
[
(ρm − ρo) βmr5

m + (ρc − ρm)βcr
5
c

]
sin 2(φs − φi)

=Kint sin 2(φs − φi). (26)

The same expression has been derived by Van Hoolst et al. (2008) for the

internal gravitational torque on a spherical region consisting of the interior

beneath the ocean and a small liquid layer around the interior and bounded

by a spherical surface. Here, βj is the equatorial flattening of the outer surface

of the shell (subscript j = s), ocean (j = o), ice mantle (j = m) and core
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(j = c) of Titan with principal axes aj > bj > cj. The torque depends on twice

the difference in angles φs − φi since it is maximum when the axes make an

angle of 45◦. The strength of the torque depends on the equatorial flattening

of the shell and interior.

For model 1, the coupling strength Kint = 1.34 1020 Nm, whereas Kint =

2.60 1020 Nm for model 2. The internal gravitational coupling strength is about

a factor 5-6 smaller than the strength of Saturn’s gravitational torque. To com-

pare the magnitude of the torques, an estimate of the misalignment of shell

and interior is needed. We use an estimated maximum misalignment between

shell and interior φs − φi equal to 0.015 rad, equal to the maximum angle

considered for the estimate of Saturn’s gravitational torque associated with

observed LOD variations (see Sect. 2). The ratio between the maximum exter-

nal and internal gravitational torques is therefore equal to the ratio Kgrav/Kint,

or about 5-6. For model 2 with the largest torque, the interior gravitational

torque at maximum misalignment is 7.80 1018 Nm.

For the rotational dynamics of the shell and interior, a better comparison of

the internal gravitational torque applied by the shell and ocean on the interior

is with Saturn’s torque applied on the interior, instead of on the whole body of

Titan. The gravitational torque of Saturn on the interior can be obtained as in

Sect. 2 for the torque on the entire body of Titan. Without pressure effect, the

Saturn torque on the interior is obtained by replacing the moment of inertia

difference B − A by the moment of inertia difference of the interior Bi − Ai

in Eq. (1). Since the ocean pressure contribution is given by a similar integral

expression as for Saturn’s gravitational torque in which the interior density is

replaced by the opposite of the ocean density (see Eq. 20), the z-component
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of Saturn’s torque modified by pressure ΓS,P can be expressed as

ΓS,P =
3

2
[(Bi − Ai) − (B′

i − A′
i)]

GMS

d3
sin 2ψi. (27)

For a homogeneous interior, this equation simplifies to

ΓS,P =
3

2

(
1 − ρo

ρi

)
(Bi − Ai)

GMS

r3
sin 2ψi, (28)

showing that the pressure effect then reduces the external gravitational po-

tential by a factor 1 − ρo/ρi.

For model 1, the strength of Saturn’s gravitational torque on the interior,

modified by pressure, 3n2[(Bi − Ai) − (B′
i − A′

i)]/2 = 2.52 1020 Nm, and

3n2[(Bi−Ai)−(B′
i−A′

i)]/2 = 2.82 1020 Nm, for model 2. The pressure-modified

gravitational torque exerted by Saturn on Titan’s interior at maximum LOD

misalignment is then 7.56 1018 Nm for model 1 and 8.46 1018 Nm for model

2. Therefore, the maximum internal and external gravitational torques on the

interior are of the same order of magnitude.

3.2 LOD variations of Titan

The rotation variations of the shell and interior can be determined by solving

the angular momentum Eqs. (11), (14) and (18). By substituting the angular

momentum for the ocean (Eq. 18) into the angular momentum equation for

Titan (Eq. 11), we have

Csφ̈s + Ciφ̈i = Γt, (29)

which can be solved together with angular momentum Eq. (14) for the interior.

By introducing the small rotation angles γj = φj − Ma for the layers j, and

substituting torque expressions (12), (26) and (27) into the angular momentum
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equations (14) and (29), we have

Csγ̈s + Ciγ̈i =Γ(t) +
3

2

GMS

d3
[(Bs − As) sin 2(f − Ma − γs)

+(Bi − Ai) sin 2(f − Ma − γi)

+(Bo − Ao) sin 2(f − Ma − γo)] (30)

Ciγ̈i =Kint sin 2(γs − γi)

+
3

2

GMS

d3
[(Bi − Ai) − (B′

i − A′
i)]) sin 2(f − Ma − γi). (31)

As in Sect. 2, we use a series expansion of the Saturn torque in eccentricity

and only retain the lowest-order terms, we then have (see Eq. 5)

Csγ̈s + Ciγ̈i + 2Ksγs + 2Kiγi =ΓA sin ωAt + 4eKgrav sin Ma, (32)

Ciγ̈i + 2Kcγi − 2Kint(γs − γi) = 4eKc sin Ma, (33)

where

Ks =
3

2
n2(Bs − As), (34)

Ki =
3

2
n2(Bi − Ai), (35)

Kc =
3

2
n2[(Bi − Ai) − (B′

i − A′
i)]. (36)

The polar moment of inertia Cj of an internal layer j is calculated from the

polar flattening α = [(a + b)/2 − c]/[(a + b)/2] by integration:

Cj =
8π

3

∫ r0,t

r0,b

ρj

[
r′40 +

2

15

d (αr′50 )

dr′0

]
dr′0, (37)

where r0,b and r0,t are the bottom and top mean radial coordinates of the

layer. The polar flattening in the layer is determined by integrating Clairaut’s

Equation (2) for α with the boundary condition

dα

dr0
(R) =

1

R

[
25

4
q − 2α(R)

]
. (38)

This boundary condition differs from the classical Clairaut boundary condition
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(see, e.g., Jeffreys 1952, Moritz 1990) for polar flattening since it also includes

the effect of static tides besides the rotational effect (Van Hoolst et al. 2008).

We have Cs = 2.20 1034 kg m2 and Ci = 1.91 1035 kg m2 for model 1, and

Cs = 2.95 1034 kg m2 and Ci = 2.35 1035 kg m2 for model 2.

The solution of Eqs. (32) and (33) can be written as a sum of two solutions,

one at frequency ωA, the second at frequency n. We here only consider the

long-term LOD variations at frequency ωA. We search for solutions of the form

γs = gs sin ωAt and γi = gi sin ωAt. We then have

(
2Ks − ω2

ACs

)
gs +

(
2Ki − ω2

ACi

)
gi = ΓA, (39)

−2Kintgs +
[
2 (Kc + Kint) − ω2

ACi

]
gi = 0. (40)

The amplitude of the shell and interior rotation variations due to atmospheric

forcing and modified by both internal couplings and external gravitational

torques is then given by

gs =
[2 (Kint + Kc) − ω2

ACi] ΓA

Δ
, (41)

gi =
2KintΓA

Δ
, (42)

where

Δ = ω2
ACi

[
ω2

ACs − 2 (Kint + Ks)
]

−2
{
ω2

ACs (Kint + Kc) − 2 [KintKi + (Kint + Kc) Ks]
}

. (43)

The shell rotation angle amplitude is 2.94 10−4 rad (1.41 10−4 rad) for model 1

(model 2), a factor two to three larger than when Titan has no ocean. However,

even when Titan has an ocean, the predicted surface rotation amplitude is

about two orders of magnitude smaller than the observed value. By changing
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the thickness of the ice shell of our models, the rotation amplitude can be

changed by at most some 10%. For example, by increasing the shell thickness

by about a factor three (see model 3 in Tables 1 and 2), the amplitude reduces

by about 30%.

Fig. 1 shows the variation in the small rotation angle γs determined from

Eq. (41) in the time interval 1980 to 2020. We also numerically integrated

Eqs. (30) and (31) and verified that the amplitude difference between both

solutions at 14.74 yr is very small (below 0.1%). Since the rotation angle

variations are predicted to be in phase with the torque (see 41), it can be seen

that the rotation is predicted to be slower than synchronous during the last

years (Fig. 2), as for a solid Titan but contrary to the Cassini observations

(Stiles et al. 2008). Besides the long-term variations due to the atmosphere, the

numerical solution also shows short-periodic variations in the rotation angle.

These librations are due to the periodically changing orientation of the long

axis of Titan with respect to Saturn during its orbital motion around Saturn.

The largest of these librations has a period of 15.945 days, equal to the orbital

period, and an amplitude of 1.49 rad.

4 Discussion

How can we explain that the predicted rotation variations are much smaller

than the observed rotation and what does this difference imply for Titan? For

a spherical Titan with an ocean, gravitational and pressure torques can be

set equal to zero and the shell can be considered decoupled from the interior

and forced only by the atmosphere. This case has been considered in previous

studies (Tokano and Neubauer 2005, Lorenz et al. 2008), and the amplitude
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of the surface rotation variations can be expressed as

gs = − ΓA

ω2
ACs

. (44)

Since there are no restoring forces considered in this decoupled shell situation,

the amplitude of the rotation variations is much larger than in the general case

considered above. We have an amplitude of -3.99 10−2 rad for model 1 and

-2.98 10−2 rad for model 2, about two to three times larger than the observed

value. For model 3 with a 200km thick ice shell, the amplitude is close to

the observed one. However, Titan is not spherically symmetric, as indicated

by the Cassini estimates of the low-degree gravity field of Titan (Iess et al.

2007), and both external and internal torques will tend to reduce the rotation

variations induced by the atmosphere.

If the torques on the ocean (Γo) and the interior (Γi) could be neglected, for

example by considering the interior to be spherically symmetric, the rotation

variations of the surface would be determined by the atmospheric torque and

Saturn’s torque on Titan’s shell. This situation corresponds to that of Sect. 2,

but here only the rotation of the shell instead of the whole of Titan is consid-

ered. The interior rotates synchronously with the orbital mean motion at the

long time-scale considered and the amplitude of the shell rotation variations

is given by

gs =
ΓA

3n2(Bs − As) − ω2
ACs

. (45)

This expression is equal to Expression (8) except for the moments of inertia,

which here are for the shell instead of for the entire body of Titan. For model

1 of the interior structure of Titan, the amplitude of the rotation variations

is 9.93 10−4 rad (gs = 6.60 10−4 rad for model 2, gs = 3.87 10−4 rad for model

3), 4 to 10 times larger than when Titan has no ocean, but almost 50 times
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smaller than for a decoupled shell. Due to Saturn’s large mass and proximity to

Titan and due to Titan’s large hydrostatic equatorial flattening, Saturn exerts

a strong torque on the ice shell of Titan which largely reduces the rotation

variations.

The internal coupling reduces further the rotation variations by a factor 2 to 5.

Therefore, Saturn’s gravitational torque on Titan is more important for the ro-

tation variations of a hydrostatic Titan than the coupling between the internal

layers. The importance of Saturn’s gravitational torque is further illustrated

by the following two observations. First, without Saturn’s torque, internal cou-

pling between the shell and the interior causes the rotation variations to be

out of phase with the atmospheric torque (Karatekin et al. 2008). However,

with Saturn’s torque the rotation variations are predicted to be in phase with

the atmospheric torque (see Solutions 8 and 41). Second, the dynamical effect

of the interior coupling between the shell and the interior beneath the ocean

is not strong enough compared to that of Saturn’s torque to lock the rotation

of the shell to that of the interior, whereas if Saturn’s torque could be ne-

glected, the internal coupling would force Titan to rotate almost like a rigid

body (Karatekin et al. 2008). For model 1 (model 2, model 3), the ratio of the

amplitude of the shell rotation to that of the interior is 0.87 (0.92, 0.88) when

Saturn’s torque is neglected. When Saturn’s torque is included, the interior

rotation amplitude is a factor 2.75 (2.00, 2.76) smaller than the shell rotation

amplitude, showing that the internal torque in the presence of Saturn’s torque

is less efficient in locking the shell rotation to that of the interior.

The effect of ocean pressure on the rotation of Titan is surprisingly small.

Pressure reduces both the external Saturn torque and the internal gravita-

tional torque on the interior by about a factor three. Therefore, neglecting the
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effect of pressure corresponds to increasing the coupling constants Kint and

Kc by about a factor three in the dynamical equation (40) for the interior.

The other angular momentum equation (39) remains unaltered. Due to the

long period of the LOD variations, the inertia term −ω2
ACigi in Eq. (40) is

two orders of magnitude smaller than the torque contributions and can be

neglected in a first approximation. As a result, the dynamical equation for the

interior with the pressure effect neglected is approximately equal to the equa-

tion with pressure included and the solutions are thus approximately equal.

For the three models considered, pressure reduces the amplitude of rotation

variations by 2%. This suggests that a more complex ocean dynamics is not

likely to change our results or to explain the large difference between the ob-

served and predicted LOD variations of Titan if its effect on the internal and

external gravitational torques is equally strong.

Deviations from hydrostatic equilibrium could be important on Titan and

change our results. For example, for a synchronously rotating satellite in hy-

drostatic equilibrium the ratio between the degree-two gravity coefficients

J2/C22 = 10/3, but estimates of this ratio from a recent analysis of radio

tracking data of the Cassini spacecraft differ by some ten of percent from this

value (Iess et al. 2007). If non-hydrostatic effects could strongly diminish the

equatorial flattening of Titan, both the external and internal torques would

be much smaller than in the hydrostatic case and the amplitude of the surface

rotation variations could approach those of a decoupled shell, which is close

to the observed value. However, the degree-two order-two gravity coefficient

C22 (Iess et al. 2007) is itself an indication of the equatorial flattening and

corresponds well to the values calculated for the hydrostatic models consid-

ered here. This suggests that Titan’s equatorial flattening is not far from that
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expected for the hydrostatic case, although it is not known whether individ-

ual layers could have a much smaller flattening. Our results indicate that a

very small equatorial flattening of the ice shell is required for an amplitude of

rotation variations as large as the observed value. In that case, both Saturn’s

gravitational torque and the internal coupling almost vanish and the rotation

angle amplitude is as given in Eq. (44) for a decoupled shell. The phase of

the rotation variations would then also agree with the observations. Maybe

convection in the ice shell could strongly reduce the equatorial flattening of

the shell.

Alternatively, the effect of internal and external gravitational torques on the

rotation variations could be largely reduced if a viscous ice shell can relax its

shape and adjust its orientation to that of the forcing gravitational fields. The

gravitational torques diminish strongly if the time scale of relaxation of the

shell is much smaller than the period of the rotation variations of 14.74 yrs. In

that case, the rotation variation of the shell could be large and close to that of

a decoupled shell. Preliminary calculations, for a simplified case in which only

internal coupling is included, show that for the lowest possible ice viscosity, the

melting ice viscosity of about 1013 Pa s, the effective strength of the internal

gravitational coupling reduces substantially (Van Hoolst and Karatekin 2008).

If Saturn’s gravitational torque could be strongly reduced, the rotation angle

variations could also be 180◦ out of phase with the atmospheric torque.

Predicted amplitudes of rotation variations could also be close to the observed

values if the atmospheric torque were about two orders of magnitude larger

than predicted by Tokano and Neubauer (2005). Since the predicted phase of

the rotation variations is in phase with the atmospheric torque, the problem of

the phase difference with the observations could also be addressed by studying
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changes in the phase of the atmospheric torque. These possibilities require

further investigation by atmospheric modelers.

5 Conclusions

Due to the gravitational torque of Saturn on a hydrostatic Titan, which is

flattened by rotation and static tides, and internal gravitational and pressure

coupling, calculated rotation variations induced by the atmosphere are about

two orders of magnitude smaller than expected from Cassini observations. The

rotation angle variations are more than 50 times smaller than the observations

indicate when a subsurface ocean exists and more than 100 times smaller

when Titan has no ocean. Moreover, the rotation angle variations are out

of phase with the observations: the rotation is calculated to be slower than

synchronous over the last few years, whereas Cassini observations indicate

a faster rotation. Saturn’s gravitational torque is mainly responsible for the

small rotation variations and the cause of the phase difference. In the above

results, the atmospheric torque of Tokano and Neubauer (2005) is used.

If Titan is entirely solid, it is unlikely that the rotation variations are not

affected by a large gravitational torque from Saturn. The equatorial flattening

estimated from the recently determined degree two, order two gravitational

coefficient C22 (Iess et al. 2007) is close to that expected for hydrostatic models

and the gravitational torque on a solid Titan must be close to that calculated

above. Therefore, the rotation variations of a solid Titan are expected to

be much smaller and out of phase with respect to the Cassini observations,

which suggests that Titan is not entirely solid. Whether the actual atmospheric

torque of Titan can both be sufficiently larger and bring the phase of the
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rotation variations into agreement with observations remains to be studied.

If Titan has an ocean, not only a larger atmospheric torque but also a viscous

ice shell could increase the rotation variations. For fast viscous relaxation

of the shell, Saturn’s gravitational torque could possibly even be reduced to

a level that it would not lead to a phase difference with observations. These

possiblities require further study. Our results suggest a further solution for the

difference between the predicted and observed amplitude and phase: we have

shown that rotation variations with similar amplitude and phase as observed

are possible if the equatorial flattening of Titan’s ice shell were to be reduced

strongly by non-hydrostatic effects, for example by ice convection. If this were

to be the case, this study would confirm the main conclusion of Lorenz et al.

(2008) that Titan’s rotation reveals the existence of an ocean. Moreover, if

the equatorial flattening of the shell can be neglected, the observed rotation

could be used to estimate the thickness of the ice shell.
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2008. The librations, shape, and icy shell of Europa. Icarus 195/1, 386–399,

doi:10.1016/j.icarus.2007.12.011.
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TABLES

model 1 model 2 model 3

rc (km) 1670.807 2124.030 1708.670

rm (km) 2282.540 2350 2250

ro (km) 2506.300 2495 2375

ρc (kg m−3) 3813.31 2325.1 3700.354

ρm (kgm−3) 1310 1400 1310

ρo (kg m−3) 950 1350 950

ρs (kg m−3) 917 1065 917

I/(MR2) 0.304 0.360 0.304

Table 1

Size and density of the four internal layers of the Titan models. Model 1 is from Sohl

et al. (2003), model 2 is based on Fortes et al. (2007), model 3 has equal densities

of the ice and water layers as model 1 and almost equal mean moment of inertia as

model 1 but has a thicker ice shell. The mean moment of inertia is given in the last

line.
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model 1 model 2 model 3

(1) rigid, spherical -3.23 10−3 -2.73 10−3 -3.24 10−3

(2) rigid, flattened 9.87 10−5 6.46 10−5 9.88 10−5

(3) ocean, spherical -3.99 10−2 -2.98 10−2 -1.52 10−2

(4) ocean, spherical interior 9.93 10−4 6.60 10−4 3.87 10−4

(5) ocean, internal -3.64 10−3 -3.07 10−3 -3.26 10−3

(6) general 2.94 10−4 1.41 10−4 2.05 10−4

Table 2

Amplitude of the surface rotation angle variations in radians for different interior

structure models and an atmospheric torque with amplitude of 1.6 1017 Nm (Tokano

and Neubauer 2005). In case (1), Titan is considered to behave rigidly (no ocean)

and to be spherically symmetric. The modelling hypotheses of the other cases are:

(2) a rigid, hydrostatically flattened Titan, (3) a spherically symmetric Titan with

an ocean, (4) a hydrostatically flattened shell, spherically symmetric ocean and

deeper interior, (5) Titan with an ocean but only internal coupling considered, (6)

general case for a hydrostatically flattened Titan with an ocean, the gravitational

torque by Saturn and internal gravitational and pressure coupling. A minus sign

indicates that the rotation angle variations are 180◦ out of phase with respect to

the atmospheric torque.
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