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Abstract: The paper aims to describe the problem of modelling non-linear dynamic systems

using a multiple model representation, also known in fuzzy set literature as Takagi-Sugeno

model. The basic principle of this approach is to represent the system as an interpolation of

locally valid models. Proposed identification algorithms concern the parameter estimation and

the structure determination (local model orders, number of local models). Three applications

of this approach to environmental system management are reported: modelling of a

wastewater treatment plant, ozone concentration prediction is an urban area and finally

modelling of rainfall-runoff relationship for sensor fault diagnosis in urban sewage network.
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1. Introduction

 Developing a mathematical model of a process can be motivated by many reasons: process

control or diagnosis, its behaviour prediction, estimation of unmeasurable variables or even

more simply to improve our understanding about the system behaviour. A possible way to

handle this problem is the ”white box„ modelling that is solely based on the knowledge of the

physical principles taking place in the system. However, excepted for relatively simple

systems, the construction of a physical model is quite difficult because the involved

phenomena are very complex and mathematically difficult to describe, especially for

environmental systems (lots of complex non linearities, long and variable delays, time-

varying systems, no exact physical models available, possibility of a high level of noise, ’).

Moreover some important variables are seldom available and some physical parameters may

be unknown. Therefore, a model constructed from the data extracted on the process is

preferable; this kind of model is also known as ”black box„ model. Different types of model

structures have been proposed for non-linear systems identification among which NARMAX

structures (Chen and Billings, 1989) and Wiener - Hammerstein type models (Haber and

Unberhauen, 1990). These classical methods attempt to find a global model capable to

represent the system over its full operating range. The obtained model is consequently

complex. An elegant way to avoid this difficulty is the multiple model approach (Johansen

and Foss, 1993) that represents the system as an interpolation of simple (usually linear) local

models. Each local model describes the behaviour of the system in a limited part of the

operating space. The local validity of the submodels is specified by corresponding weighting

functions which provide a smooth transition between them. Notice that in this sense, the well-

known Takagi-Sugeno fuzzy model (Takagi and Sugeno, 1985) is a particular multiple model

defined as a set of fuzzy rules "If premise then linear local behaviour". In the sequel, the

mathematical formulation of the multiple model is presented as well as the tasks related to the



identification of such a model. The application to the modelling of environmental systems is

reported in the last section.

2. Mathematical formulation of the multiple model

 Consider a non-linear Multi-Input/Single Output dynamic system. The multiple model

approach represents the system as a local model network described by the equation:
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 fi indicates a local model which depends on a regression vector ϕ(k) and on a local parameter

vector θi. The weighting function ωi associated to each model fi acts as a local validity

measure of this submodel according to the current operating regime of the system. The vector

β parameterises these weighting functions. They are defined over the operating space Z

spanned by the vector z(k) and their number and position determine the ”fuzzy„ partition of Z.

The vector of feature variables z(k) can include lagged inputs and output of the system or any

auxiliary variable allowing the non linearities of the process to be taken into account. The

weighting functions are defined such as they verify the following constraints:
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Numerous weighting functions can be proposed; commonly they are chosen as normalized

gaussian functions or can also be constructed from sigmoidal functions.

 The local models could have different structures but here, for the sake of simplicity, we

assume that they share the same inputs with the same orders. The local models are expressed

by the relation:
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 where the regression vector is defined as:
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 It includes the delayed inputs ur (r=1, ’, m) and output y of the model. ny and nu are the

orders and d the delay of the local models; m is the number of inputs.

 The next sections discuss the problems involved by the identification of a multiple model.

3. Identification issues of a multiple model

Identify a multiple model involves mainly two tasks: the parameter estimation and the

structure identification. The principles of the solutions provided to these problems are

exposed below.



3.1 Parameter estimation

 Let θT
=[θT

1 θT
2 … θT

M], the vector of local model parameters. The parameters θ of the local

models and those β of the weighting function are estimated in order to minimise the following

criterion:
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 with ym the measured output of the system and N the number of training data. As the criterion

J is non-linear with the vectors θ and β, their estimation is achieved trough a non-linear

optimisation technique like the Levenberg-Marquardt (LM) method. For practical reasons

related to the great number of parameters that can be involved in a multiple model, a two-

level algorithm (Boukhris, et al., 1999) is used: it consists in computing β by a LM algorithm

for θ fixed and estimating θ by another LM algorithm for the parameters β previously

determined. The procedure is repeated until convergence.

 However, by substituting the measured output ym to the model output y in the regression

vector (see eq. 4), it can be shown that the criterion J becomes quadratic with respect to θ
which can be easily computed by the least squares method. Based on this remark, another

two-level algorithm has been developed (Mourot et al., 1999), (Gasso et al., 1999): the vector

θ  is estimated by least squares for fixed value of β; θ being known, the vector β is optimised

using a non-linear optimisation method. This is iterated until convergence.

3.2 Structure optimization

 It concerns the characterisation of the operating space Z, the partition of Z in operating areas

(that determines the number of local models) and the identification of the orders and delays of

these submodels.

 In the multiple model representation, simultaneous determination of the structure and the

number of local models is difficult because a trade-off must be achieved between the number

and the complexity of the local models. Indeed, few complex submodels are needed to

approximate adequately a system and conversely. Therefore, this interdependency forces to

proceed sequentially. An elegant way to solve this problem is to choose, a priori an initial and

common structure for all the local models and to identify their appropriate number and

position in the operating space (Tanaka, et al., 1995). The priori choice of the local model

structure can be suggested by using the modified Lipschitz quotient (Boukhris et al., 1999).

 The number of local models in the structure is related to the partitioning adopted for the

operating space. Grid partitioning is very simple to realise. However, the number of

submodels increases exponentially (curse of dimensionality) with the number of feature

variables and/or the number of modality per feature variable. Owing to the fact that the

feature space is rarely uniformly covered by training data and due to its combinatorial aspect,

the grid partition may produce:

• near empty or empty subspaces. The local models associated to these subspaces are less

important because their contribution to the explanation of the behaviour of the system is

negligible,

• redundant submodels i.e. neighbouring local models that can provide the same description

of the system but are arbitrary separated by the grid partition.



Therefore, in order to identify a parsimonious multiple model, the number of local models can

be reduced by deleting the irrelevant submodels and merging the compatible neighbouring

local models. We have proposed a technique described in (Gasso et al., 2001). The procedure

can generate operating regimes with arbitrary boundaries, unlike the axis orthogonal

subspaces in the grid partition. This reduces the final number of local models.

The drawback of the grid partition can be avoided by using more local partitioning

techniques. Tree partitioning such as a k-d tree allows areas to be defined along a

corresponding decision tree (Johansen et Foss, 1995), (Nelles, 1997), (Gasso et al., 1999).

Consequently, the number of local models can be reduced. Indeed, this method doesn°t

produce near empty or empty subspaces but may produce redundant local models.

4. Application to environmental system management

 In the following, the works described above are illustrated on three different environmental

systems. These three system deal with the following application fields: process modeling for

control and optimization (modeling of a water treatment plant), time series prediction

(forecasting of ozone concentration in an urban area) and sensor fault diagnosis (sensor failure

detection in an urban sewer network).

4.1 Modeling of a water treatment plant (Ragot et al., 2001)

The system studied is a pilot wastewater treatment plant whose objective is the treatment of

municipal wastewater of the Greater Nancy Urban Authority. From the viewpoint of the

manager of this plant, the objective is compliance with the standards for municipal effluent

quality (the chemical characteristics of the purified water at the plant, even if the quality of

the raw water supplied to the process varies over time. This adaptation must be as rapid as

possible for reasons of safety and economy. Its implementation makes it necessary for

operating personnel to have greater expertise, and for the personnel to be provided with

adequate information and explanations about how the process works. In an optimization stage,

the improvement of the quality of these effluents is also envisaged.

In general, to quantify the impurities present in effluents, the concept used is that of Chemical

Oxygen Demand (COD) an image of which can be supplied at the plant outlet by a measure of

UV absorption (globally, this variable reflects the concentration of organic matter present in

the treated effluent). In the plant in question, the COD can be modified by using sludge

activated by bacterial culture. The principle of the control of the process lies in the controlled

development of a bacteria floc in the aeration tanks supplied by the effluent to be treated; a

flow of oxygen enables the proliferation of the microorganisms, which biologically purify the

effluent. Some of the sludge from settling is recycled to the aeration tank inlet to promote

reseeding with bacteria. The variables, which characterize the process, are set out in table 1.

Input variables Command variables

A Turbidity TUe F Tank 2 air flow

B Absorption UVe G Tank 3 air flow

C Visible absorption

D Temperature Te Output variables

E Tank 1 oxygen concentration L Turbidity

H Tank 1 pH M Absorption UVs

I Tank 1 eH N Visible absorption

J Desaerator sludge concentration

Table 1: process variables



Various measurement campaigns have been conducted on this during which significant

variations in the different variables were recorded.

In the case in hand, the explanatory variables are turbidity TUe, absorption UVe and

temperature Te of the inlet effluent, the use of supplementary variables providing no

significant contribution as regards the behavior of the variable UVs. The weight functions, for

the three inputs, have been chosen as trapezoidal form and the final model involves four local

models. The temporal evolutions of the prediction supplied by the model and of the

corresponding measurement show the good performances of the model. This comparison has

also been performed on two other measurement campaigns and confirms the first results

obtained.

As the modeling of the other outlet variables (turbidity and visible absorption) have been

performed in a similar way, particular interest will be focused on the UVs variable of the

effluent at the plant outlet.

4.2 Modeling of ozone concentration (Mourot et al., 1999, Gasso et al., 1999)

The problem under investigation is the modelling of ozone in collaboration with air quality

monitoring networks in Lorraine (eastern France) in order to forecast daily maximum ozone

concentration. Ozone is a pollutant in the lower troposphere. It has detrimental effects on

human health and on environment when its concentration reaches excessive values. In

situations of high ozone level, appropriate decisions must be taken by authorities to inform the

public and possibly to control the phenomenon. Therefore, the development of models is

necessary to estimate ozone level in order to anticipate the decisions.

Ozone is a secondary pollutant produced by complex photochemical reactions between

nitrogen oxides (mainly NO and NO2) and Volatile Organic Compounds emitted into the

atmosphere. These reactions depend highly on the precursors emissions level and on the

vertical and horizontal movements of the atmosphere that are linked to the meteorological

conditions. By way of their interaction, these physical and chemical elements constitute a

dynamic non-linear, multivariable and time-varying process. The theoretical models of ozone

comprise the description of the physico-chemical mechanisms of ozone production and

destruction and combine a large number of equations. Unfortunately, there is incomplete

knowledge of the overall mechanisms. Furthermore, these models are computationally costly

and they need measurements which are rarely available in air quality monitoring network.

Therefore, they are hardly use in practice and black-box modelling of the ozone concentration

has to be performed.

In this study, the concentrations of several pollutants, as well as meteorological variables, are

measured (Table 2).

Input Variables Output variable

Temperature –C Ozone µg/m
3

Solar radiation W/m
2

Nitrogen oxide NO µg/m
3

Nitrogen dioxide NO2 µg/m
3

Relative humidity %

Pressure hPa

Wind Direction degree

Wind speed m/s

Table 2. Characteristic variables of the phenomenon



The best model structure uses the following variables: temperature (u1), solar radiation (u2),

NO2 (u3) and windspeed (u4). The weight functions have been chosen as trapezoidal form.

The model retained to characterize the evolution of ozone is described by six local models.

Results concerning the modelling of an air pollution phenomenon illustrate the outcome that

could be expected in using the proposed approach; for relatively short observation periods (a

few days) the comparison between the measured ozone concentration and its prediction by the

multiple model is excellent. Moreover the selected variables take account of the main

chemical and meteorological factors that play a part in the mechanisms of ground-level ozone

formation. The validation of the structure obtained for much longer observation periods (in

the order of 12 months) and the testing of some predictive qualities remain to be carried out,

and will form the basis of the continuation of this study. It could also be postulated that the

processing of pollution data from several geographical locations would again improve the

model quality.

4.3 Rainfall-runoff modeling for sensor fault diagnosis (Boukhris et al.,2001)

Twenty years ago, to prevent urban flooding, the metropolitan authorities of Nancy š France,

Communaute Urbaine du Grand Nancy (CUGN), opted for detention basin construction and

sewer rehabilitation to improve storm-water management. Since completion of this step, the

CUGN is now interested in the quality of water introduced into the receiving environment,

namely the Meurthe river. The constraints of flood prevention and pollution control now

require more reliable measurements provided by different sensors.

Failure detection and isolation has received considerable attention and many applications in

high technology industries, and safety-critical processes like nuclear power plants, chemical

plants and transportation systems have been proposed. However, few applications have been

dedicated to environmental processes, in particular to urban sewerage networks. This may be

due to the specificity of these systems, namely complex non-linearity, time-varying,

unavailable physical models and the nature of measurements available (laboratory analyses,

variable sampling time’).

Traditionally, failure detection and isolation has been achieved through the use of simple (or

direct) redundancy. Simple redundancy consists of increasing the number of sensors in a

triplex or quadruplex configuration which measures the same physical variable, and redundant

measurements are compared for consistency. This approach can be simple and in some cases,

reasonably straightforward to apply and is thus widely used. The major problem encountered

with hardware redundancy is the extra cost and the overall reliability is not necessarily

improved. Furthermore, the proposed sensor failure detection and isolation method has to be

sufficiently flexible to be extended to actuator (pumps, gates...) failure detection and isolation.

Actually, the model-based approach is an alternative that is generally based on consistency

checking between an observed process behavior, provided by sensors, and an expected

behavior provided by a model of the process or parts thereof. It is based on the use of

analytical rather than hardware redundancy. Indeed, the inherent analytical redundancies

contained in the relationships between the measured system outputs helps to deduce virtual

(or software) sensors that act as supplementary sensors.

In this particular application, the problem of sensor fault diagnosis requires the availability of

a rainfall - runoff relationship in order to apply analytical redundancy-based diagnostic

procedures. The problem of relating rainfall to runoff, for operational purposes, is often

tackled in one of two ways. The system°s approach aims to represent the overall process

behavior through mathematically simple relationships, whereas, in the conceptual modelling



approach, the behavior of the process is modelled in a simplified way reflecting known

physical laws. In the conceptual approach, several parts of the model are easily recognized as

representing various stages in the hydrological cycle. However, the physical complexity and

non-linearity of the phenomenon and the usual unavailability of distributed data result in a

broad simplification of such models. In the system°s approach, linear time-invariant models

are usually used but are often inefficient except perhaps for very small watersheds. But, even

in this case, non-linear models give a better performance than linear ones. This has prompted

the investigation of an alternative method which still falls within the domain of system

approach.

The proposed multiple modelling approach has been successfully tested on a watershed

located in an urban area of Nancy, in eastern France, using actual rainfall and runoff data

taken from the sewerage control centre database. The global model is described by nine

multiple models. This model has then been used to implement a sensor fault diagnostic

procedure (one sensor measuring the rainfall intensity and two sensors measuring the

flowrates at the watershed's output). Furthermore, the proposed sensor failure detection and

isolation method has to be extended to actuator (pumps, water gates...) failure detection and

isolation.

5. Conclusion

Developing a mathematical model of a process can be motivated by many reasons: process

control or diagnosis, its behavior prediction, estimation of unmeasurable variables or even

more simply to improve our understanding about the system behavior. However, few

applications have been dedicated to environmental processes. This may be due to the

specificity of these systems, namely lots of complex non-linearity, time-varying, unavailable

physical models and the nature of measurements available (laboratory analyses, variable

sampling time’). An elegant way to overcome these difficulties is the multiple model

approach that represents the system as a smooth interpolation of simple (usually linear) local

models. Each local model describes the behavior of the system in a limited part of the

operating space.

Although this type of model is well adapted to the representation of a system with non-linear

behavior, its use does however raise real problems in the identification of its structure and

parameters. The problems are mainly due to the combinatorial explosion of the complexity of

the model as a function of the number of inputs, as well as the difficulty of identifying the

operating regime and the local models, which are mutually related. Methods for the

identification of a multiple model (structure and parameters) have proposed.

These methods are illustrated on three different environmental systems for the following

application fields: process modeling for control and optimization (modeling of a water

treatment plant), time series prediction (forecasting of ozone concentration in an urban area)

and sensor fault diagnosis (sensor failure detection in an urban sewer network).
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