
HAL Id: hal-00510857
https://hal.science/hal-00510857v1

Submitted on 22 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Addressing the Challenge of Distributed Interactive
Simulation With Data Distribution Service

Akram Hakiri, Pascal Berthou, Thierry Gayraud

To cite this version:
Akram Hakiri, Pascal Berthou, Thierry Gayraud. Addressing the Challenge of Distributed Interactive
Simulation With Data Distribution Service. 2010 Euro Simulation Interoperability Workshop, Jul
2010, Ottawa, Canada. 9p. �hal-00510857�

https://hal.science/hal-00510857v1
https://hal.archives-ouvertes.fr

Addressing the Challenge of Distributed Interactive Simulation
With Data Distribution Service

Akram HAKIRI 1, 2,
Pascal BERTHOU1, 2,
Thierry GAYRAUD1,2

1CNRS ; LAAS, 7, avenue du Colonel Roche, 31077 Toulouse, France

2 Université Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
Email: {Hakiri, Berthou, Gayraud}@laas.fr

Keywords:

HLA, RTI, DDS, QoS policy, Performance evaluation.

ABSTRACT: Real-Time availability of information is of most importance in large scale distributed interactive
simulation in network-centric communication. Information generated from multiple federates must be distributed and
made available to interested parties and providing the required QoS for consistent communication. The remainder of
this paper discuss design alternative for realizing high performance distributed interactive simulation (DIS)
application using the OMG Data Distribution Service (DDS), which is a QoS enabled publish/subscribe platform
standard for time-critical, data-centric and large scale distributed networks. The considered application, in the civil
domain, is used for remote education in driving schools. An experimental design evaluates the bandwidth and the
latency performance of DDS and a comparison with the High Level Architecture performance is given.

1. Introduction

The High Level Architecture (HLA) [1] is the glue that
allows the combination of computer simulations into
large scale real-time live simulation that combines the
air traffic control, logistic control and helps the reuse
and the interoperability of distributed applications.
A promising approach to building and evolving large
scale distributed simulation are standards-based QoS
enabled publish/subscribe (pub/sub) platform that
enable applications to communicate by publishing
information they have and subscribing to information
they need in timely manner. The recently adopted Data
Distribution Service (DDS) [2] specification defines an
application level interface that supports the Data-
Centric Publish-Subscribe (DCPS) in real-time
systems, mission, and safety critical application
domain like defense, large scale networks and data
conferencing applications.

This paper is twofold: 1) it describes the architecture of
the OMG-DDS, which is a QoS enabled pub/sub
platform standard, and (2) it evaluates the
implementation of this architecture to investigate its
design tradeoff and its performance and comparing it to
HLA.

The remainder of this paper is organized as follow:
after a brief introduction, Section 2 introduces the

background and related work on Distributed Interactive
Simulation (DIS) applications and drawn the limits of
these solutions. Section 3 summarizes the DDS
specification and its architectural overview. Section 4
describes the hardware configuration of our testbed and
introduces the simulation design. Section 5 analyzes
the results of experimentation. Conclusion and
perspectives are given in last section

2. Overview of DIS standards

Distributed simulation aims at proposing a common
architecture for communication allowing the
integration and the interconnection of large scale
simulators. Modeling and simulation (M&S) consists
of techniques and tools for testing, analyzing and
training in which real world and conceptual systems
are reproduced by model. It allows the reducing of the
time and the cost of the design of prototypes, their
developments, their tests and the refinement of their
life cycle. Moreover, it offers also practical means to
evaluate the performances of the models.
After the success of SIMNET [3], DIS [4] was
developed to address the interoperability of
heterogeneous simulators. The essence of DIS is the
creation of synthetic environment within which
humans and simulations interact at multiple networked
sites.

DIS was not fully distributed; each message must
be received and treated by each node, which clutter the
bandwidth even though not a lot of data is transmitted.
DIS does not manage latency and causality that made
the reusability of simulations impossible. Latencies
were not controlled and no time management service
was incorporated which caused data losses due to the
rejection of too old packets.

Since many years, the standard of the DIS protocol has
provided strong foundations for distributed real-time
simulation. DIS was largely accepted by the industrials
and the governments. ALSP Protocol was conceived to
support simulation with discrete events and was
implemented successfully in the sets of on line combat
games [5]. To unify these fields and to extend their
success towards the existing applications, the American
Department of Defense (DOD) has proposed in 1995
the development of a new standard for modeling and
simulation called HLA. HLA is an initiative to capture
the best sides of DIS and ALSP and to provide at the
same time a standard architecture for software
simulation.

HLA is foremost a general purpose, reusable software
architecture for the development and execution of very
large distributed simulation application. The HLA has
a wide applicability, across a full range of simulations
areas, including education and training, analysis,
engineering; web based distributed applications, real-
time critical applications and variety of level
resolution. Thus, the HLA supports interfaces to live
participants, such as instruments platforms and live
systems. These widely different applications areas
indicate the variety of requirements that have been
considered in development and evolution of the HLA.

In HLA terminology, a set of simulations that is
capable of interoperating is a federation, and the
individual simulations are federates (see figure 2). The
HLA standard has three documented parts:

- Rules: HLA-Rules are principals and conventions
that must be followed to achieve proper interaction of
federation during the federation execution. Five rules
are related to the Federation Execution, where the
others five rules are specific to the federate. HLA
Rules ensure proper interactions of simulations in
federation and describes the simulation and federate
responsibilities.

- Object Model Template: a formal model for
specifying simulation data in term of hierarchy of
object class, attributes, interactions and interaction
parameters. HLA-OMT provides a common method for
recording information and establishes the format of

three key models: Federation Object Model (FOM),
Simulation Object Model (SOM) and Management
Object Model (MOM). Figure 1 shows a basic example
of HLA-OMT.

Figure 1: Example of the HLA-OMT

- Interface Specification: The interface specification
(HLA-IS) is abstract; it aims to standardize an
approach to persistent problem in distributed
application. Services in both directions are defined as
procedure call that take and return a parameter. The
HLA-IS identifies how federates will interact with the
federation, and ultimately with one another. It provides
services and communication mechanism, forming a
piece of software to ensure the information exchange
usually implemented within Run-Time Infrastructure
(RTI). There are six classes of services:
 Federation Management services offer basic

functions required to create and operate a
federation.

 Declaration Management Services include
publication, subscription and supporting control
functions. Federates which produce Object Class
Attributes or Interaction must declare exactly what
they are able to publish.

 Object Management Services involves registration,
updates and dynamic transfer of the object and
attributes.

 Ownership Management Services allow federates to
distribute the responsibility for updating and
deleting object instance and transfer the ownership
of object/attributes.

 Time Management Services focus on the mechanics
required to establish synchronization between
distributed entities at runtime.

 Data Distributed Management Services provide a
flexible and an efficient routing of data among
federates for isolating publishers and subscribers.

RTI is a software which implements the interface
specification of the HLA. It provides services in
producer/consumer paradigm. RTI provides a C++
library (other languages like Java, C#, Ada exist),
libRTI, through which federates can exchange data.

Figure 2: HLA Federation conceptual view, with
federates exchanging data through the RTI.

Within libRTI, the class RTIAmbassador bundles the

services provided by the RTI. All requests made by a
federate on the RTI take the form of RTIAmbassador
method call. The abstract FederateAmbassador
identifies the callback functions each federate is
obliged to provide.

3. Overview of Data Distributed Service

3.1. Core Features

Data Distribution Service (DDS) is a network
middleware for distributed real-time application which
simplifies application development, deployment and
maintenance and provides fast, predictable distribution
of real-time critical data over heterogeneous networks.

DDS Specification offers two levels of interface: one is
a low level layer, the Data-Centric Publisher-
Subscriber (DCPS), highly configurable, closely
related to data and rich of QoS policies to determine
the application required behavior. The Data Local
Reconstruction Layer (DLRL) is the higher layer of the
specification which is conceived to provide easy to use
DCPS elements for developers. It summarizes the way
to which an application can connect to DCPS through
its proper classes using oriented Programming Object.

DLRL is an optional layer according to the OMG-DDS
specifications.

 The OMG DDS specifies a coherent set of profiles
that target real time information-availability for
domains ranging from small-scale embedded control
systems up to large scale enterprise management
systems. Each DDS-profile adds distinct capabilities
that define the service level offered by DDS in order to
realize this “right data at the right time at the right
place paradigm”:
 The Minimum Profile uses the publish/subscribe

model to provide a high efficient information
exchange between multiples publishers and
subscribers in small area to large scale
communication environment. This profile also
involves the QoS policies that allow the middleware
to match requested and offered QoS parameters.

 The Ownership Profile offers for replicated
publishers the ability of the expression of fine grained
specific information to interested parties.

 The Content Subscription Profile provides features to
improve content filter information like those used in
SQL language.

 The Persistence Profile offers transparent and
tolerant durability of exchanged information.

Furthermore, DDS involves features which are
designed to meet the needs of distributed real time
applications: efficient data transfer with minimal
latency, managing multiple source/sink of the same
data; multiple independent communications networks
(Domains) each using DDS can be used to over the
same network transport protocol. Applications are only
able to participate in the domains to which they belong,
or it can be configured individually to participate in
multiple domains.

DDS presents a virtual data space for sharing
information (Global Data Space) between participants.
Applications can read and/or write data objects
addressed by the identifier field (Domain ID), the name
of the Topic and a key.
The organization of the information exchange between
distributed application is based on the
Publish/subscribe (PS) System with the aid of the
following constructs: Publisher and DataWriter on the
Sending side, Subscriber and DataReader at the
receiving side. Figure 3 illustrates the relationship
between these objects.

 Publisher: is the object responsible for the actual

sending of data. It owns and manages the
DataWriter. An application uses DataWriters to
send data. A DataReader can be only owned by a
single Publisher while a Publisher can own many
DataWriters.

Federate 1 Federate 2 Federate n

Run-Time Infrastructure (RTI)

F
e
d
e
r
a
t
i
o
n

 Subscriber: is the actual object responsible for the
actual receipt of published data. The subscriber
own and manages DataReaders. A DataReader
can be only owned by a single subscriber while a
subscriber can own multiple DataReaders.

 Topic: the association of DataWriter and
DataReader is made by Topic. Topic associates a
single name in the system (ID or Key), a type of
data and the parameters of QoS specific to each
data.

 Domain: It provides a Global Virtual Data Space
where participants (Publisher/Subscriber) having
the same Domain ID can exchange information.
The Domain consists of several
DomainParticipant which isolate participants into
several sub domains.

 DomainParticipant: it is an entity which
represents DDS application participation
associated with the Domain. It serves as a
container and manager to DDS entities.

Figure 3 Architectural Overview of the DDS Architecture [8]

3.2. Benefits of DDS

DDS specifies transferred data as signals, streams

and states. Signals characterize data that are
continuously changing, so they are selected also as
periodic traffic. Streams are snapshots of context
previous sent data; they are selected as sporadic data.
States describes the most current state of distributed
entities, they do not change at fixed period and they
can be elected as aperiodic data.

DDS addresses some new aspects not yet addressed by
HLA, such as a rich set of QoS policies based on
‘Request/Offered” contract including among others
durability, liveliness, deadline, transport priority and
more, while leaving out some other aspects addressed
by HLA, such as time management and federation
management. QoS policies provide a generic
mechanism for the distributed applications to control
the behavior of an entity [6, 7].

Figure 4 shows the QoS policies addressed by DDS:
the first column specifies the QoS name, there are
twenty QoS policies. Since QoS is comprised of

individual QoS policies, it may be associated with a
corresponding entity in the system, such as Topic (T),
DataWriter (DW), DataReader (DR),
DomainParticipant (DP), Publisher (P) or subscriber
(S) (see column 2).

In several cases, for communication to occur
efficiently, a QoS Policy on the publisher side must be
compatible with a corresponding policy on the
subscriber side. If the subscriber requests to receive
data reliably while publisher defines a best-effort
policy, communication will not happen as requested.
To overcome this shortcoming, the subscriber and the
publisher negotiate their QoS through Requested-
Offered contract. In the pattern, the subscriber can
specify a requested value for particular QoSPolicy (see
column 3 in figure 4) to be set in compatible manner
between the corresponding participants. An RxO
setting of Yes (Y) indicates that policy can be set both
at the publishing and subscribing side. Whereas if RxO
is set to No (N) it indicates that the policy can be set in
the two sides but the end settings are independents.
Finally, if RxO is set to N/A (-) then compatibility does
not apply.

 Figure 4: QoS policies addressed by DDS [8]

The changeable property determines whether the

QoSPolicy can be modifiable (see column 4 in figure
4) after the entity is enabled.

DDS-DCPS groups the several QoS Policies into
concerning groups (see column 5 from figure 4). Users
will employ the desired QoS policy to address the
specific need of is application. I should be noted that
Resources QoS Policy group can be mapped into the
underlying network, for instance the QoS
TRANSPORT_PRIORITY may be applied to the
DiffServ Infrastructure in order to enumerate the
CodePoint field.

Among the HLA services enumerated in Section 2,
the Time Management Service is not supported within
DDS. It was primarily specified for Parallel And
Distributed Systems (PADS). The HLA standardized
APIs specifies a save/restore services which ensure the
creation of synchronization point between distributed
systems to offer more consistence and reliability to
applications.

In another hand, the HLA-RTI allows to applications
to choose the degree to which it participate in time
management. The Time Management has to do with
ensuring that events are delivered to applications in
correct order, but the order in which events arrive at the
remote application cannot be guaranteed. Events do not
arrive in the order of cause and effect.
Thus, the close difference between the HLA and DDS
middleware may appears when evaluating their
performance. But this does not prevent getting very
well performance in several distributed applications.

DDS is key enabling technology and Next-
Generation based Warfare Systems which deliver
extremely high performance, high availability &
reliability, along with a rich support for QoS.

[13, 18] used DDS in defense system to improve
interoperability, high combat survivability &
maintainability, and the high performance distributed
communication, tactical information management [8].

4. Hardware configuration and used
testbed

We use in our Labs a real existing Simulation
Platform called PLATSIM (see figure 5). Basically,
PLATSIM is a distributed interactive simulation
platform where users interact with each other over
Publish/subscribe middleware. Both DDS and HLA
middleware were configured separately to provide
human-in-the-loop simulation. The considered
application, in the civil domain, is used for remote
education in driving schools.

Figure 5: Platsim Hardware testbed

A simulator allows visual modeling of vehicle
driven, evaluation of individual pilot's actions, speech
synthesis, speech recognition, and recognition of
gestures.

The instructor includes the preparation of scenarios,
interactivity suitable for evaluation and action on the
collective and/or individuals and debriefing (replay)
scenarios.

The server supports the implementation of
scenarios depending upon instructor or a current event,
the calculation of the surrounding traffic , the
assessment of collective action, the analysis of
symbolic information (voice and gestures) and the
calculation of impacts (traffic environment).

In order to measure the latency, a reliable reference

time standard was needed. The testbed used in the
simulation is synchronized using the Network Time
Protocol (NTP) [10]. An NTP server (see figure 6) was

used to synchronize all federates with the same
reference clock.

Figure 6: testbed used for the Benchmark

To measure the one way delay in HLA, a simple
Federation Object Model (FOM) (see figure 1) and two
federates were developed. The FOM consists on
several data attributes used in real human-in-the loop
simulator. The sender federate publishes its data using
multicast transport service. Measurements were stored
in trace files and then analyzed separately. The receiver
federate subscribes to the object classes and interaction
classes. Also, traces files containing time and data
information reference of both the publisher and the
subscriber were generated.
The RTI under tests was MAK Real Time RTI [11]. It
is currently available free of charge, but it can run only
between two federates.

In the DDS based simulation, the network latency has
been measured using two participant processes. The
subscription process consists on an operation that
associates a subscriber to its matching publisher, as
shown in figure 7.

In fact, DDS uses a Real-Time Publish/Subscribe wire
protocol (RTPS) to provide a high data rate
communication. The RTPS protocol targeted the
industrial automation community and then was
developed to support the requirements of data
distribution systems. It is designed to be able to run
over multicast and connectionless best-effort transport
protocols like UDP/IP. The RTPS protocol is build on
top of UDP (RTP like protocol).
In addition, the subscription process was chosen a topic
based subscription. Thus, each data type used by DDS
is defined using IDL. The IDL file (see figure 8) is
used to identify the data types that DDS processes.
These data types are processed by RTIIDLGEN
compiler to generate code necessary for transmitting
these types with DDS.

Figure 8: IDL structure for the benchmark

Since DDS allows the use of different QoS levels, we
need to define how these QoS levels can be guaranteed.
In fact, the matching process for QoS guarantee uses a
requested/offered (RxO) model. The requested QoS by
the subscriber DataReader is less than the offered QoS
provided by the publisher DataWriter. The Topic was
adjusted to use the same QoS as the DataReader and
the DataWriter (see figure 7). The default QoS setting
was applied to both the publisher and subscriber: the
reliability QoS default settings are best-effort: DDS
will send data samples only once to DataReaders. No
effort or resources are spent to track whether or not
sent sample are received. Data samples may be lost.

5. Simulation & discussions

This section analyzes the results of our benchmark

conducted using a simulation platform. A set of tests
with various configurations has been designed to
measure the effects of network latency and jitter and
establish performance comparison between HLA-RTI
middleware and DDS infrastructure and compare how
well HLA and DDS satisfy requirements with respect

struct Climat {

 unsigned long key;
float climatDistVisi;
float climatHeure;
long climatSport;
long climatHorizon;
float rainDensity;
float rainSize;
float wiperAngle;
};

User Application (Publisher)

Publisher

DataWrite

Topic
Queue

User Application
(Subscriber)

Listener

Subscriber

DataReade

T
C

P
/U

D
P

Figure 7 : Model of the DDS simulation

of the data payload. Figure 9 compare the latency
budget results for single node running on HLA and
DDS based simulation. The latency budget specifies
the maximum acceptable delay from the time the data
is written until the data is inserted in the receiver’s
application cache and the receiving application is
notified.

For the inspection of figure 9, we observe that both
DDS and HLA are well suited for real-time distributed
application. These applications require efficient data
collection and delivery. Only minimal delays should be
introduced.
The Publish/Subscribe middleware presented here
greatly reduces the overhead required to send data over
the network compared to client-server architecture.
DDA and HLA often care about the determinism of
delivering periodic data as well as latency of delivering
data.

Occasional subscription requests at low bandwidth
replace high bandwidth client requests. In archetypal
distributed application, the bandwidth required for
distributed nodes even for the same data are quite
different.

Figure 9: Point-to-point node Latency

Figure 10 compares the jitter results for the same
experiments. DDS is match up to provide somewhat
better performance than HLA.

Figure 10: Point-to-point node jitter

Indeed, DDS has good overall performance expected

by the most DIS applications. Table 1 strengthens this
finding: sample mean and sample median are used to

measure the location and the dispersion of the network
latency budget and the jitter. Although these results the
HLA and DDS latency characteristics are very close.
Thus, the close difference between the HLA and DDS
middleware may appears when evaluating their
performance. But this does not prevent getting very
good performance in several distributed applications.

Table 1: Statistic elements for HLA and DDS

 HLA DDS

Latency (µs) Jitter (µs) Latency (µs) Jitter (µs)

Mean 154,87 14,13 126,60 13,36

Median 138,93 9,07 106,00 3,49

Table 2 presents the performance of data transmission
vs. the throughput. In such cases, throughput has
increased several folds, approaching much more
closely the physical limitations of the underlying
network transport.

Table 2: Throughput (Mb/s) vs. Packet size (Byte)

For HLA and DDS

Packet size 10 100 1000 5000
HLA1516 2 30 128 350

DDS 6 40 112 800

In addition, both HLA and DDS use a dynamic
adjustment to maximize the throughput, and perform
the reliability in response to the current network
conditions.

An important advantage of HLA and DDS is that
they can offer reliability on top of wide variety of
transports, including reliable protocols (TCP),
unreliable networks (UDP), multicast capable protocol
(RAMP, Simple UDP Multicast).

HLA accomplishes this by the capability of

implementing RTP/RTCP protocol to ensure more
flexible support to exchanged data. In other hand, DDS
achieves its performance by employing (optional) a
reliable protocol that monitors the liveliness of the link
called Real-Time Publish Subscribe (RTPS) protocol.

RTPS is highly configurable with a set of parameters

that let the application fine-tune its behavior to trade-
off latency, responsiveness, liveliness, throughput, and
resources utilization.

From the above tables, it should be noted that DDS
improve much more performance than HLA. This is
due to specific characteristics of each middleware
solution.

Among the HLA services enumerated in Section 2,
the Time Management Service is not supported within
DDS. It was primarily specified for Parallel and
Distributed Architectures. The HLA standardized API
specify a save/restore services which ensure the
creation of synchronization point between distributed
systems to offer more consistence and reliability to
applications.

In another hand, the HLA-RTI allows applications to

choose the degree to which it participates in time
management. The Time Management has to ensure that
events are delivered to applications in correct order, but
the sequence in which events arrive at the remote
application cannot be guaranteed. Events do not arrive
in the order of cause and effect relation.

The purpose of both HLA and DDS is to facilitate

the efficient use of distributed data in large scale
distributed systems; they attempt to unify the common
practice of several specific vendor implementations to
allow the interoperability and the reusability of existing
application. HLA and DDS architectures are common
in some regards: using publish/ subscribe paradigm and
offering message oriented decentralized
communication model. Data dissemination between
producer and consumer allows one-to-one, one-to-
many, many-to-one and many-to-many
communications.

It is significant to note that the next generation of
DIS applications requires not only latency
management, but also they need advanced end-to-end
QoS guarantee on which DDS QoS services can be
mapped.

6. Conclusion

This paper introduced two middleware
architectures based on Publish/Subscribe model and
addressing the specific requirements of time-critical,
data-critical and large scale distributed interactive
systems. HLA is general purpose architecture which
aims to interoperate very high number of distributed
systems, and DDS is data-centric communication
framework with a rich set of QoS Policies, address the
challenge of information exchange in high performance
communication systems.
DDS service is particularly targeting real-time
application, shows its performance when used in
another parallel domain which has its specific
standards like HLA.

We conducted a benchmark to compare the
performance of both DDS and HLA implementation
for point-to-point latency budget, jitter and bandwidth

utilization in distributed interactive simulation (DIS)
application.
Based on our results and experience in distributed
interactive simulation and real-time application we
learned that DDS holds great promise for DIS
applications regarding its high performance compared
to HLA.
Future work will look into how to provide QoS
guarantee in wide area networks using advanced
infrastructure for Next Generation Network
architecture that builds, uses and manages end-to-end
QoS across different administrative domains and
heterogeneous networks.

7. Acknowledgement

This research is supported by the French FUI-
DGE (Single Inter-Ministerial Fund of the Directorate
General for Enterprise) program within the network
simulation Platform (PLATSIM).

8. References

[1] HLA IEEE 1516.1-2000 - Standard for Modeling

and Simulation High Level Architecture - Federate
Interface Specification

[2] DDS-Spec. Data Distribution Service for Real-
time Systems (OMG-DDS).
http://www.omg.org/technology/documents/dds_s
pec_catalog.htm

[3] James M. Calvin, Alan Dickens, Bob Gaines, Paul
Metzger, Dale Miller and Dan Owen. “The Simnet
Virtual world architecture”. In VR, pages 450-455,
1993.

[4] IEEE 1278.1A-1998 –“Standard for Distributed
Interactive Simulation - Application protocols”.

[5] Annette L. Wilson, Richard M. Weatherly. “The
Aggregate Level Simulation Protocol: An
Evolving System”. Proceedings of the 1994
Winter Simulation Conference.

[6] Lu, X., Yang, T., Liao, Z., Li, X., Wang, Y., Liu,
W., Wang, H.: “A Novel QoS-Enable Real-Time
Publish-Subscribe Service”. In: Proceedings of
ISPA, pp. 19–26 (2008)

[7] Xinjie Lu, Tian Yang, Zaifei Liao, Xin Li, Yong
Wang, Wei Liu and Hongan Wang. “QoS-Aware
Publish-Subscribe Service for Real-Time Data
Acquisition. Lecture Notes in Business
Information Processing. 2008

[8] Douglas C. Schmidt, Angelo Corsaro and Hans
Van’t Hag. “Addressing the Challenges of Tactical
Information Management in Net-Centric Systems

With DDS”. The journal of Defense software
Engineering. March 2008.

[9] Marco Ryll, and Svetan Ratchev. Application of
the Data Distribution Service for Flexible
Manufacturing Automation. Proceedings of Worls
Academy of Science Volume 31.July 2008 ISSN
1307-6884

[10] http://www.ntp.org/

[11] http://www.mak.com/products/rti.php

Authors Biographies

AKRAM HAKIRI is a Ph. D student in the University
of Toulouse and researcher in the LAAS-CNRS French
research Labs, Toulouse-France. He has his master
degree from the University of Paul Sabatier in
Toulouse, France and he worked in Wireless Sensor
Networks for spatial and Aeronautic systems. He is
also an engineer in computer science and automatics

from the National Institute of Applied science and
Technology (INSAT) in Tunisia.

PASCAL BERTHOU is an Associate Professor in
computer science in the University of Toulouse and
researcher in the LAAS-CNRS French research Labs,
Toulouse-France. He worked in network support for
the distributed interactive simulation, wireless sensor
networks, multi-network communication architecture
and multimedia applications over broadband satellite
systems.

THIERRY GAYRAUD is Full Professor in the
University of Science, Toulouse III, France and
researcher in the LAAS-CNRS French research Labs,
Toulouse-France. His research interests are sensor
networks, QoS in satellite communication system and
QoS for distributed interactive simulation application.

