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Abstract—P2P computing middlewares are interesting options
for grid computing applications that require scalability and
resiliency. Nevertheless, most P2P computation systems rely on
partially centralized or hybrid decentralized architectures to
distribute tasks and collect the results, raising fault tolerance
and bottleneck issues. CONFIIT (Computation Over Network
with Finite number of Independent and Irregular Tasks) is a
purely decentralized middleware for grid computing, relying on
a virtual ring for topology management and for task scheduling.
This paper evaluates the impact of node placement and task
granularity on the performance of CONFIIT. We analyze how
CONFIIT handles different distribution scenarios in a grid
environment while solving the well-known Langford permutation
problem.

I. INTRODUCTION

During many years, computation and storage were done in

a local way. A few years ago, a new approach emerged: the

distribution of computation and storage over a network. This

new approach tends to the use of all available computational

resources from a local network, and to a larger scale, from the

Internet. This new paradigm is called grid computing. In [1],

authors discussed arising issues related to this new paradigm,

and explained how to design efficient grid based solutions.

CONFIIT, introduced in [2], is a purely decentralized peer-

to-peer middleware. It was designed to cope with joining the

computation means to be used on a local area network or on

the Internet, all while providing fault tolerance and autonomy

to the peers. This paper focuses on the impact of nodes

placement on the communication performance when using the

distributed mode of CONFIIT. Because CONFIIT relies on

a virtual ring, the token passing mechanism is intrinsically

bound to the network speed and the ring circumference. Using

the well-known Langford’s combinatorial problem as a test

subject, we try to verify the impact of nodes placement in the

overall system performance when deploying CONFIIT over a

country-wide grid environment.

The rest of this paper is organized as follows: firstly, we

present some issues in grid computing. Section III describes

the CONFIIT framework. We detail how the topology man-

agement is used to improve robustness, and how tasks are

locally and globally scheduled on processors. Section IV

illustrates how the Langford’s combinatorial problem can be

implemented in this computing model. After its description,

experimental results in a grid environment are presented in

order to observe the impact of nodes placement in the overall

performance. Finally, Section VI presents our conclusions.

II. RELATED WORKS

The grid computing concept appeared in the 90’s, as an

extension on the Internet of the cycle stealing principle.

Former applications aimed to crack by exhaustive search en-

cryption keys based on RC5 or DES algorithms. They showed

the opportunity of aggregating hundreds of PCs to solve a

problem. Web-based Computing projects arose at the end of

the 90’s, as Charlotte [3], Bayanihan [4] or SETI@home [5],

[6].

Indeed, the SETI@home project [5], [6] popularized the

Global Computing concept. It was designed for Searching

ExtraTerrestrial Intelligence, distributing tasks on thousands

of computers on Internet. The current version of the project is

based on the BOINC platform [7], and gathers more than 30

TeraFlops simultaneously. It has already produced more than

the equivalent of 500,000 years of computation on a PC. After

SETI@home, dozens of academic or industrial projects were

developed. In the former world, projects are often dedicated to

a single application (as Distributed.net) or propose complete

environments: XtremWeb1 or OurGrid2.

Grid applications are currently designed for two main pur-

poses: data sharing and distributed computation. Whereas data

sharing applications aim to share and recover data through a

network, distributed computation applications aim to share a

computation over a network and build a global solution. In

the remaining of this paper, we will focus almost exclusively

on distributed computation grid applications. Hence, the grid

related issues can be classified in three main categories.

(i) applications specially designed to compute a particular

problem. The most known application of that category is

the SETI project, designed to Search for Extra Terrestrial

Intelligence.

(ii) protocols and libraries, put together to help in writing

a dedicated grid application. JXTA project is an example

of this category [8]. It proposes a peer-to-peer communi-

cation protocol, platform and language independent.

(iii) middlewares offering different services (grid con-

struction and management, task sharing management

1http://www.xtremweb.net
2http://www.ourgrid.org



and results gathering). In this last group we can find

Globus [9], [10], XtremWeb [11], DIET [12] or ProAc-

tive [13].

Whatever the application is, and whatever the means are,

a grid based application has to verify some properties to

be efficient [14], [15]: (1) sharing hardware and software

capacities and capabilities, (2) scheduling the use of these

means and the capability of peer-to-peer computation over

Internet. F. Capello presented the topical issues of peer-to-peer

globalized computation system in [16].

Notice that authors propose partially centralized, or hybrid

decentralized architecture, in most cases [17]. For example,

DIET is a hierarchically centralized system: global information

is maintained in replicated servers, called Master Agents, and

a given computer organization is managed by Local Agents.

Also, the BOINC [7] framework consists of two layers that

operate under the client-server architecture.

III. CONFIIT MIDDLEWARE

A. FIIT applications

The notion of FIIT applications was defined in [18], and

they are composed by a Finite number of Independent and

Irregular Tasks (FIIT). We assume that each task satisfies the

following features:

• A task cannot make any hypothesis on the execution of

any other one. Hence, there is no communication between

tasks.

• Execution time of each task is unpredictable. In other

words, we cannot have a good estimation of the execution

time before a task ends.

• A same algorithm is applied to compute all tasks. Hence,

two tasks are distinguished by the set of data they have

to process.

The well-known Mandelbrot’s set [19] can be seen as a

FIIT application: each pixel (or set of pixels) can be computed

independently from the others, and its computation time is

unpredictable since it depends on the corresponding region. In

such a framework, the programmer needs to decide on how to

divide the problem into a finite number of independent tasks,

and how to compute each individual task.

The choices carried out are significant: decomposition gran-

ularity (number of tasks) influences load-balancing quality

and impacts the use of the interconnection network [20]. If

the problem is divided into too small tasks, scheduling will

induce too much communication. Conversely, if the number

of tasks is too small in comparison with the number of nodes,

resolution will not able to exploit available parallelism. Thus,

decomposition has to be adapted to the underlying computing

environment (nodes architecture and interconnection network).

B. CONFIIT outline

CONFIIT (Computation Over Network for FIIT), intro-

duced in [2], is a middleware for peer-to-peer computing. It

aims to:

• distribute over the network all the tasks obtained by

decomposition of a FIIT problem,

• solve each distributed task,

• spread computed results of each task over the network.

Each computer collaborating in a CONFIIT computation is

called a node. A node is set up with three main basic thread

components: a topology and communication manager, a tasks

manager and one or several task solvers.

The nodes are connected according to a logical oriented

ring, set up and maintained by the topological layer of

the system. Basically, each node knows its predecessor and

successor. Communication between nodes are achieved using

a token, which carries the state of computation around the

ring and ensures load balancing between nodes. Task status

are exchanged to broadcast local knowledge on all nodes, and

thus, to compute an accurate global view of the calculus. At

the end of the computation, the ring spreads termination on

nodes.

Typically, one tasks solver should be launched for each

processor on the node. A task manager can cope with several

tasks solvers. Over and above the main thread elements, each

node owns a set of data representing the local known state of

the global computation.

All CONFIIT parts are written in Java. A node runs

a daemon, performing topology, communication and tasks

managements, and one or several solvers in separate Java

Virtual Machine. Each solver is dedicated to a specific running

computation, and can be duplicated if the application is to be

executed by more than one processor.

A node owns the different parameters of the current compu-

tations (a list of tasks and associated results). It is able to set up

its local parameters of tasks to be computed. At the beginning

of a computation, all tasks are marked as uncomputed. When

a task is completed (locally), its result is stored and will

be propagated to the whole ring with the token. To prevent

loss of time, the task manager schedules a new task without

waiting for the token. But the task could have already been

scheduled by another node, and will be replicated in the ring.

So, the local list of tasks owned by a node is randomly

rearranged. Thus, when the task manager picks up the nth

task, it probably will be different from the nth task on another

node [2], [18]. This strategy also guarantees the termination

of the computation regardless node faults.

C. Managing the CONFIIT community

To achieve robustness according to computer crashdowns

and dynamic evolution, CONFIIT maintains a central structure

representing the ring topology. Each node participating in the

computation is known by the others. Information is stored in

a local structure. The mechanism involves a k-tolerance to

recover a functional ring when k successive nodes simultane-

ously fail in a n-sized ring (k ≤ n).

As data are locally stored, a distributed mechanism must

be performed to maintain a global view of the ring in each

node. If we assume the token for computational state follows

the logical ring clockwise, changes in the ring topology will

be carried by a special token (a service token) that circulates

counter-clockwise. Thus, when a node enters or exits the ring,



nodes that are the most interested by the information (before

it clockwise) are informed first.

1) Entering the ring: When a computer wants to enter

in the ring, it contacts a running node. The running node

communicates it the partial topology of the ring, according to

the k factor of tolerance, and the parameters of the problem

being solved. With this information, the new node is able to

start working on the problem. The server-side of the procedure

implies on the change of the local structure of the ring and

on the propagation of this new structure to all nodes in

the community. For the matter of topology, the requester is

inserted after the local node, thus a new node will receive and

update its local ring structure directly from its predecessor.

Conversely, other nodes are informed of the modification by

the service token running counter-clockwise. This later one is

propagated until it reaches the kth node.

2) Exiting the ring: A node can exit a CONFIIT com-

putation ring for two reasons: (1) the user decides to stop

computing collaboration; (2) a network problem occurred and

the node becomes unreachable, or the system crashes. In the

former case, a procedure is initiated by the voluntary exiting

node. In the later one, problem is detected by its predecessor.

We mainly focus here in crashdown exits, since a voluntary

exit follows the same propagation procedure.

In case of computer crashdown, the trouble is detected only

when a node attempts to send information toward its successor.

Then, it removes the crashed node from its own view of the

logical ring, and propagates the deletion to its predecessor.

Propagation is stopped by the node that initiates the deletion.

If a node crashes after a token reception, but before sending

it to its successor, a timeout mechanism ensures the token

retransmission.

Same problem can occur for back-propagation tokens: a

topology alteration involves a token to circulate back to the

ring, but it can be destroyed by a computer crash. This problem

is solved by a similar procedure: when a node initiates a

propagation of a topology alteration, it launches a timeout

delay, and re-send the information if it doesn’t receive its own

information before the timeout ends.

D. Programming models

Since constraints of a given application could be different

and sometimes in contradiction (fault tolerance, efficiency,

. . . ), CONFIIT offers two main programming models: dis-

tributed and centralized mode.

The distributed mode allows an accurate fault tolerance

in the computation since task results are locally stored on

each node in the community. Thus, a broken computation can

be re-launched using already computed tasks. Fig. 1 shows

information exchanges in the community for a distributed

application. At first, the launcher sends the computing request

to a node. The request is propagated along the community

by the token (dotted arrows). During computation, results of

individual tasks are propagated across the community (thick

dashed arrows) such that each node could locally store all indi-

vidual results (data blocks). Concurrently to the computations,

information on the global computation is exchanged according

to the thin arrows.

Another interesting point from this mode is that the launcher

only needs to be connected during the initiation phase. At the

end of the computation, the global result can be retrieved from

any node in the community.

While this mode allows greater flexibility and fault toler-

ance, it may induce the need of a large storage space on each

node. Similarly, as results must be spread to each node, it may

overload slow network connections.

launcher

receiver

Fig. 1. Distributed mode

The centralized mode reduces the global load of storage

space and network communication, with the drawback of

reducing fault tolerance.

Fig. 2 shows information exchanges in the community for

a centralized application. At first, the launcher sends the

computing request to a node. The request is propagated along

the community by a specific token (dotted arrows) as in the

distributed mode, but the launcher must remain connected.

During computation, results of individual tasks are sent

to the initial launcher (thick dashed arrows), which has the

storage in charge (data blocks). As in the distributed mode,

information on the global computation evolution is updated

through the token (thin arrows). A crash on a computing

node is not a problem for the computation since the main

community ring is fault tolerant, but a crash on the launcher

will stop the computation because the gathering of information

cannot be achieved.

E. Placement of nodes and the ring topology

In this paper, we are especially interested on the impact

of nodes placement on the communication performance when

using the distributed mode of CONFIIT. Because CONFIIT

relies on a virtual ring, the token passing mechanism is intrin-

sically bound to the network speed and the ring circumference.

As consequence, it is important to verify the impact of nodes

placement in the overall system performance.

Furthermore, in the case of the distributed mode, this virtual

ring not only distributes tasks and prevents nodes about their



launcher

Fig. 2. Centralized mode

Fig. 3. Geographical distribution

completion, but also spreads the results among the nodes. In

this case, the token must also ensure that all nodes receive the

results from different tasks. According to the amount of data

exchanged, the underlying network performance and the ring

round-trip speed may impact the computing performance.

From these aspects, the placement of nodes becomes an

important factor to be evaluated. Contrarily to traditional grid

applications, which follow a structured hierarchy known as

”cluster of clusters” [21], dynamic P2P platforms are subjected

to node volatility that may reorder the topology in a small

amount of time. In the aspects that concern a ring based

topology, this means that nodes can be structured according

to a geographic distribution (Fig. 3) but also may face worst

scenarios, like when the token hops from cluster to cluster

(Fig. 4). This diversity of scenarios makes the token round

trip time vary by several orders of magnitude, compromising

the performance of a platform that is not prepared to face such

variations.

Therefore, in the next section we evaluate how the perfor-

mance of CONFIIT is affected by nodes placement (and task

sizes) in a grid environment.

Fig. 4. Unordered distribution

IV. CASE STUDY: THE LANGFORD’S PROBLEM

C. Dudley Langford gave his name to a classic problem of

permutation [22], [23]. While observing his son manipulating

blocks of different colors, he noticed that it was possible to

arrange three pairs of blocks of different colors (yellow, red,

blue) in such a way that only one block separates the red

pair, two blocks separate the blue pair and finally three blocks

separate the yellow one (see Fig. 5).

Yellow Red Blue Red Yellow Blue

Fig. 5. L(2,3): arrangement for 6 blocks of 3 colors: yellow, red and blue.

The problem has been generalized to any number of col-

ors n and any number of blocks having the same color s.

L(s, n) consists in searching for the number of solutions to

the Langford problem. In November 1967, Martin Gardner

presented L(2, 4) (two cubes and four colors) as being part

of a collection of small mathematical games and stated that

L(2, n) has solutions for all n such that n = 4k or n = 4k−1
for k ∈ N

∗.

Recently, Toby Walsh and Barbara Smith formulated this

problem as a Constraint Satisfaction Problem [24], [25]. The

Langford Problem has been approached in different ways

(discrete mathematics results, specific algorithms, specific

encoding, . . . ).

A. A tree search approach

The Langford problem can be modelized as a tree search

problem. In order to solve L(2, n), we consider the tree of

height n and width 2n − 2 (see Fig. 6):

• every node of the tree corresponds to the place in the

sequence of the cubes of a determined color;

• to the depth p, the first node corresponds to the place of

the first cube of color p in first position and it ith node



(2,6)(1,5) (2,6)(1,5) (2,6)(1,5)

(1,4) (2,5) (3,6) (1,4) (2,5) (3,6)

(2,6)(1,5) (2,6)(1,5) (2,6)(1,5)

(4,6)(2,4)(1,3)

....

...

Positions of both

color 2 cubes

Positions of both

color 3 cubes

Positions of both

color 1 cubes

...

Fig. 6. Search tree for L(2, 3).

corresponds to the investment of the first cube of color p

in position i, i ∈ [1, 2n − 1 − p];
• every leaf of the tree symbolizes the positions of all

cubes;

• a leaf is a solution if it respects the color constraint

defined by the Langford problem.

To be efficient, this algorithm should avoid the recursive tree

traversal. Hence, in 2002, an algebraic representation of the

Langford problem has been proposed by M. Godfrey. Consider

L(2, 3) and X = (X1, X2, X3, X4, X5, X6). It proposes to

model L(2, 3) by F (X, 3) = (X1X3 + X2X4 + X3X5 +
X4X6) × (X1X4 + X2X5 + X3X6) × (X1X5 + X2X6).
In this approach, each term represents a position for both

cubes of a given color and a solution to the problem is

equal to the polynomial coefficient of X1X2X3X4X5X6 in

the development. More generally, a solution to L(2, n) can be

deduced from X1X2X3X4X5...X2n.

If G(X, n) = X1 . . . X2nF (X,n) then it has been shown

that:
∑

(x1,...,x2n)∈{−1,1}2n

G(X,n)(x1,...x2n) = 22n+1L(2, n)

So:

∑

(x1,...,x2n)∈{−1,1}2n

(
2n∏

i=1

xi)

n∏

i=1

2n−i−1∑

k=1

xkxk+i+1 = 22n+1L(2, n)

(1)

The computation of L(2, n) is in O(4n × n2) and an

efficient long integer arithmetic is needed. This principle can

be optimized by taking into account the symmetry of the

problem and using the Gray code[26]. By using this approach,

M. Godfrey has solved L(2, 20) in one week on three PCs in

2002.

It is quite obvious that a parallel version can be derived

from Eq.(1). By choosing a value in {−1, 1} for one or more

of the xi in
∑

(x1,...,x2n)∈{−1,1}2n , a set of independent tasks

is introduced. Again, a depth level of the parallelization can

be defined. At depth level k, the values of x1, x2, . . . , xk are

fixed (either 1 or -1). Indeed, at depth level k, a set of 2k tasks

is generated.

B. Current status

At the moment, the instances solved in practice, in a merely

combinatorial manner, limit themselves to a small number

of colors. In this case, one mentions the instance L(2, 19)
that was solved in 2 years and a half on a DEC Alpha

Lille

Nancy

Bordeaux

Toulouse

Nice

FRANCE

Fig. 7. Location of clusters used in the experiments

300MHz in 1999. In 2002, L(2, 20) was solved with the

help of a new algorithm and the intensive use of a cluster

of 3 PCs during one week. Using Godfrey’s algorithm over

CONFIIT, we were initially able to solve the problem L(2, 23)
in about 4 days (april 2004), using a local network with

63 nodes and 85 processors, which represents about 320

days of sequential computation. Later, in 2005, the L(2, 24)
problem was solved in 94 days in a non-dedicated network

with variable size. Using this variable network, which counted

at most with 12 nodes (20 processors) at a given moment, we

calculated the 46,845,158,056,515,936 possible combinations

of the problem, for an equivalent of 850 days of sequential

computation [27]. Up today, this is the largest solved instance

of Langford’s problem3.

V. EXPERIMENTS

A. Platform Description

In order to conduct our experiments, we used up to 5

clusters from the Grid’5000 experimental platform4, located in

Bordeaux, Nancy, Nice (Sophia Antipolis), Lille and Toulouse

(see Fig.7). For a matter of uniformity, all clusters are com-

posed of bi-processor, dual-core machines (AMD Opteron

2218 2.66 GHz, AMD Opteron 285 2.66 GHz or Intel Xeon

5110 1.6 GHz). This way, each machine runs 4 CONFIIT

threads, one by core. Machines inside the same cluster are in-

terconnected by a Gigabit Ethernet network while the clusters

are connected by a private backbone of 10 Gbps. All nodes

run Debian Linux, with kernel version 2.6.26.

B. Experiment scenarios

In order to evaluate the impact of nodes placement on

the performance of CONFIIT, we designed a progressive

scenario where we scale-up the number of clusters from 1

to 5, while keeping the same number of computing threads.

3See http://www.lclark.edu/˜miller/langford.html
4https://www.grid5000.fr



Fig. 8. Worst case distribution

Our objective is to evaluate how CONFIIT performance be-

haves with the increment on the ring circumference, on both

best case (geographically distributed or geo, as in Fig. 3)

and worst case (Fig.8). Indeed, if we consider only the

network latency (extracted from the ping parameters from

Table I), a ring with 60 machines in 5 clusters would take

around 46.805ms to do a roundtrip in the best case (geo:

Nancy→Bordeaux→Nice→Lille→Toulouse) and 535.788ms

to do the same roundtrip in the worst case. If communication

and computation do not overlap efficiently, this roundtrip time

may represent a serious performance concern.

In our experiments, we also evaluate the performance of

CONFIIT with different task sizes for the Langford’s problem.

Hence, the parallel computation of Langford’s problem can be

expressed by a depth level k, which generates 2k independent

tasks. A reduced number of large tasks induce less communi-

cation among the nodes but increases the size of result blocks

to be spread among the nodes. On the other hand, a large

number of small tasks may improve the speedup as no task will

delay too much the termination of the computation (similar to

a pipeline effect).

C. Analysis

Table II represents the average of 3 runs for each

combination of clusters, topology and number of

tasks. The ring topology is constructed in the order

Nancy→Bordeaux→Nice→Lille→Toulouse for both geo and

worst scenarios (the worst scenario alternates machines from

each cluster, in the same order). For the matter of comparison,

we also indicate the execution time in a single machine.

Therefore, Fig. 9, 10, 11 and 12 plot the computation

time of the same instance of the Langford’s problem when

comparing 1 cluster and 2, 3, 4 and 5 clusters respectively.

From the analysis of these data, we obtain the following

insights:
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Fig. 9. Comparison between Langford on 1 and 2 clusters
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Fig. 10. Langford on 3 clusters
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Fig. 11. Langford on 4 clusters



TABLE I
ROUND-TRIP TIME (PING) AMONG NODES FROM DIFFERENT CLUSTERS

Bordeaux Nancy Nice Lille Toulouse

Bordeaux 0.090ms 18ms 14.9ms 17.2ms 18.6ms
Nancy 18ms 0.100ms 16.8ms 8.82ms 20.6ms
Nice 14.9ms 16.8ms 0.046ms 16.1ms 17.4ms
Lille 17.2ms 8.82ms 16.1ms 0.092ms 19.7ms

Toulouse 18.6ms 20.6ms 17.4ms 19.7ms 0.064ms

TABLE II
COMPUTATION TIMES WHEN VARYING THE NUMBER OF CLUSTERS AND THE NUMBER OF TASKS

512 tasks (k=9) 1024 tasks (k=10) 2048 tasks (k=11) 4092 tasks (k=12) 8184 tasks (k=13)

Single machine 16425.32s 17242.13s 16675.48s 17545.15s 17361.09s

1 cluster 676.263s 524.347s 405.81s 381.576s 386,414s

2 clusters (geo) 663.646s 567.54s 447.152s 418,517s 417,009s
2 clusters (worst) 677.29s 587.003s 533.274s 422.769s 420.739s

3 clusters (geo) 697.262s 492.119s 422.628s 423.568s 415.886s
3 clusters (worst) 717.504s 538.026s 434.973s 412.001s 413.61s

4 clusters (geo) 673.082s 528.628s 456.385s 421.053s 404.126s
4 clusters (worst) 609.69s 534.328s 439.901s 405.943s 411.397s

5 clusters (geo) 654.827s 478.253s 412.802s 389.592s 413.817s
5 clusters (worst) 656.894s 499.64s 408.056s 402.154s 397.587s
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Fig. 12. Langford on 5 clusters

1) Impact of nodes placement: In spite of the difference

between the placement policies geo and worst, the computa-

tion times are barely affected by the ring circumference. While

the geo strategy generally benefits from a small advantage in

comparison with the worst strategy, this difference seems to

vanish (or event to invert) when small tasks are used (e.g.:

k = 12 or k = 13).

This can be explained by the task selection mechanism from

CONFIIT. Because CONFIIT nodes randomly select unsolved

tasks, nodes are allowed to start new tasks even if the token

has not yet returned. With more small tasks, computation of

tasks can continue with a small probability of ”double work”,

while waiting for the token update. Also at the end of the

computations, the remaining unsolved tasks will be quickly

deployed and represent a small computation load that does

not delay the termination.

Nevertheless, these results do not exclude performance

problems if the inter-cluster networks become too slow in

comparison with the local-area network (like the traversing

of a PSTN or ADSL link). In Grid’5000, the impact of the

wide-area latency is partially compensated by its bandwidth

(a 10Gbit/s dark-fiber interconnection).

2) Number of clusters: In spite of the increment in the

number of clusters, no slowdown could be observed in the

experiments. Also, the ratios between the performances of

Langford’s algorithm in one or several clusters remain stable,

which is an interesting fact. For instance, it seems that the cost

associated with the communication, no matter if in a single

cluster or through several networks, is sufficiently reduced to

be compensated by the computation/communication overlap.

Although these results are encouraging, especially when

considering grid environments, we believe that further

scalability tests should be necessary to determine the limits

of the platform if we plan to deploy experiments in open

networks.

3) Impact of task size: We finish the analysis of the exper-

iments by looking on the impact of task sizes on the overall

computation time. The Fig. 9, 10, 11 and 12 clearly show that

a small number of tasks does not parallelizes as well as when

a larger number of tasks is deployed. Actually it is not easy to

determine if a task will have a long or small duration, as FIIT

tasks are independent and their computation time depends on

the evaluation algorithms. Nevertheless, we can estimate that

in a combinatorial tree search the more we subdivide the tree,

the shorter will be the average computational time of each

branch.

This does not mean however that we can subdivide the

problem in an infinite number of tasks. Because the token

circulation represents a non-negligible barrier, it is important

to find a trade-off between the computational time for a task

and the communication cost. If we observe the average time



for task in the 5-cluster/geo scenario, for example, we obtain

76.74s for k = 9, 28.02s for k = 10, 12.09s for k = 11, 5.71s

for k = 12 and finally 3.03s for k = 13. Hence, increment

(doubling) in the number of tasks gives a speed-up of at least

a factor 2 up to k = 12. With k = 13, however, the average

time for task does not decreases as expected, indicating that

computation/communication overlap reaches its limits. This

time can even increase if we insist to multiply the tasks, as

indicated by previous experiences outside this work.

VI. CONCLUSION

The main purpose of this paper was to evaluate how the

geographical disposition of nodes in a grid environment impact

on the performance of a ring-based distributed computing

platform. Using a distributed solver for the Langford’s problem

as the evaluation subject, we were able to observe the main

factors that influence the computation performance.

We observed therefore that the load balancing scheme used

in the CONFIIT distributed framework is little sensitive to

the performances of the network. Indeed, tasks computation

is almost independent of the token mechanism, as the nodes

keep selecting uncomputed tasks even without new updates.

Nonetheless, the computation performance in the distributed

mode (i.e., the timespan) still depends on the number (and by

extension, the size) of the tasks as the token propagates the re-

sults of the computed tasks. The experiments show a trade-off

between computation and communication overlap that limits

the speed-up in some cases. Hence, we can expect a larger

timespan in slower networks as the token must propagate all

updates to all nodes before termination is detected.

Further experiments will explore CONFIIT scalability be-

havior in both grid environments and open networks (P2P over

Internet), an essential step towards larger problems such as

Langford L(2, 27) and L(2, 28).
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