
HAL Id: hal-00510835
https://hal.science/hal-00510835v1

Submitted on 22 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong Consistency for Shared Objects in Pervasive
Grids

Luiz Angelo Steffenel, Manuele Kirsch Pinheiro

To cite this version:
Luiz Angelo Steffenel, Manuele Kirsch Pinheiro. Strong Consistency for Shared Objects in Perva-
sive Grids. 5th IEEE International Conference on Wireless and Mobile Computing, Networking and
Communication (WiMob’2009), Oct 2009, Marrakesh, Morocco. pp.73-78. �hal-00510835�

https://hal.science/hal-00510835v1
https://hal.archives-ouvertes.fr


Strong Consistency for Shared Objects

in Pervasive Grids

Luiz Angelo Steffenel

Département de Mathématiques et Informatique

Université de Reims Champagne-Ardenne

BP 1039, F-51687 Reims Cedex 2, France

email: Luiz-Angelo.Steffenel@univ-reims.fr

Manuele Kirsch-Pinheiro

Centre de Recherche en Informatique

Université Paris I - Panthéon-Sorbonne

90 rue de Tolbiac, F-75013 Paris, France

email: Manuele.Kirsch-Pinheiro@univ-paris1.fr

Abstract—Recent advances in communication technology en-
able the emergence of a new generation of applications that
integrates mobile devices with classical high performance systems
as part of a common computing environment. In such environ-
ments, keeping the coherence of shared data (distributed objects,
for example) represents a real challenge as communications
are strongly influenced by the performance and the reliability
of mobile devices (laptops, PDAs and cellular telephones) and
wireless networks (WiFi, Bluetooth). Indeed, data incoherence
may arise due to message losses or node volatility, which blocks
the algorithms used to synchronize these data. In this paper,
we analyze the main challenges concerning the manipulation
of shared distributed objects in a pervasive environment. We
demonstrate how a membership service can be enhanced to
tolerate temporary disconnections and message losses without
blocking, while reducing the number of exchanged message.

I. INTRODUCTION

The widespread availability of mobile devices (PDAs,

smartphones, etc.) and of wireless networks, such as WiFi

and GSM, has boosted mobile and pervasive computing. The

term pervasive computing refers to the seamless integration

of devices into the users’ everyday life [1]. This term rep-

resents an emerging trend towards environments composed

by numerous computing devices that are frequently mobile

or embedded in the environment and that are connected to a

network infrastructure composed of a wired core and wireless

edges [2].

When considering pervasive environments, one should con-

sider heterogeneous environments composed of fixed and mo-

bile devices interconnected by a mix of standard infrastructures

(fixed networks) and wireless networks (Fig. 1). These mobile

nodes are equipped with standard and/or wireless communi-

cation interfaces that allow them to move at will, as well as

allowing them to connect over a fixed structure (as in the case

of laptop computers). In such an environment, nodes that are

located at the boundaries of the wireless coverage zone may

be out of reach from time to time. Also, mobile devices that

have low power capacities may disconnect themselves to save

battery power.

Different applications built on the top of mobile devices

can benefit from our membership algorithm, especially those

that need to ensure a coherent view of a data set such as a

multiplayer game in an ad-hoc network [3], the collaborative

Fig. 1. Topology with mobile devices

edition of a document [4] or even distributed computing in

a pervasive grid or P2P environment [5]. In addition, our

attention was especially drawn to the aspects of component

deployment and state transfer among mobile devices. Indeed,

several authors have been studying dynamic component de-

ployment on pervasive systems [6], [7], [8], and we are

especially interested in the case of preventive deployment, in

which components are pro-actively deployed in order to keep

the system responsiveness.

For illustration purposes, let us consider a mobile device

such as a PDA or a cell phone, whose battery discharges. In

such case, pervasive systems may decide to deploy compo-

nents from this device to other device before that the battery

reaches a critical level. If the system waits until the last

moment to perform this deployment and the state transfer

necessary to keep running, chances are that the transfer fails

before completing the deployment. To avoid this, a mobile

device may contact neighbor devices before reaching a critical

state and manage replicas of the current application (including

the concerned components and their corresponding states) on

those devices.

Therefore, distributed systems running on the top of per-

vasive environments (we call them pervasive systems) have

to cope with problems such as node volatility and network

coverage. Unfortunately, we cannot rely on traditional dis-



tributed systems as they do not target these problems: not only

traditional algorithms assume rare failures but also they mainly

focus on the occurrence of nodes failures [9].

To cope with the problems that arise from a dynamic

and volatile environment, we propose a solution based on a

Group Membership Service specifically tailored for pervasive

systems. Our proposal is constructed around the concept that

most disconnections are due to the network coverage problems

and not to a node failure. Therefore, we advocate that sus-

pected processes should no be immediately removed from the

current membership, at least as long as they do not block the

application. Hence, according to the failure situation, different

algorithms may apply: an algorithm that removes suspected

processes and install a new membership, or a lazy algorithm

that simply reorganizes the processes to prevent (or to delay)

blocking situations. Using such approach, we minimize the

number of membership changes, who depend on expensive op-

erations such as the Consensus [10]. We believe that this two-

level structure considerably improves the system liveness when

temporary disconnections of processes take place. Hence, to

illustrate its mechanism, we examine a distributed computing

scenario where data consistency over shared objects is required

in spite of mobile devices temporarily disconnections.

This paper is organized as follows: In Section II we recall

basic properties from group communication and membership,

and establish the system model. Section III introduces the

problem of Group Membership in the context of pervasive

systems, illustrating the drawbacks of traditional techniques.

For instance, Section IV propose a two-level membership

algorithm that tolerates temporary disconnections in a dynamic

pervasive system, while V presents an efficient approach

for implementing Atomic Broadcast in such system. Finally,

Section VI presents the conclusions of this work and future

directions.

II. GROUP COMMUNICATION DEFINITIONS

When working in a distributed system, group communica-

tion operations and group membership are important tools

to simplify the coordination among distributed processes.

More specifically, a group membership service considers the

problem of managing the successive memberships of a group

of processes (usually called views), keeping them coherent

under some properties. Basically, a group membership requires

three primitives, namely join (by which a process ask to join

the group), leave (by which a process as to leave the group)

and install (by which a new view is approved). A process can

also be excluded from a view when it is suspected to have

crashed. In this paper we consider only the primary-partition

membership service [11], where we attempt to keep a single

view of the current group.

To help managing the group membership, View Syn-

chronous Communication (or VSC, for short) [11] allows

processes to broadcast messages with certain guarantees. Let

V-BROADCAST
v denote the primitive by which a message

is broadcast by a process in view v, and V-DELIVER
v the

primitive that delivers a message to a process in view v. VSC

is defined by the following properties (we consider here non-

Uniform properties):

Validity - If a correct process1 V-BROADCAST
v a message

m, then some correct process eventually V-DELIVER m to the

application (in view v or in a subsequent view).

Termination - If a process V-BROADCAST
v(m), then even-

tually (1) every process in view v V-DELIVER
v(m) or (2) every

correct process in v installs a new view.

View Synchrony - If a process p belongs to two consecutive

views v and v’ and V-DELIVER
v(m) in view v, then every

process q in v∩v′ that installs v’ also V-DELIVER
v(m) before

installing v’.

Integrity - For any message m, every correct process p V-

DELIVER(m) at most once and only if (1) m was previously

V-BROADCAST by sender(m) and (2) p is a process in the set

Π.

Sending View Delivery2 - If a process p V-BROADCAST(m)

in a view v, then every correct process ought to V-

DELIVER(m) in the same view v.

The Group Membership problem can be solved by reduction

to Consensus [10], [12]. Informally, the Agreement property3

helps a view change algorithm to define the same view among

processes. As the scope of Group Membership also considers

messages exchanged among the processes, it is used by several

works to define operations such as Atomic Broadcast or

Reliable Broadcast on message sets [11], [13].

With respect to communications, we consider fair-lossy

channels that provide reliable communication using unreliable

channels by ensuring that a message m is retransmitted until

its successful reception (signaled by an ack, for example).

III. GROUP MEMBERSHIP ON PERVASIVE SYSTEM

As stated in Section II, a membership view change gathers

all correct processes in a new view vi+1. Furthermore, to

ensure that all processes in the new view are coherent, these

processes share all queued messages and deliver them before

installing the view vi+1. A view change depends therefore on

the agreement among processes.

Traditional membership algorithms assume that devices

are connected by reliable networks and that disconnections

are rare, and therefore are not designed to support group

management in pervasive environments [14]. Indeed, most

membership specifications strongly rely on the Consensus

operation, which requires not only a majority of correct nodes

but also that they remain connected as long as the agreement

has not been reached. The intrinsic volatility from a pervasive

environment may lead a simple Consensus to be delayed for

several rounds if nodes connect and disconnect regularly (even

if at any given time t there is a majority of connected nodes).

To minimize the dependency of membership view changes

on the Consensus operations, especially in the case of a

1A process is called correct only if it does not crash during the entire
execution, although even a correct process can be incorrectly suspected of
crashing

2Some specifications consider a weaker property called ”Same View
Delivery” instead of ”Sending View Delivery” [11]

3Agreement : no two processes decide differently [10]



pervasive environment that is prone to frequent disconnections,

we advocate the use of a two-level membership view change,

where consensus is used only as the last resort. In this

scheme, nodes suspected are initially put into ”quarantine”

but not removed from the group, allowing suspected nodes to

overcome temporary disconnections.

IV. A TWO-LEVEL VIEW CHANGE MECHANISM

The first step to efficiently handle temporary disconnections

in a pervasive system is to specify a group membership

service with mechanisms to tolerate these disconnections while

keeping a good reactivity on the case of process failures. As

suggested in [15], we consider that each view change level de-

fines different types of views: regular views (or simply views)

are similar to the views of View Synchronous Communication,

while intermediate views (or i-views) are installed between

regular views.

If regular views are denoted by v0, v1, ..., vi, the i-views

between vi and vi+1 are denoted as v0
i , v1

i , . . . , v
j
i , . . . , v

last
i .

The intermediate view v0
i is equal to vi and the last interme-

diate view vlast
i is equal to vi+1. One important point is that

the membership of all intermediate views v0
i , v1

i , . . . , vlast−1

i

is the same as the membership of vi, that is, they only differ

in the order that processes are listed in the view. For example,

vi = v0
i = {p, q, r}, v1

i = {q, r, p}, etc. As a result, i-

view changes can be optimized to interfere a minimum with

the system operation. In this paper we propose to redefine a

group using the concept of ”quarantine”: a view is therefore

composed by two subgroups, {”active”,”suspected”}, where

i-view changes simply move suspected processes to the cor-

responding subgroup.

The specification of this two-level membership is identical

with respects to the properties from Section II, except for the

Sending View Delivery property that becomes:

Sending View Delivery - If a process p V-BROADCAST(m)

in a view v, then every correct process ought to V-

DELIVER(m) in the same regular view v (i-view changes could

have occurred between).

Such a two-steps membership presents several advantages

for pervasive systems, as it allows the system to adapt to

temporary disconnections without inducing a regular view

change. As we use two different failure detectors, we can fine

tuning each one to reflect the pervasive environment: i-views

can be triggered by failure detectors with aggressive timeouts

or ad-hoc suspicions (e.g.: a process that does not succeeds

sending a message to other process), while regular views are

triggered by failure detectors with conservative timeouts.

Please note that we rely on non-Uniform properties mainly

because they can allow a less costly implementation in per-

vasive systems. To ensure strong completeness, however, we

must use program-controlled crash [16]: if a message is

broadcasted in view v and all correct processes should deliver

the messages broadcasted in the same view v, VSC forces

suspected processes to crash, ensuring the Sending View Deliv-

ery property. Our mechanism minimizes the situations where

program-controlled crash may apply as program-controlled

crash are triggered only when i-views are no more able to

manage processes in a view.

Even reducing the probability of Regular View changes,

several i-view changes may occur before reaching stability.

In the next section, we present a lightweight algorithm for i-

view changes that does not rely on Consensus, reducing its

impact on pervasive systems.

A. Optimizing i-view changes

From the previous sections, we can define an algorithm for

the V-BROADCAST and Regular View Change, as presented

in Algorithm 1.

Algorithm 1 V-BROADCAST and Regular View Change algo-

rithm
V-Broadcast(m) executed by pk:

send (i, m) to all process in vi

Upon reception of (i, m) by pk while in view vi

V-Deliver(m)

add m to unstablek

Upon suspicion of some process in vi by a conservative failure detector

R-Broadcast (view-change, i) /* R-Broadcast is defined in [13]*/

Upon R-Deliver (view-change, i) by pk for the first time

1. send unstablek to all

2. ∀p ∈ vi , wait until receive unstablel from pl or pl suspected

3. let initialk be the tuple (Πk , Msgsk) s.t.

- Πk is the set (pi∪ processes that sent their unstablel)

- Msgsk is the union of the unstablek sets received

4. execute Consensus among vi processes, with initialk as the initial value

5. let (Π, Msg) be the Consensus decision

6. V-Deliver all messages in Msg not yet V-Delivered

7. if pk ∈ Π, then ”install” Π as the next view vi+1

else suicide

Here, messages sent with V-BROADCAST are kept in the

queue unstablek until they become stable. Once a process

receives the unstable queue from all processes that are not

suspected, it can compute Msgsk, the union of all received

unstable. It also can suggest a new view based in the set

of processes that answered the view-change message. As

processes agree both on the new view and on the set of un-

stable messages, all processes that acknowledge this decision

have the same set of messages and therefore these messages

are ready to be delivered. Please note that suspected nodes

excluded from the view are forced to suicide (Algorithm 1,

line 7).

In the case of i-views changes, we don’t need to ensure the

Sending View Delivery property. Therefore, we concentrate

on a lightweight algorithm for i-view changes that only deals

with processes suspicions, as presented in Algorithm 2.

Algorithm 2 Optimized i-view changes

Upon suspicion of some process q in v
j

i
by an aggressive failure detector

R-Broadcast (i-view, i, j, q)

Upon R-Deliver (i-view, i, j, q) by pk for the first time

1. If suspected(q) then Broadcast (i-view,i, j,ack), else Broadcast (i-view,i, j,nack)

2. ∀p, wait until a majority of votes for ack or nack is reached

3. if majority(ack)

- move q to the ”suspected” subgroup in the set Π

- install Π it as the next i-view v
j+1

i



This optimized i-view algorithm no longer forces processes

to manipulate lists of messages at each i-view change, which

makes i-views even lighter than the regular view change

algorithm. By reducing the overhead on i-view changes, we

reduce the impact of wrong suspicions due to aggressive

failure detectors. Similarly, the fact that i-views do not force

a process to suicide reduces the overhead induced by the

membership service.

B. Proof of correctness

In this section, we sketch the proofs of correctness

for the VSC properties in our algorithms. Consider V-

BROADCAST(m) and the current view vi:

Lemma 1: Sending View Delivery is satisfied.

Proof: m can only be V-DELIVERED in view vi, this

is ensured by tagging each message with the current view

number.

Lemma 2: View Synchrony is satisfied.

Proof: m can only be V-DELIVERED in view vi, and (i)

either all members of vi eventually V-DELIVER(m) or (ii) a

new view vi+1 is defined and if one process V-DELIVERS m

before installing vi+1, then every process that installs vi+1 has

V-DELIVERED m before installing the new view.

Lemma 3: Termination is satisfied.

Proof: If not all process in vi V-DELIVERED m, then

some process has crashed and if we assume a ♦W failure

detector, the crashed process is eventually suspected. So R-

BROADCAST(view-change, i) is executed and a new view is

eventually installed. Let pi be a process that is in the new

view and has V-DELIVERED m before installing the new view.

We show that each process that installs the new view has V-

DELIVERED m:

• Case 1: pi has detected the stability of m before sending

unstablei to all. By definition of stability, all processes

in vi have V-DELIVERED m.

• Case 2: m was not stable at pi. Let pk be the process

whose initial value is the decision (Π, Msg). By item

7 we have pi ∈ Π and by item 3 pk has received the

unstablei set from pi. So m ∈ Msg and by item 6 every

process has V-DELIVERED m before installing the new

view.

We also observe that i-views do not interfere with the VSC

properties. On i-view changes, each suspected process is han-

dled individually and a majority of votes is required to decide

on the suspicion. Our algorithm is more resilient than a simple

failure detector because we require a majority of commitments

to move a process to the ”suspected” subgroup; contrarily

to Consensus, our algorithm does not force all processes to

install the same view v
j+1

i . Indeed, we assume that a ”majority

test” is sufficiently enough to define intermediate views. In

the case processes install different i-views and one of these i-

views blocks the application (keeping a crashed process in the

active set), eventually a Regular View change will be triggered,

solving the problem.

C. Performance issues

Let us assume that i-view changes are triggered by a failure

detector with a small timeout (e.g. 1s) and regular view

changes are triggered by a failure detector with a conservative

timeout (e.g. 50s). In the case of a temporary disconnection (or

a failure), i-view changes allow us to react much faster than

a standard VSC with a timeout of 10s, improving the liveness

property. If finally a failure suspicion is confirmed, regular

view changes cost in average 50s (worse than VSC), but

we reduce the probability of incorrectly excluding processes,

minimizing the cost of program-controlled crash.

To understand the advantages of both regular and i-view

compared to a standard membership algorithm, we must

understand that the crash of a process interferes with the

group only if the group depends on that process (waiting for

a message or trying to send a message to it). As long as i-

view changes are able to prevent blocking situations, we avoid

expensive regular view changes, which is especially interesting

in the case of pervasive networks.

V. STUDY CASE

To illustrate our approach, please consider a distributed

computing environment where processes must share an object.

In a previous work [5], developed a purely decentralized

peer to peer middleware for grid computing called CONFIIT

(Computation Over Network with Finite number of Indepen-

dent and Irregular Tasks). CONFIIT was designed to address

the problem of efficiently deploy scientific problems that can

be parallelized as independent tasks. Among such problems

there are classical combinatorial problems such as N-Queens,

Langford and car-sequencing.

Because tasks under CONFIIT are independent, almost no

synchronization is required among the processes. Indeed, the

single element that nodes need to synchronize is the list of

completed tasks, which is ensured by a token passing. This

computational model clearly impacts on the fault-tolerance

aspects of CONFIIT, as processes that disconnect cause almost

no harm (the worst case being the regeneration of the token).

In the scenario that we propose, however, processes not

only share more complex objects but require data consistency

in order to respect a task-dependency graph. It is clear that

such kind of application will suffer if deployed in a pervasive

environment, as the disconnection of a process may block the

progress in a graph path. Indeed, we need to ensure non-

blocking data consistency in the shared objects even when

mobile devices disconnect temporarily.

Another interesting scenario could be represented by a

mobile application that undergo a preventive deployment. In

this scenario, an application running on a machine with a

low battery level may decide to migrate to other devices in

a transparent way. Here, devices must keep consistency on

a shared distributed object even if new events (data) arrive

from different sources during the migration. Devices that enter

sleep mode for a few seconds (until being plugged to the AC

adapter) may disrupt the migration process if no attention is

made.



A. Ensuring consistency

One of the best known operations to ensure data consis-

tency in a distributed environment is the Atomic Broadcast

operation. The Atomic Broadcast (sometimes called Total

Order broadcast [17]) is a group communication primitive

that ensures that processes in a distributed system deliver

messages to the application respecting the same order. This

global delivery order is essential when implementing services

that require coherence between processes such as distributed

databases or collaborative edition. This problem can be defined

by four properties (Validity, Agreement, Integrity and Total

Order) [18]. Validity and Integrity are basic properties, while

Agreement and Total Order definitions are presented below:

Agreement - If a correct process delivers a message m,

then all correct processes in Π eventually deliver m.

Total Order - If correct processes p and q both deliver

messages m and m’, then p delivers m before m’ if and only

if q delivers m before m’.

Several techniques can be used to ensure these properties

[18], such as Fixed [19] or Moving Sequencer [20], Privilege

Based [21], Communication History [22] and Destination

Agreement [10]. Hybrid approaches also exist, such as FSR

[23] that is based on the fixed-sequencer strategy but uses a

token ring to ensure fairness among the nodes. Other recent

works on Atomic Broadcast try to relax some constraints

in order to improve performance. Indeed, [24], [25], [26]

assume that the network often provides spontaneous total

order, requiring special procedures only when this assumption

does not hold.

B. Implementing Atomic Broadcast

With a few exceptions, most Atomic Broadcast algorithms

rely on local area networks where disconnections are rare and

communication times can be easily bounded. Unfortunately,

frequent disconnections may force an Atomic Broadcast al-

gorithm based on Consensus [10] to execute several rounds

before a majority of processes agreed on a message order. In

such a scenario, message delivery will be blocked until the

gathering of a stable quorum.

To better handle temporary disconnections, we focus on

the moving sequencer strategy [20], [27]. which presents

the performance of a sequencer-based implementation while

preventing a single point of failure by rotating the role of

sequencer among the nodes. As the moving sequencer strategy

does not rely on consensus, it can perform faster in a pervasive

environment than consensus-based techniques.

The moving sequencer strategy can be easily implemented

using a token-passing algorithm (see Fig. 2). Due to the lack

of space we will not detail the algorithm, but the principle is

as follows: when a process q wants to broadcast a message m,

it sends m to all other processes. Upon receiving m, processes

store it into a receive queue. When the current token holder p

has a message in its receive queue, it uses the sequence number

to timestamp the first message in the queue and broadcasts

that sequence number together with the token. In a non-

Uniform algorithm, a process can then deliver m when it has

(1) received m, (2) received m’s sequence number, and (3)

delivered every message with a smaller sequence number.

p

q

r

s

m

seq(m),tokenq deliver(m)

deliver(m)

deliver(m)

deliver(m)

token

Fig. 2. The token-passing mechanism with Uniform delivery

With respect to fault tolerance, a token-passing mechanism

must be aware of two different situations: (i) the crash of a

process and (ii) the loss of a token. In the first case, the token

passing is blocked because the ”next sequencer” has failed and

cannot receive the token; in the second case, the current token

holder crashes before the next sequencer is able to accept the

token (for example, the next sequencer lacks some previous

messages). It is clear that solving these two situations requires

different measures. In the first case, it is enough to redefine

the virtual ring, removing the crashed process. In the second

situation, processes must not only agree a new virtual ring but

also choose a process to restart the token passing.

Therefore, to adapt this token passing mechanism to a

volatile pervasive system, we suggest integrating the token

passing mechanism with the membership group description

presented in the previous section. Using that two-fold structure

(and the V-BROADCAST operation), a process that blocks the

token passing is moved to the ”suspected” subgroup. Then

we can restart the token passing only among processes in the

”active” subgroup. As only active processes participate in the

message sequencing, we minimize the probability of blocking

the token (Fig. 3). As ”suspected” processes still belong to the

group view, they can receive all messages sent to the group

and even submit new messages (a token holder can assign

sequence numbers to messages not of its own).

p

q

r

s

t

view
n

 = i-viewn
i

{[p,q,r,s,t],[]}

i-viewn
i+2

{[q,r,s],[p,t]}

ack(m1,seq1,r)

ack(m2,seq2,s)

ack(m3,seq3,q)

ack(m4,seq4,r)

request(m1-m4)

request(seq1-seq4)network

partition

p and t 

suspected

Fig. 3. I-views and suspected members

When a process is moved to the ”suspected” set, we cannot

make any assumption about its state (we do not know if a

suspected process has really failed or not). For this reason, it is



important that ”active” processes ensure total order properties.

This allows correct processes in the ”suspected” set to be

kept updated and request lost messages, while waiting to be

reintegrated to the ”active members” in a future view change.

Consequently, this membership mechanism can cope with

short disconnections commonly found in wireless networks:

as the token is passed only among stable nodes, we drastically

reduce the events that trigger a new Regular View.

However, suspected processes cannot be reintegrated in all

cases. Processes in the suspected subgroup that reconnects

after a long absence may be unable to acquire missing mes-

sages (which could have been delivered and removed from the

buffers after ensuring message stability). In this case, theses

processes must ”suicide” and reconnect with a different ID.

When a new process joins the group, it triggers a Regular

View change, becoming from that moment coherent with the

other processes in the view.

VI. CONCLUSIONS

In this paper, we addressed the problem of ensuring strong

data consistency for share objects in the context of pervasive

systems. Traditional algorithms are not fit for these environ-

ments as they cannot handle the nodes volatility efficiently.

We propose a group membership solution that can operate in

environments subjected to frequent disconnections. In order

to ensure a smooth operation in spite of the volatility of the

resources, we employ a two-level membership organization to

minimize the problems generated by wrong failure suspicions,

thus reducing the need for view changes and expensive Con-

sensus. Our efforts now concentrate on two subjects: conduct-

ing experiments in a pervasive P2P environment, evaluating

the impact of both nodes heterogeneity and volatility on

the algorithms behavior and developing deployment/migration

mechanisms for mobile devices using the proposed algorithms.

REFERENCES

[1] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, pp. 263–277, 2007.

[2] T. Moran and P. Dourish, “Introduction to this special issue on context-
aware computing,” Human-Computer Interaction, vol. 16, no. 2-3, pp.
87–95, 2001.

[3] R. Spanek, P. Kovar, and P. Pirkl, “The bluegame project: Ad-hoc
multilayer mobile game with social dimension,” in 3rd International

Conference on emerging Networking EXperiments and Technologies

(CoNEXT’07). ACM Press, December 2002.
[4] H. Skaf-Molli, C.-L. Ignat, C. Rahhal, and P. Molli, “New work modes

for collaborative writing,” in International Conference on Enterprise In-

formation Systems and Web Technologies (EISWT-07), Orlando, Florida,
USA, Jul. 2007.

[5] O. Flauzac, M. Krajecki, and J. Fugère, “CONFIIT: a middleware for
peer to peer computing,” in The 2003 International Conference on

Computational Science and its Applications (ICCSA 2003), ser. Lecture
Notes in Computer Science, M. Gravilova, C. Tan, and P. L’Ecuyer,
Eds. Montréal, Québec: Springer-Verlag, Jun. 2003, vol. 2669 (III),
pp. 69–78.

[6] Y. Vandewoude and Y. Berbers, “Component state mapping for runtime
evolution,” in Proceedings of the 2005 International Conference on

Programming Languages and Compilers, Las Vegas, Nevada, USA, June
2005, pp. 230–236.

[7] P. Rigole, T. Clerckx, Y. Berbers, and K. Coninx, “Task-driven auto-
mated component deployment for ambient intelligence environments,”
Pervasive and Mobile Computing, vol. 3, no. 3, pp. 276–299, June 2007.

[8] Y. Vanrompay, Y. Berbers, and P. Rigole, “Learning-based coordination
of distributed component deployment,” in 1st International DisCoTec

Workshop on Context-aware Adaptation Mechanisms for Pervasive and

Ubiquitous Services, ser. Electronic Communications of the EASST.
EASST, June 2008, to appear.

[9] K. P. Birman, Reliable Distributed Systems: Technologies, Web Services

and Applications. Springer, March 2005.
[10] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable

distributed systems,” Journal of the ACM, vol. 43, no. 2, pp. 225–267,
1996.

[11] G. Chockler, I. Keidar, and R. Vitenberg, “Group communication spec-
ifications: a comprehensive study,” ACM Computing Surveys, vol. 33,
no. 4, pp. 427–469, 2001.

[12] L. Lamport, “The part-time parliament,” ACM Transactions in Computer

Systems, vol. 16, no. 2, pp. 133–169, 1998.
[13] A. Schiper, “Dynamic group communication,” Distributed Computing,

vol. 18, no. 5, pp. 359–374, 2006.
[14] D. Bottazzi, A. Corradi, and R. Montanari, “Agape: a location-aware

group membership middleware for pervasive computing environments,”
in ISCC, 2003, pp. 1185–1192.

[15] B. Charron-Bost, X. Défago, and A. Schiper, “Broadcasting messages in
fault-tolerant distributed systems: the benefit of handling input-triggered
and output-triggered suspicions differently,” in Proceedings of the 21th

International Symposium on Reliable Distributed Systems, 2002.
[16] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost, “On

the impossibility of group membership,” in Proc. of the 15th ACM

Symposium on Principles of Distributed Computing, May 1996, pp. 322–
330.

[17] V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and related

problems, 2nd ed. ACM Press Books, Addison-Wesley, 1993, ch. 5,
pp. 97–146.

[18] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Computing Surveys,
vol. 36, no. 4, pp. 372–421, December 2004.

[19] K. Birman, A. Schiper, and P. Stephenson, “Lightweight causal and
atomic group multicast,” ACM Transactions on Computer Systems,
vol. 9, no. 3, pp. 272–314, 1991.

[20] J.-M. Chang and N. Maxemchuk, “Reliable broadcast protocols,” ACM

Trans. on Computer Systems, vol. 2, no. 3, pp. 251–273, 1984.
[21] R. Ekwall, A. Schiper, and P. Urbán, “Token-based atomic broadcast

using unreliable failure detectors,” in Proceedings of the 23rd Symposium

on Reliable Distributed Systems (SRDS 2004), Florianópolis, Brazil, Oct.
2004.

[22] D. Dolev, S. Kramer, and D. Malki, “Early delivery totally or-
dered broadcast in asynchronous environments,” in Proceedings of the

23nd Annual International Symposium on Fault-Tolerant Computing,
Toulouse, France, June 1993, pp. 544–553.

[23] R. Guerraoui, R. Levy, B. Pochon, and V. Quéma, “High throughput
uniform total order broadcast protocol for cluster environments,” in
Proceedings of the IEEE International Conference on Dependable

Systems and Networks (DSN), 2006.
[24] P. Vicente and L. Rodrigues, “An indulgent uniform total order algorithm

with optimistic delivery,” in Proceedings of the 21st IEEE International

Symposium on Reliable Distributed Systems (SRDS’02). IEEE Com-
puter Society Press, 2002, pp. 92–101.

[25] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann, “Using
optimistic atomic broadcast in transaction processing systems,” IEEE

Transactions in Knowledge Data Engineering, vol. 4, no. 15, pp. 1018–
1032, 2003.

[26] A. Souza, J. Pereira, F. Moura, and R. Oliveira, “Optimistic total order
in wide area networks,” in Proceedings of the 21st IEEE International

Symposium on Reliable Distributed Systems (SRDS’02). IEEE Com-
puter Society Press, 2002, pp. 190–199.

[27] B. Whetten, S. Kaplan, and T. Montgomery, A High Performance Totally

Ordered Multicast Protocol. Springer-Verlag, Berlin Heidelberg New
York, 1995.


