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Abstract. OpenMP has gained wide popularity as an API for parallel
programming on shared memory and distributed shared memory plat-
forms. It is also a promising candidate to exploit the emerging multi-
core, multi-threaded processors. In addition, there is an increasing trend
to port OpenMP to more specific architectures like General Purpose
Graphic Processor Units (GPGPUs). However, these ccNUMA (cache
coherent Non-Uniform Memory Access) architectures may present sev-
eral hierarchical memory levels, which represent a serious performance
issue for OpenMP applications. In this work, we present the initial re-
sults from our effort to quantify and model the impact of memory access
heterogeneity on the performance of the applications. Using a simplified
performance model, we show how to identify a "performance signature"
for a given platform, which allows us to predict the performance of sam-
ple applications.
Keywords. Network Contention, MPI, Collective Communications, Per-
formance Modeling

1 Introduction

OpenMP [1] has gained wide popularity as an API for parallel programming on
shared memory and distributed shared memory platforms. Writing OpenMP is
relatively easy and users may achieve reasonable performance gains by simply
modifying a few portions of their codes. With the advent of multi-core proces-
sors, it becomes one of the favorite tools to develop efficient parallel applications.
However, the introduction of multi-core processors poses considerable challenges
to the development of efficient OpenMP applications since these processors differ
from the simple symmetric view of computational resources assumed in OpenMP.
Indeed, these ccNUMA (cache coherent Non-Uniform Memory Access) architec-
tures may present several hierarchical memory levels, which represent a serious
performance issue for OpenMP applications. It is also impossible to design a
single ccNUMA solution multi-core technologies also differ from each other in
terms of the nature of hardware resource sharing, inter-core connections and
supported logical threads per core.



For instance, it is very difficult to solve efficiently a given problem by using
a single algorithm or to write portable programs developing good performances
on any computational support.

The adaptive approach represents an interesting solution to these challenges.
Depending on the problem and platform parameters, the program will adapt
to achieve the best performances. To ensure that these techniques guarantee
good performances, accurate performance models are essential to represent the
problem in the target platform.

In this work, we analyze how to define a performance model sufficiently
accurate to help on the choice of a given algorithm. This is the first step in our
plan to compose a self-tuning framework that automatically determines the most
appropriate algorithm in terms of a set of parameters (problem size, number of
available processors/cores, processor characteristics, etc.).

The remainder of the paper is organized as follows. We begin in section
2 by describing the methodology of our adaptive framework and by detailing
its components. Section 3 is devoted to practical experiments performed on a
multi-core architecture, proving the interest of this work. Hence, we evaluate a
case study where we apply our approach to the matrix multiplication problem.
Section 4 compares our approach with some related works. Finally, section 5
concludes the paper and discusses some perspectives to extend this work.

2 Methodology

In this section, we describe our framework for integrating performance models
with adaptive approaches. It is based in a framework for heterogeneous systems
we previously presented in [2]. An overview of its architecture is sketched in
Fig. 1. The processing is separated into three phases: (i) platform discovery,
(ii) performance modeling and (iii) adaptive execution. While initially designed
for heterogeneous systems, this framework can be easily adapted to OpenMP
modeling by modifying the platform discovery phase.

2.1 Platform discovery

During this phase, we aim to discover automatically the performances of the
target execution platform by collecting available information, such as comput-
ing powers of processors, memory access times and OpenMP induced overhead.
These parameters are to be used as input for the phase of adaptive execution.

Indeed, the main concern in a multiprocessor/multi-core architecture is the
eventual heterogeneity on the memory access times. Hence, the remain of this
paper focus on the discovery of the performance parameters from a platform and
how to apply this "signature" to accurate model OpenMP applications.

The processing performance can be obtained with the execution of bench-
marks. In our work, we have chosen a micro-benchmark to determine the read/write
performances of the OpenMP threads on the target parallel platform. Indeed,
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read and write are basic "communication" operations that allow a fine grain tun-
ing coherent with the OpenMP model. These performances will be used for two
main purposes: (i) to determine the relative performance of each core, and (ii) to
estimate the time of processing. Because the micro-benchmark allows us to iden-
tify non-uniform memory access behavior among threads that run on different
processors/cores, it may helps on the subsequent adaptive algorithm selection
steps. Read/write costs however are not the only factors that impact on the ap-
plication performance, so in the future we intend to expand our micro-benchmark
to include also OpenMP related overheads such as fork and synchronization costs
[3].

2.2 Performance modeling

In this second phase, we have to model each available algorithm according to a
performance model. The performance modeling of an algorithm depends on two
main aspects: the computational cost and the communication cost. In the specific
case of shared-memory applications, communications are performed through di-
rect read/write operations in a common memory address shared by two or more
threads. In most cases, it is possible to describe an algorithm as the composition
of these two aspects, which by instance can be modeled separately according
to specific techniques. An analytical model based on the number of operations
and their cost in CPU cycles can be used to determine the computational cost.
Similarly, the memory access times can be modeled using different methods ac-
cording to its behavior - linear [4] or non-linear [5] - and can be used to predict
the communication costs.

This phase ends by determining a platform "signature" to be associated with
the platform performances given by the first phase for calculating the perfor-
mances of the candidate algorithms during the third phase.

2.3 Adaptive execution

As mentioned in the previous section, this phase is based on the results deter-
mined in the two first phases. Indeed, assuming that a set A = {A1, A2, . . ., Aq}
of q algorithms is available, determining the best algorithm on a given platform
is based on the matrix of performances constructed by the performance analysis
of each candidate algorithm.

Formally, assuming a cost model, we denote by P (Ai, Cj) the performance
of algorithm Ai on cluster Cj . Let us precise that Ai is qualified to be the best
on cluster Cj when:

P (Ai, Cj) = min{P (Ak, Cj), 1 ≤ k ≤ q} (1)

3 Validation

3.1 Performance Parameters Acquisition

Because our work on multi-core performance prediction is in its initial phase, we
consider in a first instance only the memory access costs in order to model the



performance of OpenMP applications. These assumptions have the advantage
to allow a rapid validation of the performance models in the context of the
entire framework, even if they must be adapted when modeling a more complex
application.

The memory access benchmark consists on sequences of data attribution
(write) and access (read) between two threads. We measure the read/write
times with different data sizes, and processor affinity is used to compare the
relative behavior of data access among different cores. In this experiment, we
used a Bull Novascale 3045 machine with 4 Intel Itanium II (Montecito) dual-
core processors - a total of 8 cores, 16GB, 1.6 GHz from the ROMEO2 com-
puting center1. The machine runs Bull Advanced Server Linux (kernel 2.6.18-
B64k.2.17) with Intel ICC compiler 10.1.015. Threads where allocated (using
GOMP_CPU_AFFINITY) to four cores according to the thread-processor map
{{0,1},{2,3}}. Figures 2 and 3 show the different performance measures for both
read and write operations, with the average operation cost among each pair of
cores. While the read shows no significant difference if executed among intra-
processor or inter-processor threads, the write operation shows a higher cost
when threads are located in different processors. For the matter of simplicity,
all along this paper we will use the inter-processor cost to represent the write
operation.

From these measures we observe that both memory access operations in
OpenMP behaves almost linearly. This behavior can be easily represented using
a linear communication model such as Hockney [4]. In Hockney’s model, the
communication cost is represented by

t = α+ β ×m (2)

where α is the communication latency, β is the transfer time for a byte andm
is the message size. We can easily fit this communication model to our OpenMP
data access environment, using α = 0 and factors βr = 1.9 and βw = 6.9 for
the read and write operations, respectively. This factors may vary according to
the platform, and will be used in the next section as the platform signature to
predict the performance of basic parallel operations.

3.2 Study case: matrix-vector product

We provide some early results of evaluating our performance model for OpenMP
in this section. We use the classic matrix-vector multiplication (MxV - Algorithm
1) as a test case. The MxV problem is was widely used in previous works [6,
7] due to their importance in scientific computation and its implementation is
extensively discussed By Chapman et al [8].

This algorithm is composed by nested for loops (parallelized by OpenMP)
and simple operations (read, multiplication, sum, write). Considering that sum
and multiplication are cheap operations compared to memory access (usually
only a few cycles) we can derive a simple model:

1 Centre de Calcul Régional Champagne-Ardenne ROMEO - http://www.romeo2.fr/
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#pragma omp parallel for private (i, j)
for ( i = 0 ; i < N ; i++ )

for ( j = 0; j < M ; j++ )
c[i] = c[i] + a[i]*b[i][j];

Algorithm 1: Matrix-Vector multiplication in OpenMP.

t = (N ×M)× (2× βr ×m+ βw ×m) (3)

We considered only 2 read operations because only a[i] and b[i][j] actually
require memory to be fetched; the increment on c[i] tends to be optimized by the
compiler. Also, this model considers the memory access time previously measures
between two cores. If we augment the number of cores, the elapsed time is
distributed accordingly. Hence, figure 4 shows the measured and predicted times
for the matrix-vector product on two or four cores for a square matrix with size
N2.
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Fig. 4. OpenMP matrix-vector product estimation.

Although this model fits correctly the measured values, it still needs to be
improved. Indeed, in a second experience we tried to apply the same principles
to the matrix-matrix product (Algorithm 2), but the predicted times were far
inferior than the measured ones, even if the general behavior was correct (see
Figure 5). The analysis of the experiment revealed that the main problem was



the algorithm itself, that was not optimized for the memory access. Indeed, the
Algorithm 2 mixes row and column scans, which induces several cache misses
and clearly impacts the overall performance. Due to these facts, we are now
working on the estimation of the cost of cache miss in order to improve our
models, as we believe that not all parallel problems can be easily optimized as
the Matrix-Matrix product.

#pragma omp parallel for private (i, j, k)
for ( i = 0 ; i < N ; i++ )

for ( k = 0; k < K ; k++ )
for ( j = 0; j < M ; j++ )

c[i][j] = c[i][j] + a[i][k]*b[k][j];

Algorithm 2: Matrix-Matrix product "naïve" algorithm in OpenMP.
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Fig. 5. OpenMP matrix-matrix product estimation.

4 Related Work

Over recent years, several research works have addressed the use of adaptive
techniques to minimize the execution time and to ensure portability for both



sequential [9–11] and parallel algorithms [12–16]. In Yu et al. [17], a framework
for reduction parallelization is presented, consisting on three components: (i) an
offline process to characterize parallel reduction algorithms, (ii) an online algo-
rithm selection module and (iii) a small library of parallel reduction algorithms.
In Thomas et al. [18], the authors developed a general framework for adaptive
algorithm selection for use in the Standard Template Adaptive Parallel Library
(STAPL). Their framework uses machine-learning techniques to analyze data
collected by STAPL installation benchmarks and to select different algorithms
for sorting and matrix multiplication at run-time.

Another methodology is described by Cuenca et al. [19], which presents the
architecture of an automatically tuned linear algebra library. During the instal-
lation process in a system, the linear algebra routines will be tuned to the system
conditions. At run-time, the parameters that define the system characteristics
are adjusted to the actual load of the platform. The design methodology is an-
alyzed with a block LU factorization.

To our knowledge, however, there are few works that deal with adaptation
issues in multi-core/multi-thread platforms, as the granularity of these process-
ing units lead to low-level analysis. One example is the work from Chandra et.
al. [20], who model the extra L2 cache misses due to inter-thread contention
on a chip multi-processor architecture using stack distance or circular sequence
profile. Their models are limited to co-scheduled threads from different sequen-
tial benchmarks, and are neither directly applicable to OpenMP threads nor
portable among the several multi-core platforms existing today.

As to the accuracy, the complexity of the factors involved in a so low-level
performance modeling tends to favorize profiling or micro-benchmarking based
models [21, 22] against models [23, 24, 20] that rely on extensive mathematical
equations. While the accuracy of models can be theoretically improved by con-
sidering more and more factors, the complexity and the cost of this evaluation
may become prohibitive.

The main difference between the above approaches and the work presented
in this paper is that we try to avoid low-level parameters that bound a model to
a given architecture; instead, we combine analytical models serving as the basis
of the automatic processing in our framework for making a quick decision while
obtaining relatively accurate results.

5 Conclusions and Future Work

Because of its simplicity and power of expression, OpenMP [1] has gained wide
popularity as an API for parallel programming on shared memory and dis-
tributed shared memory platforms. With the advent of multi-core processors,
it becomes one of the favorite tools to develop efficient parallel applications.
However, the introduction of multi-core processors poses considerable challenges
to the development of efficient OpenMP applications since these processors differ
from the simple symmetric view of computational resources assumed in OpenMP.



In this paper we study how to model the performance of OpenMP algorithms
in a multi-core platform. This is the first step in our plan to compose a self-tuning
framework that automatically determines the most appropriate algorithm in
terms of a set of parameters (problem size, number of available processors/cores,
processor characteristics, etc.). Preliminary results from our efforts to quantify
and model the impact of memory access heterogeneity on the performance of the
applications is shown, as well as some considerations on the impact of memory
access on the performance of different algorithms.

We now target on the quantification of "parasite" phenomena like memory
cache miss and compiler optimizations in order to improve the accuracy of our
predictions. Future works shall consider the comparison among different algo-
rithms in order to find the most appropriate for a given platform, and the port
of such models to GPGPUs, which suffer even more from the memory access
cost.
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