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OpenMP has gained wide popularity as an API for parallel programming on shared memory and distributed shared memory platforms. It is also a promising candidate to exploit the emerging multicore, multi-threaded processors. In addition, there is an increasing trend to port OpenMP to more specific architectures like General Purpose Graphic Processor Units (GPGPUs). However, these ccNUMA (cache coherent Non-Uniform Memory Access) architectures may present several hierarchical memory levels, which represent a serious performance issue for OpenMP applications. In this work, we present the initial results from our effort to quantify and model the impact of memory access heterogeneity on the performance of the applications. Using a simplified performance model, we show how to identify a "performance signature" for a given platform, which allows us to predict the performance of sample applications.

Introduction

OpenMP [START_REF]OpenMP: Simple, portable, scalable smp programming[END_REF] has gained wide popularity as an API for parallel programming on shared memory and distributed shared memory platforms. Writing OpenMP is relatively easy and users may achieve reasonable performance gains by simply modifying a few portions of their codes. With the advent of multi-core processors, it becomes one of the favorite tools to develop efficient parallel applications. However, the introduction of multi-core processors poses considerable challenges to the development of efficient OpenMP applications since these processors differ from the simple symmetric view of computational resources assumed in OpenMP. Indeed, these ccNUMA (cache coherent Non-Uniform Memory Access) architectures may present several hierarchical memory levels, which represent a serious performance issue for OpenMP applications. It is also impossible to design a single ccNUMA solution multi-core technologies also differ from each other in terms of the nature of hardware resource sharing, inter-core connections and supported logical threads per core.

For instance, it is very difficult to solve efficiently a given problem by using a single algorithm or to write portable programs developing good performances on any computational support.

The adaptive approach represents an interesting solution to these challenges. Depending on the problem and platform parameters, the program will adapt to achieve the best performances. To ensure that these techniques guarantee good performances, accurate performance models are essential to represent the problem in the target platform.

In this work, we analyze how to define a performance model sufficiently accurate to help on the choice of a given algorithm. This is the first step in our plan to compose a self-tuning framework that automatically determines the most appropriate algorithm in terms of a set of parameters (problem size, number of available processors/cores, processor characteristics, etc.).

The remainder of the paper is organized as follows. We begin in section 2 by describing the methodology of our adaptive framework and by detailing its components. Section 3 is devoted to practical experiments performed on a multi-core architecture, proving the interest of this work. Hence, we evaluate a case study where we apply our approach to the matrix multiplication problem. Section 4 compares our approach with some related works. Finally, section 5 concludes the paper and discusses some perspectives to extend this work.

Methodology

In this section, we describe our framework for integrating performance models with adaptive approaches. It is based in a framework for heterogeneous systems we previously presented in [START_REF] Nasri | Adaptive approaches for efficient parallel algorithms on cluster-based systems[END_REF]. An overview of its architecture is sketched in Fig. 1. The processing is separated into three phases: (i) platform discovery, (ii) performance modeling and (iii) adaptive execution. While initially designed for heterogeneous systems, this framework can be easily adapted to OpenMP modeling by modifying the platform discovery phase.

Platform discovery

During this phase, we aim to discover automatically the performances of the target execution platform by collecting available information, such as computing powers of processors, memory access times and OpenMP induced overhead. These parameters are to be used as input for the phase of adaptive execution.

Indeed, the main concern in a multiprocessor/multi-core architecture is the eventual heterogeneity on the memory access times. Hence, the remain of this paper focus on the discovery of the performance parameters from a platform and how to apply this "signature" to accurate model OpenMP applications.

The processing performance can be obtained with the execution of benchmarks. In our work, we have chosen a micro-benchmark to determine the read/write performances of the OpenMP threads on the target parallel platform. Indeed, read and write are basic "communication" operations that allow a fine grain tuning coherent with the OpenMP model. These performances will be used for two main purposes: (i) to determine the relative performance of each core, and (ii) to estimate the time of processing. Because the micro-benchmark allows us to identify non-uniform memory access behavior among threads that run on different processors/cores, it may helps on the subsequent adaptive algorithm selection steps. Read/write costs however are not the only factors that impact on the application performance, so in the future we intend to expand our micro-benchmark to include also OpenMP related overheads such as fork and synchronization costs [START_REF] Liao | Invited paper: A compile-time cost model for openmp[END_REF].

Platform

Performance modeling

In this second phase, we have to model each available algorithm according to a performance model. The performance modeling of an algorithm depends on two main aspects: the computational cost and the communication cost. In the specific case of shared-memory applications, communications are performed through direct read/write operations in a common memory address shared by two or more threads. In most cases, it is possible to describe an algorithm as the composition of these two aspects, which by instance can be modeled separately according to specific techniques. An analytical model based on the number of operations and their cost in CPU cycles can be used to determine the computational cost.

Similarly, the memory access times can be modeled using different methods according to its behavior -linear [START_REF] Hockney | The communication challenge for MPP: Intel Paragon and Meiko CS-2[END_REF] or non-linear [START_REF] Kielmann | Network performance-aware collective communication for clustered wide area systems[END_REF] -and can be used to predict the communication costs. This phase ends by determining a platform "signature" to be associated with the platform performances given by the first phase for calculating the performances of the candidate algorithms during the third phase.

Adaptive execution

As mentioned in the previous section, this phase is based on the results determined in the two first phases. Indeed, assuming that a set A = {A 1 , A 2 , . . ., A q } of q algorithms is available, determining the best algorithm on a given platform is based on the matrix of performances constructed by the performance analysis of each candidate algorithm.

Formally, assuming a cost model, we denote by P (A i , C j ) the performance of algorithm A i on cluster C j . Let us precise that A i is qualified to be the best on cluster C j when:

P (A i , C j ) = min{P (A k , C j ), 1 ≤ k ≤ q} (1)

Validation

Performance Parameters Acquisition

Because our work on multi-core performance prediction is in its initial phase, we consider in a first instance only the memory access costs in order to model the performance of OpenMP applications. These assumptions have the advantage to allow a rapid validation of the performance models in the context of the entire framework, even if they must be adapted when modeling a more complex application.

The memory access benchmark consists on sequences of data attribution (write) and access (read) between two threads. We measure the read/write times with different data sizes, and processor affinity is used to compare the relative behavior of data access among different cores. In this experiment, we used a Bull Novascale 3045 machine with 4 Intel Itanium II (Montecito) dualcore processors -a total of 8 cores, 16GB, 1.6 GHz from the ROMEO2 computing center 1 . The machine runs Bull Advanced Server Linux (kernel 2.6.18-B64k.2.17) with Intel ICC compiler 10.1.015. Threads where allocated (using GOMP_CPU_AFFINITY) to four cores according to the thread-processor map {{0,1},{2,3}}. Figures 2 and3 show the different performance measures for both read and write operations, with the average operation cost among each pair of cores. While the read shows no significant difference if executed among intraprocessor or inter-processor threads, the write operation shows a higher cost when threads are located in different processors. For the matter of simplicity, all along this paper we will use the inter-processor cost to represent the write operation.

From these measures we observe that both memory access operations in OpenMP behaves almost linearly. This behavior can be easily represented using a linear communication model such as Hockney [START_REF] Hockney | The communication challenge for MPP: Intel Paragon and Meiko CS-2[END_REF]. In Hockney's model, the communication cost is represented by

t = α + β × m ( 2 
)
where α is the communication latency, β is the transfer time for a byte and m is the message size. We can easily fit this communication model to our OpenMP data access environment, using α = 0 and factors β r = 1.9 and β w = 6.9 for the read and write operations, respectively. This factors may vary according to the platform, and will be used in the next section as the platform signature to predict the performance of basic parallel operations.

Study case: matrix-vector product

We provide some early results of evaluating our performance model for OpenMP in this section. We use the classic matrix-vector multiplication (MxV -Algorithm 1) as a test case. The MxV problem is was widely used in previous works [START_REF] Wolf | Combining loop transformations considering caches and scheduling[END_REF][START_REF] Yotov | A comparison of empirical and model-driven optimization[END_REF] due to their importance in scientific computation and its implementation is extensively discussed By Chapman et al [START_REF] Chapman | Using OpenMP -Portable Shared Memory Parallel Programming[END_REF].

This algorithm is composed by nested for loops (parallelized by OpenMP) and simple operations (read, multiplication, sum, write). Considering that sum and multiplication are cheap operations compared to memory access (usually only a few cycles) we can derive a simple model: #pragma omp parallel for private (i, j) for ( i = 0 ; i < N ; i++ ) for ( j = 0; j < M ; j++ )

c[i] = c[i] + a[i]*b[i][j];
Algorithm 1: Matrix-Vector multiplication in OpenMP.

t = (N × M ) × (2 × β r × m + β w × m) (3)
We considered only 2 read operations because only a[i] and b[i][j] actually require memory to be fetched; the increment on c[i] tends to be optimized by the compiler. Also, this model considers the memory access time previously measures between two cores. If we augment the number of cores, the elapsed time is distributed accordingly. Hence, figure 4 shows the measured and predicted times for the matrix-vector product on two or four cores for a square matrix with size N 2 . Although this model fits correctly the measured values, it still needs to be improved. Indeed, in a second experience we tried to apply the same principles to the matrix-matrix product (Algorithm 2), but the predicted times were far inferior than the measured ones, even if the general behavior was correct (see Figure 5). The analysis of the experiment revealed that the main problem was the algorithm itself, that was not optimized for the memory access. Indeed, the Algorithm 2 mixes row and column scans, which induces several cache misses and clearly impacts the overall performance. Due to these facts, we are now working on the estimation of the cost of cache miss in order to improve our models, as we believe that not all parallel problems can be easily optimized as the Matrix-Matrix product.

#pragma omp parallel for private (i, j, k)

for ( i = 0 ; i < N ; i++ ) for ( k = 0; k < K ; k++ ) for ( j = 0; j < M ; j++ )

c[i][j] = c[i][j] + a[i][k]*b[k][j];
Algorithm 2: Matrix-Matrix product "naïve" algorithm in OpenMP. 

Related Work

Over recent years, several research works have addressed the use of adaptive techniques to minimize the execution time and to ensure portability for both sequential [START_REF] Whaley | Automated empirical optimization of software and the ATLAS project[END_REF][START_REF] Bilmes | Optimizing matrix multiply using PHiPAC: a Portable, High-Performance, ANSI C coding methodology[END_REF][START_REF] Mccracken | Performance modeling for dynamic algorithm selection[END_REF] and parallel algorithms [START_REF] Frigo | The design and implementation of fftw3[END_REF][START_REF] Berman | Adaptive computing on the grid using AppLeS[END_REF][START_REF] Hartmann | Adaptive selection of communication methods to optimize collective mpi operations[END_REF][START_REF] Bhat | Adaptive communication algorithms for distributed heterogeneous systems[END_REF][START_REF] Hong | Adaptive matrix multiplication in heterogeneous environments[END_REF]. In Yu et al. [17], a framework for reduction parallelization is presented, consisting on three components: (i) an offline process to characterize parallel reduction algorithms, (ii) an online algorithm selection module and (iii) a small library of parallel reduction algorithms. In Thomas et al. [START_REF] Thomas | A framework for adaptive algorithm selection in STAPL[END_REF], the authors developed a general framework for adaptive algorithm selection for use in the Standard Template Adaptive Parallel Library (STAPL). Their framework uses machine-learning techniques to analyze data collected by STAPL installation benchmarks and to select different algorithms for sorting and matrix multiplication at run-time.

Another methodology is described by Cuenca et al. [START_REF] Cuenca | Automatic optimisation of parallel linear algebra routines in systems with variable load[END_REF], which presents the architecture of an automatically tuned linear algebra library. During the installation process in a system, the linear algebra routines will be tuned to the system conditions. At run-time, the parameters that define the system characteristics are adjusted to the actual load of the platform. The design methodology is analyzed with a block LU factorization.

To our knowledge, however, there are few works that deal with adaptation issues in multi-core/multi-thread platforms, as the granularity of these processing units lead to low-level analysis. One example is the work from Chandra et. al. [START_REF] Chandra | Predicting inter-thread cache contention on a chip multi-processor architecture[END_REF], who model the extra L2 cache misses due to inter-thread contention on a chip multi-processor architecture using stack distance or circular sequence profile. Their models are limited to co-scheduled threads from different sequential benchmarks, and are neither directly applicable to OpenMP threads nor portable among the several multi-core platforms existing today.

As to the accuracy, the complexity of the factors involved in a so low-level performance modeling tends to favorize profiling or micro-benchmarking based models [START_REF] Saavedra | Analysis of benchmark characteristics and benchmark performance prediction[END_REF][START_REF] Snavely | Modeling application performance by convolving machine signatures with application profiles[END_REF] against models [START_REF] Jin | Performance prediction for random write reductions: a case study in modeling shared memory programs[END_REF][START_REF] Adve | Parallel program performance prediction using deterministic task graph analysis[END_REF][START_REF] Chandra | Predicting inter-thread cache contention on a chip multi-processor architecture[END_REF] that rely on extensive mathematical equations. While the accuracy of models can be theoretically improved by considering more and more factors, the complexity and the cost of this evaluation may become prohibitive.

The main difference between the above approaches and the work presented in this paper is that we try to avoid low-level parameters that bound a model to a given architecture; instead, we combine analytical models serving as the basis of the automatic processing in our framework for making a quick decision while obtaining relatively accurate results.

Conclusions and Future Work

Because of its simplicity and power of expression, OpenMP [START_REF]OpenMP: Simple, portable, scalable smp programming[END_REF] has gained wide popularity as an API for parallel programming on shared memory and distributed shared memory platforms. With the advent of multi-core processors, it becomes one of the favorite tools to develop efficient parallel applications. However, the introduction of multi-core processors poses considerable challenges to the development of efficient OpenMP applications since these processors differ from the simple symmetric view of computational resources assumed in OpenMP.

In this paper we study how to model the performance of OpenMP algorithms in a multi-core platform. This is the first step in our plan to compose a self-tuning framework that automatically determines the most appropriate algorithm in terms of a set of parameters (problem size, number of available processors/cores, processor characteristics, etc.). Preliminary results from our efforts to quantify and model the impact of memory access heterogeneity on the performance of the applications is shown, as well as some considerations on the impact of memory access on the performance of different algorithms.

We now target on the quantification of "parasite" phenomena like memory cache miss and compiler optimizations in order to improve the accuracy of our predictions. Future works shall consider the comparison among different algorithms in order to find the most appropriate for a given platform, and the port of such models to GPGPUs, which suffer even more from the memory access cost.
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