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Abstract

We give an algorithm with complexity O(f (R)k2 k*n) for the integer
multiflow problem on instances (G, H,r,c) with G an acyclic planar di-
graph and r + ¢ Eulerian. Here, f is a polynomial function, n = |V (G)|,
k = |E(H)| and R is the maximum request maxycg(g) 7(h). When k is
fixed, this gives a polynomial algorithm for the arc-disjoint paths problem
under the same hypothesis.

1 Introduction

Given a demand graph G and a supply graph H with V(H) C V(G), capacities
¢: E(G) — N and requests r : E(H) — N, the integer multicommodity flow
problem consists of deciding if there is a multiset C of cycles in G+ H satisfying
the following three conditions:

- foreach C €C, |CNE(H) =1,
- for each e € E(G), at most ¢(e) cycles of C contain e,
- for each h € E(H), exactly r(h) cycles of C contain h.

This definition holds both for directed and undirected graphs. When the ca-
pacity function ¢ is equal to 1 on every edge (or arc), the problem is called as
the edge-disjoint paths problem, or the arc-disjoint paths problem in the directed
case. We call the arcs of H commodities. We say that r + ¢ is Eulerian if:

- Zeeég(v) C(e) + Zeeé;} T'(e) - 26665 (v) C(e) - 266(5;1(11) T'(e) = ( for each
vertex v, if G and H are directed,

= Deesa(v) €(€) + Xees, vy T(€) s even for each vertex v, if G and H are
undirected.

LGrenoble Universities, France, and McGill University, Montréal, Canada,
naves@math.mcgill.ca
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Figure 1: Example of a planar acyclic instance with r + ¢ Eulerian, where there
is a half-integral solution, but no integral solution.

The undirected edge-disjoint paths problem is well-known to be NP-hard
even with strong restrictions on the instances, like imposing that G is planar
(Kramer and van Leeuwen [f]), or that |E(H)| = 2 (Even, Itai and Shamir [fl]).
In [E], A. Seb6 and the author gave a survey of the integer multiflow prob-
lem with some natural restrictions. It appeared that some combinations of
additional constraints define problems that are still open. Among them, the
complexity of the integer multiflow problem with G planar, » + ¢ Eulerian and
|E(H)| bounded is unknown, in both the directed and undirected cases. In this
paper, we address the directed acyclic case.

When G is an acyclic digraph and | E(H )| is bounded, the problem is still NP-
hard when r + ¢ is Eulerian (Vygen [E]), or when G is planar [E] When G+ H
is planar, the polynomiality of the integer multiflow problem follows from the
theorem of Lucchesi-Younger [E] on directed cuts packing. When G is a planar
acyclic digraph, r+ ¢ is Eulerian but |E(H)| is arbitrary, the problem is NP-hard
(Marx [f]). An example of an instance where there is a half-integral solution
but no integral solution is given in Figure []. In contrast, if 7(E(H)) is bounded,
it is polynomially solvable (Fortune, Hopcroft and Wyllie [E]), even without
the planarity assumption. The following theorem states a pseudo-polynomiality
result when |E(H)| is bounded but not r(E(H)).

Theorem 1.1. The arc-disjoint paths problem when G is a planar acyclic di-
graph and G + H is Eulerian, is decidable in time O(f(R)* k3n) where f is a
polynomial, n = |V(G)|, k = |[E(H)| and R = maxpepg)r(h).

This result is partly inspired by Schrijver’s work [E], [E] on vertex-disjoint
paths problems in graphs embedded on surfaces. Vertex-disjoints paths on a
surface can be represented as non-intersecting curves on the same surface. Schri-
jver’s main idea is to guess the homotopies of those curves, and then solve the
vertex-disjoint paths problem with these additional topologic constraints. As
we are working with arc-disjoint paths, these can intersect in vertices, and the



homotopic routing method does not work in our case. Nevertheless, we show
that there is a canonical way for paths to relate to one another, and acyclicity
restricts the number of guesses one has to provide in order to have a correct one
among them.

Theorem |1 can also be compared to a theorem of Ibaraki and Nagamochi @,
stating the polynomiality of the integer multiflow problem when G is a planar
acyclic digraph, G + H is Eulerian, all the sources of G and the tails of demand
arcs are on the outer boundary of G. Their algorithm obeys a fully polyno-
mial time bound and does not fix the number of demand arcs, at the price of a
stronger assumption on G.

2 Outline of the proof

We now sketch the proof of Theorem E, before giving a more formal proof.
Let (G, H,r,c) be an Eulerian instance with G planar acyclic. Our algorithm
first guesses, for any pair of paths in the solution, what their behaviour is at
their common vertices. Suppose that P and @) intersect at vertex v. Because
we are dealing with planar graphs, we can describe the behaviour of P in the
following way: either P crosses @), or P turns to the left, or P turns to the right
of Q. Considering every vertex and every pair of paths, this gives a behaviour
pattern. We show that the behaviour pattern uniquely determines the solution
to the arc-disjoint paths problem. In order to prove that, note that because
G+ H is Eulerian and G is acyclic, every arc is saturated by a solution (because
the residual capacities define an Eulerian acyclic digraph, that is a graph with
no arc). The following lemma is the key to the uniqueness:

Lemma 2.1. Let v be a vertex of G with n incoming arcs and n outgoing arcs,
and P a set of n arc-disjoint paths containing v. Then the outgoing arc of each
path is uniquely determined by the incoming arcs of each path going through v
and the relative behaviours of paths at v.
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Figure 2: An example of routing problem in a vertex.



Before proving the lemma, we explain what happens on the example of
Figure f]. Suppose the path P (whose entering arc is indicated) must go to the
left of the paths using arcs L, to the right of the one coming from R, and cross
the paths from C. It cannot leave by arcs 1, 2 and 3, without violating the
condition on paths from L arcs. It cannot leave by arc 6 because of path R. If
it leaves by arc 4, then the two paths L and the two paths C must leave by arcs
1, 2 and 3. Hence P can only leave by arc 5.

Proof. Let P be a path entering v. Let C, L and R be respectively the sets
of paths crossing P, going to the left of P and to the right of P at v. Let
ap, a1, -..,02;—1 be the arcs incident to v, occurring in that order around wv,
with ag being the incoming arc of P.

Let 7 be such that P leaves v by a;. The paths in L must have their arcs
incident to v in Iy 4+ {a1,...,a;—1} by definition of left. Similarly, the paths in
R use arcs in Iy = {a;41,...,a2p—1}. The paths in C have one arc in I; and
one in Ip. Thus i = 2|L| 4 |C| 4 1 is the unique possible candidate.

By repeating the argument for each path, the solution is unique.

Note that to be feasible, for each path we must have that a; is a leaving arc
that is between the last incoming arc of a path in L and the first incoming arc
of a path in R. O

To get the uniqueness for the whole graph, it is then sufficient to consider
the vertices in an acyclic ordering, and route them consecutively (see the end of
Section { for the detailed algorithm). It proves that we only need to know the
relative behaviour of the paths. Guessing naively the behaviour pattern would
lead to an exponential algorithm. The main part of the proof is then to show
how we can drastically reduce the quantity of information needed to guess the
behaviours of paths. We prove the following lemma:

Lemma 2.2. There is a function F' : N x N — N such that for every network
(G, H,r,c) with G planar acyclic and G+ H Eulerian, it is sufficient to consider
only O(F(R, k)) behaviour patterns, where R = maxpepmyr(h), k = |[E(H)|.

Here, the important fact is that the number of routing schemes does not
depend on G. We will also show that these patterns can be enumerated. The
rest of the paper is dedicated to the proof of this lemma.

3 Notations and terminology

Recall that G is a planar acyclic supply digraph, H is a demand graph, and
G + H is Eulerian. We assume that an embedding of G on the sphere is given.
The capacity of every arc is 1. This can be achieved by replicating each arc
in as many copies as its capacity. Without loss of generality, the tail of each
demand arc is a sink and its head is a source of GG; for a demand arc vu, add
two new terminals S, and t,,, 7(vu) supply arcs sy,u and vty,, and a demand
arc tyy Sy with request r(vu). So H can be supposed to be a matching.



A path P is a sequence of distinct arcs such that the head of an arc is the
tail of the following arc. The origin of the path is the tail of the first arc, and
the destination is the head of the last arc. Since we work with acyclic digraphs,
our paths are always simple. We denote F(P) the arcs of P, and V(P) the
vertices incident to E(P). The origin and the destination of a path are its
endpoints, all the other vertices of V(P) are said to be internal If P is a path
with destination u, and @) is a path arc-disjoint form P with origin u, we denote
PQ@ the concatenation of the two paths, that is the path R with the same origin
as P, the same destination as Q, and E(R) = E(P) U E(Q). P! is the path
obtained by reversing each arc of P (this notation is abusive, as P~ is not a
path in G but in a graph obtained from G by reversing some arcs, but we will
use this notation only for defining undirected cycle of G). If u and v are in
V(P), we denote P,, the subpath of P with origin v and destination v, P, , the
subpath with the same origin as P and destination u, and P, T the subpath with
origin v and the same destination as P. A path with origin s and destination ¢
is called an (s, t)-path.

We introduce basic tools to work on the topology of paths in the plane. Let
é1,...,en be any family indexed by the interval [1;n]. Elements (e;, e;) are
said to be consecutive if j =i+ 1, or i = n and j = 1, thus defining a cyclic
order. Let a, b and ¢ be three elements in this family, b is between a and c¢ if
b appears in the sequence of consecutive elements a = ui,us9,...,ur = ¢, and
strictly between if b ¢ {a,c}. If b is strictly between a and ¢, b is not between
c and a. An interval of a cyclic order is either the empty set, or the set of
elements between a given pair of elements which are then called the extremities
of the interval. Note that any pair defines two distinct intervals, depending on
their order. The complement of an interval is an interval. We say that b is
before ¢ in the interval of extremities (a,d) if b and ¢ are between a and d and
b is between a and c.

In a planar digraph, the order of appearance of the arcs incident to a vertex
v induces a cyclic order; y is between x and z if x, y and z appears in that order
around v in the positive (anticlockwise) orientation. Two consecutive arcs are
adjacent to a common face. This order induces two cycle orders on the incoming
and on the outgoing arcs of v. Hence we have three orders, for §(v), §*(v) and
0~ (v) respectively. Any set of arc-disjoint paths sharing the same endpoints
will be considered with the cyclic order defined by their first arcs leaving their
common source. All the indices in the following will be chosen with respect to
these cyclic orders, and will be considered modulo the cardinality of the family.

For any path P and any vertex v € V(P), we denote P, and P, the arcs of
P entering and leaving v, when they exist. Let P and @ be two distinct paths,
and v be an inner vertex of both P and Q. We say that (see Figure ):

e P and Q cross at v if P; and PJ are not in the same interval with
extremities @, and Q7 (in the cyclic order induced by §(v)),

e P goes to the right of Q at v if P, and P, are in the same interval with
extremities @, and QF, and P, is before P, in this interval.
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Figure 3: The behaviour of P (plain) at v relative to @ (dashed).

e P goes to the left of Q at v if P, and P, are in the same interval with
extremities @, and Q;, and P is before P, in this interval.

P and @ cross if they cross at v for some vertex v, otherwise they are
uncrossed. From the definition, the following statements are equivalent:

(i) P goes to the left of Q at v,
(ii) P goes to the left of Q71 at v,
(iii) P! goes to the right of @ at v.

The knowledge of whether P crosses, goes to the left or to the right of @ at v
will be called the behaviour of P relative to @ at v. One of the main ideas of
our proof is that the solutions are determined by the relative behaviours of each
pair of paths at each node.

An acyclic (or topological) order for G is a linear order of the vertices such
that for all arcs uwv € E(G), v is greater than u. A digraph admits an acyclic
order if and only if it is acyclic. We assume that we are given an acyclic order
< for G. We call the first common vertex of P and () the smallest vertex of
V(P)NV(Q).

4 Proof of the theorem

Lemma 4.1. Let G be a planar acyclic digraph and P be a set of arc-disjoint
paths in G. Then there is a set P’ of arc-disjoint paths satisfying the same
demands as P, such that:

- two paths of P’ sharing a common endpoint do not cross,
- two crossed paths of P’ cross at a unique vertex, their first common verter.

Proof. Let P and @ be two paths of P, and u < v be two vertices in V(P)NV(Q).
Suppose that P and @ cross at v, or cross at 4 and v is their common destination
(if there are no P and @ with these properties, we choose P’ = P).



We define P/ = P Qv P, and Ql = Q1 PuQo1. Let P = (P\{P, Q}) U
{P’,Q'}. Note that P’ satisfies the same demands as P. For any vertex w
different from u and v, the number of pairs of paths that cross at w does not
change. if P and @ cross at v and not at u, then the number of crossings at v
is decreased by at least 1. Otherwise, the number of crossing at w is decreased
by at least 1, while the number of crossing at v is not increased. Consider for
a set of arc-disjoint paths Q the vector cr(Q) € NIVl whose ith coordinate
is the number of crossings in Q at the ith greatest vertex. Then this vector is
lexicographically decreased by the transformation, cr(P’) < cr(P). By induction
on this vector, the lemma is proved. o

We remark that Ibaraki and Nagamochi’s theorem [H] (discussed at the end
of the introduction) is a consequence of this lemma. Let’s state their theorem.

Theorem 4.2 (Ibaraki and Nagamochi, 1990). There is a polynomial-time algo-
rithm to solve the arc-disjoint paths problem when G is a planar directed acyclic
graph, r + c is Eulerian, the tails of the demand arcs and the sources of G are
on the boundary of the outer face of G.

Proof. Take a source s on the outer boundary of G. Because G + H is Eulerian,
we have |67 (s)| demand arcs with destination s. The corresponding paths, if
they exists, can be chosen uncrossed by Lemma EI Now we can order the
demand arcs depending on the order of their tails on the outer boundary of G,
this determines the order used by the corresponding paths to leave s. Then,
we can reduce the original problem to a new problem on G\ {v}, satisfying the
same assumptions (new sources are also on the outer boundary). Deriving a
polynomial-time is then straightforward. O

A set of arc-disjoint paths is said to be uncrossed if it satisfies the two
conditions of Lemma @ We only consider uncrossed sets.

Recall that G is embedded on the sphere, and that two disjoint-paths with
the same extremities are consecutive if their first arcs are consecutive. Let P and
Q@ be two uncrossed arc-disjoint (s, t)-paths. Because P and @ are arc-disjoint,
PQ~! defines a closed curve on the sphere, which is simple within an arbitrarily
small continuous deformation (because of the potential common inner vertices).
By Jordan’s theorem, this simple curve separates the sphere in two connected
components. We call inside (or interior) the component for which PQ~! runs
positively along its boundary, and outside the other component. If P and @Q are
consecutive, any other (s,t)-path lies on the outside of PQ~!. Thus, given a
solution, for any demand arc h = ts, we can partition the sphere in r(h) disjoint
parts, called regions, which are the interiors of two consecutive (s, t)-paths. We
denote K! the region defined by the PZPZ:_l1 The regions associated with a
demand are considered in the cyclic order induced by their indices. Figure@
shows the region K5 associated with the four paths of a commodity st.

Lemma 4.3. Let t1s1,t289 be two distinct demand arcs, with respective requests
r1 and r3, and P be an uncrossed solution. Then there is an interval I of



Figure 4: One of the four regions defined by the four paths of a commodity

(s1,t1)-paths and an interval Iy of (sa,t2)-paths in P, such that for any (s1,t1)-
path P and any (s2,t2)-path Q in P, P and Q are crossed if and only if either
PeZyand Q €Iy, or P¢ Ty and Q ¢ Ts.

Figure E illustrates this lemma. The two intervals are given by the dashed
paths. Two paths from two distinct commodities cross each other if and only if
they are both dashed, or both plain.

Proof. Let P, ..., P, be the paths satisfying the demand ¢;s1. so and t2 are
contained in Kflsl and IC;IS1 respectively. Because s; and t; are a source and a
sink of G, any (s2,t2)-path must intersect consecutive regions of t1$1. As two
consecutive regions are separated by a (s1,t1)-path, a path going from region
Kitt to K15 crosses P;. Because the solution is uncrossed, an (sa, t2)-path
must go through a monotonic sequence of regions, either /%', ICfff, e IC;IS1
or [Ch KL ,K§151.This defines Z; = P;11 U Pipa U... U P;, and T, the
sets of paths crossing the paths in Z;. By symmetry, Z, is also an interval. O

Lemma 4.4. Let P and @ be two paths of an uncrossed solution, u < v be
two vertices in V(P) NV (Q). P goes to the left of Q at v if and only if the
destination of P is inside Pyu,Q, .

Proof. Note that P and @ do not cross at v. P,T cannot intersect P,,Q.} by
acyclicity, it is contained in the interior or the outside of P,,Q,}. Thus the
position of the destination of P determines the behaviour of P relatively to Q
at v (see Figure ). O

Thus, the relative behaviours of two paths at a vertex that is not their first
common vertex depends only on the position of their terminals and the subpaths
from their origin to the given vertex.



Figure 5: The dashed (s1,t1)-paths crosses the dashed (sz,ts)-paths and are
consecutive around their sources.

Figure 6: The (so,t2)-path Py goes to the left of the dashed path P; at v,
because ts is inside the cycle (Ps)yuw(P1),} (the outside is in dark grey), but
goes to the right of P at w because to is outside of (P2)yw(P1)ye (in light

cray).



Figure 7: Tlustrations for Lemma [.q

Lemma 4.5. Let C and D be two cycles of a planar graph with disjoint interi-
ors, and v € V(C) be a vertex that appears exactly once in D. Then D goes to
the left of C at v.

Proof. If D goes to the right of C' at v, C' meets the interior of D, contradiction.
O

Lemma 4.6. Let Pi,..., P, be the (s,t)-paths of a solution, @ and R two paths
for another request, and consider the cycle C = QR™'. The set of (s,t)-paths
that go to the left (resp. right) of C on their first common vertex is an interval.

Proof. Without loss of generality, we index the (s, t)-paths such that the interior
of C is contained in K} U ... UKL with k& maximal (thus P, goes inside C if
and only if K <1 <n). Let 1 <i < j <k be such that P; goes to the left of C
at their first common vertex v. The interior of P;P; " is Ki*U...UK% |, which
is disjoint from the interior of C. Then P; contains v, otherwise, by Lemma
applied to PZ-P;1 and C' at v, P; would go to the right of C' at v. Let u be the
first common vertex between P; and C.

If u # v (Figure f], (a)), then as the interior of D = (P;)1,(P;)]2 is disjoint
from the interior of C, by applying Lemma @ at u, P; goes to the left of C at
U.

If w = v (Figure ﬂ, (b)), we apply Lemma @ to the cycles D,C and D’ =
(P3)vT(Pj)oT, C at v, we get that the following sequences of arcs appear in that
order around v (where b, b, ¢, and ¢ are arcs of C, occurring in that order
around v):

(i) by, (B, (P75, b

v v vV

(i) ¢y, (P)F, (P;)F, ¢l (then, because P, and P; do not cross D, b, = ¢,

v v U v

and b = ¢),

(#4¢) and ¢, Pj"’, P, c; because P; goes to the left of C' at v.

10



Then, P; goes to the left of C' at v.
Thus, the paths that go to the left of C' at their first common vertices are of
the form P, ..., P; for some j. The right case is symmetrical. O

We call a routing scheme a function from P? which gives the relative be-
haviour of each pair of paths at their first common vertex. A routing scheme
is feasible if there is an uncrossed solution respecting it. We denote R :=
maxpepmy r(h) +1 and k= |E(H)|.

Lemma 4.7. For every network (G,H,r,c) (with G planar acyclic, G + H

Eulerian), there is a subset of at most R4¥? routing schemes that contains all the
feasible routing schemes. Moreover, this subset can be polynomially enumerated.

Proof. By Lemmas @ and @, for each pair of demand arcs, it is sufficient
to partition the paths for each demand arc into four intervals A, By, C1, Dy
and As, By, Cy, Do, where the relative behaviours of two paths are given by the
following matrix :
| AQ B2 02 D2

Al C ¢ L/L L/R

B | C C R/L R/R

¢, |L/L L/R C C

D, |R/L R/R C c

Here, L/R means that the path P; for the first demand goes to the left of the
path for the second P», while P, goes to the right of P;. C' means they cross
each other, and the others are defined similarly. Hence for each pair of demands,
we have R® possible division in intervals, and as there are (g) possible pairs,

this gives an upper bound of R**(*—1), O

From this, we derive an algorithm that tries every possible routing scheme.
Given a routing scheme , we want to decide if it is feasible, and then to find
an uncrossed solution. This is done by routing each vertex in increasing acyclic
order, and making the paths grows from their origin. As G + H is Eulerian
and G is acyclic, we have the property that in any solution, all the edges of the
supply graphs are used by the solution. Thus, by routing in increasing acyclic
order, when considering a vertex, every incoming arc is contained in a partial
path already built. All we need to show is that, given a routing scheme, there is
at most one way to grow the paths coming in the current vertex while respecting
the routing scheme, which is the content of Lemma .

Proof. (of Theorem [L.1))

For each possible routing scheme determined by Lemma Q, we run the
following algorithm: starting with empty paths, route every vertex by increasing
order. By routing a vertex, we mean adding one arc to each path entering this
vertex, while respecting the routing scheme, following Lemma @ For a given
routing scheme, there are two possible failures:

- it is not possible to route some vertex,

11



- the computed paths are not a solution, some demand is not satisfied.

The pseudo-polynomiality follows from the number of routing schemes, and
the fact that routing a vertex u can easily be done in polynomial time. First,
we compute the relative behaviours, given either by the routing scheme, or by
Lemma @ (for that case, we need to precompute for each destination the set
of vertices from which this destination is reachable), taking O(d(u)?). Then,
we make the paths grow up in O(d(u)?). Note that d(u) < Rk, so the total
complexity is O(R* +33n). O

5 Conclusion

This result does not completely solve the planar acyclic arc-disjoint paths prob-
lem with the Eulerian condition, as the algorithm is only pseudo-polynomial.
Finding an improvement to arbitrary requests would then be a next possible
step. One could also try to extend this result to undirected graphs, or to di-
rected graphs without the acyclicity condition on G, as both problems are open.
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