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Guyslain Naves∗, Christophe Weibel†

August 20, 2010

We show the following theorem:

Theorem 0.1. The congestion in (G,H, r, c) is at most 2⌈log2 k⌉ + 2 when G is an embedded
planar graph, each demand h ∈ H lies on a face of G, and there are at most k terminals in each
face of G.

We will use the celebrated theorem of Seymour:

Theorem 0.2. [2] Let (G,H, r, c) be an instance of the multiflow problem such that G+H has
no K5-minor. Then the cut condition is equivalent to the existence of a half-integer multiflow.
If G+H is Eulerian, the cut condition is equivalent to the existence of an integer multiflow.

Note that by Kuratowski’s theorem, planar graphs have no K5 minor.

1 Proof

Let G be a planar graph. Without loss of generality, we suppose that G is 2-connected. This
means that the boundaries of its faces are circuits. For any instance (G,H, r, c), we define
r(e) = 0 for every edge e /∈ E(H).

We say that two demand edges s1t1, s2t2 are crossed if they both lie on the same face of G
and s1, s2, t1, t2 appears in that order around the boundary of the face. Let m be the minimum
of r(s1t1) and r(s2t2), we call uncrossing (G,H) by s1t1, s2t2 and denote (G,H, r, c)⊕(s1t1, s2t2)
the instance (G,H ′, r′, c) where:

- r′(s1t1) = r(s1t1)−m and r′(s2t2) = r(s2t2)−m,

- r′(s1s2) = r(s1s2) +m and r′(t1t2) = r(t1t2) +m,

- r′(e) = r(e) for every other edge e,

- H ′ = {uv : r′(uv) > 0}.

Lemma 1.1. Let G be an embedded planar graph, H a demand graph for G, and s1t1, s2t2 two
demands of H lying on the same face of G. If (G,H, r, c) satisfies the cut condition, so does
(G,H, r, c)⊕ (s1t1, s2t2).

Proof. It follows from the fact that the cut condition is satisfied iff it is satisfied for central cuts
only (i.e. cuts C = δ(X) where X and its complement are both connected in G). But the
intersection of a central cut and the boundary of a face is a path. From this, the proposition
can be easily checked.
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As a consequence, for any set of disjoint crossed demand edges, the cut condition for (G,H)
implies the cut condition for the uncrossing of (G,H) by these crossed demand edges.

From now on, we suppose the cut condition is satisfied by (G,H, r, c). Let F be any face of
G that contains some demand edges HF . If G + Hf is planar, then by doubling r and c and
applying the Eulerian part of Theorem 0.2, G+Hf has congestion two. Note that actually, for
any number of faces HF1

, . . . , HFi
, if G + HF1

+ . . . + HFi
is planar, its congestion is 2. For

convenience, we will only look at one face at a time, but all the arguments can (and must) be
applied simultaneously on all the faces. We use this principle to decrease by half the maximum
number of terminals on one face of the demand graph. Note that when a face F has a single or
no demand, G+HF is obviously planar.

Let F be a face with a least two demands. For convenience, we only consider the vertices of
the boundary of F that are terminals of the demand lying in F , call them u1, u2, . . . , um (in the
order of appearance on the boundary), where m = |V (HF )|. Let k = ⌊m

2 ⌋. A demand edge is
bilateral if one if its extremity is in R = {u1, . . . , uk} and the other is in L = {uk+1, . . . , um}.
We want to route all the bilateral demands with a congestion of 2. Then we would add an
edge of capacity 0 between uk and um, completing the proof. Actually, we will not solve these
demands, but we will uncross all of them in such a way that the new demands will have their
two extremities both in L or both in R.

We define iteratively crossed pairs of bilateral edges of HF . Let i be the minimum index such
that there is a bilateral edge uiuj in HF , with j maximal. Let j′ be the maximum index such
that there is a bilateral edge ui′uj′ in Hf , with i minimal. Note that i exists iff j′ exists. Let
m = min{r(uiuj), r(ui′uj′)}. We distinguish two cases:

- either i = i′ and j = j′, then we mark uiuj in white,

- or we select the crossed edges uiuj and ui′uj′ , and mark uiuj′ in white.

In both cases, we decrease the requests on the edges uivj and vk, ul by m and remove the demand
edges with capacity 0. We repeat this procedure until there is no more edges between u1, . . . , um

and v1, . . . , vm.
Thus, we have a set S of selected crossed disjoint pairs of demands and a set W of white

edges. By induction, it is easy to see that there are no two crossed white edges. Moreover, by
Lemma 1.1, the two following instances satisfies the cut condition:

(i) (G,H, r, c) ⊕
⊕

(uiuj ,ui′uj′ )∈S(uiuj , uj′ui′)

(ii) (G,H, r, c) ⊕
⊕

(uiuj ,ui′uj′ )∈S(uiuj , ui′uj′)

By (i), (G,W ) also satisfies the cut condition (by simply removing the non-white demand
edges). By Theorem 0.2, (2G, 2W ) admits an integer solution. From this solution, we only keep
two paths for each unit of capacity of the edge uiuj′ , for each (uiuj, ui′uj′) ∈ S. For all the
edges uivj ∈ W \ E(S), we keep as many paths as the capacity. This means that now we only
have to find paths for each of the demands uiui′ and ujuj′ (and combine them with the two
(ui, uj′)-paths), for each selected pair (uiuj , ui′uj′), plus paths for all the non-bilateral demands.
It corresponds to (ii) without the edges in W \E(S), thus it satifies the cut condition, and there
is no bilateral demand edge. By adding one supply edge with capacity 0 between um and uk (it
obviously does not violate the cut condition, nor does it changes the feasibility of the instance),
we obtain two new faces with at most half the number of terminals of the original face.

By applying this procedure simultaneously (that is with only one invocation of Theorem 0.2)
to every face, the maximal number of terminals in one face is divided by two. Now, by induction,
as each step uses 2G, the Theorem 0.1 is proved.
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Figure 1: The original face. The capacities of the bilateral demands are in blue, other demands
are in green.
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Figure 2: First iteration, i = 1, j = 7, j′ = 8 and i′ = 4. The minimum demand here is 3, we
decrease the capacities of these two bilateral demands by 3. The blue continuous egde is marked
white. The red edges are the result of the uncrossing.
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Figure 3: Second iteration, between edges u2u7 and u4u8, with minimum capacity 1. The edge
u2u8 is marked in white.
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Figure 4: Third iteration, between edges u3u5 and u4u8. u3u8 becomes white.
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Figure 5: Last iteration, this time i = j′ and j = i′. u4u6 is marked in white.
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Figure 6: The white edges (in blue) are uncrossed. Their capacities are given by the uncrossing
lemma, applied to the selected crossed pairs..
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Figure 7: After uncrossing, there is no more bilateral edge.

2 Lower bound

We now prove that one cannot largely improve our bound on congestion by simply using Sey-
mour’s Theorem 0.2 as we did. More precisely, suppose we apply Theorem 0.2 c times to a face
F containing a set T of n terminals. Without loss of generality, we prove the bound for the case
when HF is a matching. For each application, we get a solution to a planar demand graph on
F , with at most 2n arcs of demand. Then, at the end, we have 2nc paths between the terminals
on the boundary of F . We want to use these paths to route the original demands HF .

First, the number of possible planar demand graphs on F with maximum degree 2 is equal
to the number of noncrossing partitions of T . A noncrossing partition of a set T = {t1, . . . , tn}
is a partition without two parts A and B, such that there are i < j < k < l with ti, tk ∈ A and
tj , tl ∈ B. The number of noncrossing partitions is well-known to be the nth Catalan number
Cn = 1

n+1

(

2n
n

)

[1]. As we take c of these graphs, there is at most Cc
n possible choices of 2nc

paths by this method.
Then, let P be a set of 2nc paths on n terminals, each terminal having 2c paths ending at

it. We want to glue together paths from P in order to get a solution to our original problem.
A part will contain an ordering P1, . . . , Pk of its paths, where Pi is a (ui, ui+1)-path. Such a
part satisfies the original demand edge (u1, uk+1). Thus, we need to give an upper bound on the
number of partitions of P in consecutive sub-paths of a path. We can represent P as a 2c-regular
graph H ′ with n vertices and 2nc edges. We are looking for the number of partition of H ′ into
paths. But a partition into paths can be encoded in the following way: for each vertex v, give a
perfect matching on δ(v). Two edges incident to v are matched if they are consecutive in one of
the paths of the partition. As this creates a partition into cycles, we also need to choose one of
the 2c incident edges to be the extremity of a path.

An upper bound on the number of partition can then be deduced from an upper bound on
the number of perfect matchings in the complete graph with 2c vertices, times 2c. This last
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value is given by

mc =
(2c)!

2cc!
2c (1)

So given one of the Cc
n possible choices of c planar demand graphs, we get an upper bound of

m2n
c possible partitions into paths. It proves that the number of planar or non-planar demand

graphs on T that can be solved by c applications of Theorem 0.2 is at most m2n
c Cc

n. But the

total number of possible demand graphs is (2n)!
n!2n , and the following analysis shows that we need

c = Ω
(

log n

log logn

)

.

We prove this by showing that if c = logn
4 log logn

− 2, m2n
c Cc

n is asymptotically smaller than
(2n)!
n!2n = (2n− 1)!!. First, we have that

mc =
(2c)!

c!2c
2c = (2c− 1)!!2c ≤

(2c)!!

2
2c = 2c−1c!2c ≤ 2c(c+ 1)! ≤ 2ce

(

c+ 2

e

)c+2

=

e

4

(

2(c+ 2)

e

)c+2

≤

(

2(c+ 2)

e

)c+2

Considering Cn is the number of correctly-matched parentheses, it is trivial that Cn ≤ 22n. And
so we can write

m2n
c Cc

n ≤

(

2(c+ 2)

e

)(c+2)2n

22nc ≤

(

2(c+ 2)

e

)(c+2)2n

2(c+2)2n =

(

4(c+ 2)

e

)(c+2)2n

≤
1

en
4(c+ 2)(c+2)2n

If we replace (c+ 2) with logn

4 log log n
, we get:

m2n
c Cc

n ≤
1

en

(

log n

log logn

)

2n log n

4 log log n

≤
1

en
(logn)

n log n

2 log log n =
1

en
e

n log n log log n

2 log log n =

1

en
e

n log n

2 =
1

en
n

n
2 <

(n

e

)n

< e
(n

e

)n

< n! < 2n−1(n− 1)! = (2n− 2)!! ≤ (2n− 1)!!
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