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Elastic relaxations and inter actions on metallic vicinal surfaces:

testing the dipole model
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Institut des NanoSciences de Paris, UMR CNRS 1388grsité Pierre et Marie Curie-Paris 6,

Université Denis Diderot-Paris 7, 140, rue de Loetny5015 Paris, France

Abstract

We have studied, by quenched molecular dynamics QQMsing a second-moment

approximation (SMA) potential, the atomic relaxasoand step interaction energies on Ni,
Cu, Pt and Au vicinal surfaces for which stepsalong the[lio] direction. The results have

been compared to anisotropic linear elasticityaltons (ALE). We show that steps are well
described with a model of lines of force dipolesidal under the surface. The elastic
interaction energies between steps obtained by @A ALE are in good agreement. This
demonstrates that the elastic step interactionggnean be determined from the measurement

of the atomic relaxations.

[. Introduction
Vicinal surfaces are obtained by cutting a crystidse to a dense plane. As a
consequence, they consist of terraces separatestemg. Steps often display particular
properties. For example, they can act as nucleatemres for the growth of metallic

nanowires. In that case, the regularity of the wire orgatiera obtained is given by the



regularity of the array of steps of the bare swafat finite temperature, steps fluctuate and
their correlations are governed by the step-stéprastions and the kink creation energy.
Whereas the kink creation energy is a very locargetic parameter, step interactions have a
long range component. Different contributions te #tep interactions can be distinguished.
Steps entropically repell through the conditiont tineo steps cannot cross each othi#vhen
the steps are close together, the number of allosgedigurations are reduced, and this
reduction of entropy is equivalent to a step rdpuls Steps interact also electronically
through the modification of the density of stdfeslectrostatic ally due to the presence of
electrostatic dipoles at the st&fisand thermally through the modification of theibrational
free energ{, They also interact elastically through the loagge relaxation fields generated
by local atomic relaxations at the stép#t low temperature, entropic and phononic
contributions are negligible and only electroniecérostatic and elastic contributions have to
be considered. Electronic interactions display adillatory behaviour with an exponential
decay whereas electrostatic and elastic interactionsbaté inversely proportional to the
square of the interstep distaficéhus, for small miscut vicinals, correspondindaime inter-
step distances, steps interact only electrostitioakelastically.

In the past, step interactions have been deterntmmedgh the measurement by Scanning
Tunneling Microscopy (STM) of step fluctuationgt has been recently shown that the step
elastic interactions could be deduced from Gragdmgdence X-ray Diffraction (GIXD)
measurements of the relaxation fiéhfs. In this approach, steps are described as elastic
dipoles whose value is adjusted in order to fit theerimental measurements. Elastic
calculations can then be used to determine theaictien energy between the dipole litfes
For Pt and Cu vicinals, it was shown that the alasteraction energy was much higher than
the electrostatic contributidh'* This is certainly a general behavior for metafiicfaces,

whereas higher dipolar interactions could be probftund on ionocovalent surfaces.



In this paper, we address the question of whetheraan really obtain the elastic step
interaction energy by fitting the atomic relaxasamith a model of elastic dipoles. In order to
answer this question, we have performed Quenchdéddiar Dynamics calculations of the
atomic relaxations and step interactions on varwamal surfaces of four transition metals
(Ni, Cu, Pt, Au), using a semi-empirical atomigimential, and compared the values found to
the result of linear elasticity calculations usagiodel of elastic dipoles.

The first part of the paper is devoted to the makrcdynamics computational details. The
results obtained for the relaxations and interacBoergies are given in the two following

parts. A comparison is then made with anisotropiedr elasticity calculations.

II. Computational details
A. Geometrical details
We have studied vicinal surfaces of fcc crystalhwiense steps, i.e. steps running along

the [110] direction. Four types of such vicinal surfaces ¢ distinguished. They are
obtained by varying the angle between the surface normal and the (001) directian
increasing values otr , one successively obtains:

* (001) vicinal surfaces;

* (111)-A vicinal surfaces, with (001) step microfesse

« (111)-B vicinal surfaces, witlfl 11) step microfacets;

* (110) vicinal surfaces.

We noted the miscut angle, i.e. the orientation betweerstiréace plane and the nearest
dense plane. All these surfaces can be indexedhas (). Table 1 gives the geometrical
details for all these surfaces. Atoms are labetamb@aing to their distance to the step in the
terrace plane. Thus atom N°1 is the step edge atym N°2 is its nearest neighbor inside

the terrace etc. For a vicinal with 10 atoms perate, atom N°10 is the corner atom and



atoms 11 to 20 are located just below the terrdamep It is worth noting that this one-
dimensional procedure allows to reach every reptaige atomic position. An example of

such procedure is given in figure 1 for a (1 1 d@¥ace.

B. Calculations
Atomic relaxations are computed &t=0 K, from the configuration of minimum energy.
Atoms interact through a many-body empirical patntderived from tight-binding
considerations. This potential, hereafter refet®as the RGL potentis| is developed on
the basis of a second-moment approximation (SMAhefdensity of states for transition and
noble metals.

The RGL potential energy is a sum over all atomnsthe system:

e, = Y e &)
with

B =~ ZE exp(-2q(r; /1, 1)) 2
and

" =2 Y Aexp(-p(s /1, ~1) ®

j#i
wherer, is the distance between nearest neighbors inuheab zero temperature and

r, the distance between atomandj. For fcc metalsy, = aO/\/E where a, is the lattice

rep

constant. The band ener@/' is a many-body attractive term while the repulsivergyE,

is written as a pairwise sum. The parametrp, { andq are determined by fitting the
experimental values of the cohesive energy, thedéaparameter and the elastic constants.
The parameters of the potential are taken from'féér Cu and in ref'® for the other metals

and are given in Table 2. This potential is knowngenerally underestimate the surface



energies and surface relaxatitiid However, its simple form allows one to perform
calculations over very large unit cells, which apeto now not possible by direab-initio
methods. Moreover, our aim is not to give the exkscription of vicinal surfaces of all fcc
transition metals, but to determine how one camnetate the step relaxations and interactions
with the main features of the interatomic potentsle will see that even the very simple form
of the RGL potential gives rise to a variety of &eior for the different metals studied.

Calculations are done on slabs containing two $ueéaces corresponding txy planes.

Steps are oriented alongand periodic boundary conditions are applied ia xhandy
directions. In the direction normal to the surface, the thicknesthefslab is proportional to
the interstep distance, in order to obtain neglggdisplacements at the center of the sample.
In the x direction, the sample contains one or two terrateghe z direction, taking for
example (001) vicinals, the sample size goes frOn{0D1) planes for (115) surfaces to 160
(001) planes for (1 1 79) surfaces.

The time step of the simulation is10s for Pt and Au and 5.8 s for Ni and Cu. We
have checked that these time steps give the rehjaceuracy for the calculations. The
number of time steps that are necessary for obigisiuch good precision is proportional to
the thickness of the sample. Thus, the duratiothefsimulations rapidly increases with the

interstep distance.

[11. Atomic relaxations
A. Results
The atomic relaxations are obtained by comparisibin thie crystallographic positions. In
figure 2 we show the atomic displacements alangnd z for Pt(1 1 79), as a function of the
distance to the step. A mean relaxation of theaterratoms, which corresponds to the

relaxation of surface atoms for a nominal surfasggarticularly visible in thez direction.



This mean relaxationi can be also seen on the next (001) planes (bdlevietrraces).

Terrace
The atomic relaxations on the nominal surface waasition metal are due to the variation of
the local density of states near the surface. Adgwder of magnitude for such modifications
is given by the Fermi wavelength. For example,dopper, A- (Cu) = 0.46 nm. Thus, these
relaxations rapidly decay in the bulk.

On vicinal surfaces, in addition to this surfackaxation, there is a specific relaxation due
to the stepsiisep. This contribution is particularly important atthicinity of the steps, and

especially for the step edge and corner atomsh@ilt 1 79) surface shown in figure 2, these
atoms have respectively the labels 1 and 40. @laulations show that, except for Ni, step
edge atoms relax towards the inner terrace andrttsanthe bulk, whereas corner atoms relax
in the opposite direction. Such opposite relaxatican be seen in figure 2 for atoms near the
step edge but deeper in the bulk. This gives séhé periodic features appearing in the

figure, with a period given by the number of atomshe terrace. Whereas,,,, . is rapidly
negligible, Usiep has a much larger decay length.

For each crystal atomjse, can be obtained by subtracting Gothe contributiont

Terrace
corresponding to the atomic relaxations on a nohsndace. Thus, the specific contribution
of the steps to the relaxations can be represemtiegpendently of the mean terrace relaxation.
Ustep IS presented in figure 3 for different vicinal fges with 10 atomic rows per terrace.
As can be seen, the most relaxed atoms are locai@dthe steps. For most cases, the step
edge and corner atoms are the most relaxed atoitiisyelaxations in the opposite direction.
This can be seen for example on Cu(1 1 19) or Bj(skinals. However, for some cases,
other atoms near the step display also a significglaxation. This is especially the case for
(111)B vicinals. For Cu(554), these two atoms retathe same direction whereas atom N°9

relaxes symmetrically. Nearly the same behaviormobserved for Ni(554). Thus, for these



vicinals, regarding the atomic relaxations, the stemore likely a (110) microfacet for Cu
and Ni but a{11) microfacet for Au and Pt.

For all cases, atomic relaxations propagate daapdythe bulk. A general feature that we
always observe is the presence of vertices indlaxation field, which are located below the
middle of the terraces. They are particularly Vssifor Ni(554). As a consequence, deeply in
the crystal, the relaxations alomxgare inverted relatively to their direction neag sSurface.

In general, relaxations are smaller for Ni vicinagcept on (111)B vicinals, and higher

for Pt and Au vicinals which display very similaiaxation fields.

B. Dipolar model
In the original description of Marchenko and PansiiPY, the elastic displacements far
from an isolated step on the surface of an isotrogdium are the same as those due to a line
of elastic force dipoles on a flat surface. In tase of a Cu(1l 1 19) surface, the elastic
displacements due to the steps have been shovettelsame as the elastic response of lines

of dipoles on the surfatk There, the elastic respondg, (p) to a dipolep was calculated

by QMD, with additional elastic forces on the atoomswhich the dipole applies, priori the
step edge and corner atoms. In comparison witlatdiedasticity, atomistic calculations with
our SMA potential have the advantage to take diyreécto account the local atomic structure,
the real geometry of the surface and the variaticihe elastic constants near the surface. On
the other hand, the elastic forces need to applhthenatoms, thus the elastic dipole is
necessarily an extended dipole, with a lever awergby the positions of the step edge and

step corner atoms. The elastic respotsg(p) is obtained by subtracting to the calculated

displacements the initial value of the relaxatiotis Note that, on contrary to MP model, the
lever arm of the dipole is not in the surface plahes, the dipole is buried with one point of

application of the force under the surface.



For practically all cases, the atomic displacemeidts are very well reproduced by the
elastic responsép;, (P) to a buried dipole located on the step edge angec@atoms. In our
procedure, we obtain the value @f by a least-square fit procedure concerning alingto

except the atoms where the elastic forces are expplihe dipole can be split into two

components: a "stretch" component which has no mbmeg - we note it as positive when it

corresponds to a contraction of the distance betvatep edge and corner atoms - and a

torque componenp,, which has no dilatation - we note it as positivieen it as the same

orientation asi Ofi where i is the normal to the surface amdis a vector of the surface
plane, perpendicular to the steps and orientedyaloe descending steps (see figure 4).

In figure 5, the comparison of the relaxation fgefdr various Au, Pt, Ni and Cu surfaces
of different orientations is displayed. All surfackave of the order of 20 atomic rows per
terrace. The fits are for practically all the casasellent, except for step edge and corner
atoms on which the forces are directly applied.iWdhly two adjustable parameters (value
and orientation of the elastic force), the ampktwd the elastic displacement at the surface,
their attenuation in the bulk and the general slrdfibe curves are well reproduced. Only the
displacements computed on Ni(1139) and Au(4l)4Ekdrfaces present a less good
agreement. To appreciate the quality of the fitsisiworth considering the inset which
concerns the relaxations for atoms far from thdaser The model reproduces not only the
amplitude of the displacements, but also the dmtaghape of the variations, i.e. the
contribution of the different harmonics.

The values of the dipoles that allow such bestdits given in table 3. In the MP mofel
the torque component of the dipole is given bygheduct of the step height by the surface
stress of the flat surfaceh. We have numerically computed this last valuedibrsurfaces

investigated. The comparison of with p; is given in table 3. The comparison shows that in

a great number of cases, the hypothesis of the MBehis true. However, for Ni(001),



Cu(111)B, Ni(111)B, Pt(111)B and Au(110), the agneet is poor. This cannot be attributed
to a less good fit of the atomic relaxations byelastic response to a dipole. For example, for

Ni(11 11 10), the fit is excellent for all atoms.

V. Energies
A. Calculations
The energies are obtained by taking the asymptotit of the system energy after

relaxation. The surface energy is obtained by comparison with a system withoete fr

surfaces. The step energyis derived from the surface energy through

y(6) = y(0)cos@) + %ISin(9)| (4)

whereh is the step height in the direction perpendicttathe nominal surface. As steps are
not isolated, 5 varies with the interstep distance. We ng¢ig (8) the interaction energy
between steps, defined by

B(6) = BQ) + B, (6) (5)

where S(0) is the energy for creating an isolated step onnthiinal surface. Of course,
Lint (0) is an effective interaction energy which take® iatcount both the variation of the

crystallographic orientation of the surface whee thiscut varies, that can modify the self-
energy of the step, and the variation of the im¢grsdistances that changes the step
interactions.

It has been shown that in the case of elasticantems between stepg (6) is inversely

proportional tod? .22 At short distances, corrections may be necesagll cases, we have

fitted G (6) with a two-parameter equation:

_ALB
P (0)= 7% 53 (6)



A is often expressed in eV.A. For the comparisorvioinals with different types of
terraces, we find more convenient to expréssn meV/at. In that casel is the number of
[110] rows between the steps and the energy is gieeatom along the step edge.

Using a semi-empirical potential with a cut-off d¢gin in direct space for the energy
calculations allows to study only the elastic paftthe interactions. In our model, the
interactions are limited to the fifth neighboursey®nd this cut-off, interactions are purely
elastic. On the contrargb-initio electronic calculations in phase space take intoant all
contributions to the energy and the elastic couatiiim cannot be easily extracted.

In order to obtain a value oA with a correct precision, we have calculated ttep s

energies up to interstep distances of i00] rows. At such distanceg () can be as small

as fewpeV. It may seem paradoxical to calculate this ep&righ such a precision, since the
value of the surface energies are known to be glyamderestimate. However, we are only
interested in the accurate description of the ielasteractions and their relation to the
features of the steps. We believe, the elasticdant®ns are described well by the chosen
interatomic potentials, which were fitted to thestic constants of the material. Figure 6

displays the variation ¢f, with interstep distance for all surfaces studikdis always
possible to adjust the variation @, with Eq. (6). The fits are very good and show tihat

step interactions are really proportionalliad®. The small deviations from the fit that can be
observed at large interstep distances are due wemcal errors and to the uncertainties

related to the subtraction g8 (OFirst order component, i.e. inversely proportioteathe

interstep distance where always found negligibfecontrary to some assertions found in the

literature'®

B. Results
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The values obtained for the surface and step esseiand for the step interactions are
given in table 4. The calculations show that thep stnergy varies considerably from one
metal to another and from one orientation to anotlibe highest differences between the
metals are observed on (111) vicinal surfaces, @dsethe lowest differences are seen on
(110) vicinal surfaces. Small values of the steprgy are obtained when the surface energy
of the step microfacet is significantly smallerriitae surface energy of the nominal surface
corresponding to the terrace orientation. Thisigsdase for Au and Pt(110) vicinals for which
the step energy is negative, the surfaces areuhsisble. It is worth noting that during the
simulation, the surface does not reconstruct stheereconstruction process is thermally
activated. Experimentally, one observes a (2x1fasarreconstruction of missing row nature
for these surfaces. This reconstruction has also sbown to be energetically favored when
calculating the system energy with a SMA poteritial

A good estimate of the step energies can be siogaliyed by considering that the step is
a microfacet whose energy is given by the surfavergy of the corresponding nominal
surface. This is equivalent to simple models ofstep energy based on the coordination of
the atoms near the st&p.

One thus obtains, after subtracting the adequatgibation of the terraces:

2
e for (001) vicinals : 5 = %(V(nn J3- Yiooy)

2
« for (111)A vicinals : B = %(V(oog _ V(m)

3

as

e for (111)B vicinals : B =
(111) B e (Vaip)

a 3

. 3
 for (110) vicinals : 8 = 7 (7 Yay — Vo)
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Table 4 shows that this approximation is very goextept for Ni, for which the step
energies are overestimated. Note that it still gimegative step energies for Au and Pt(110)
vicinals. Only few measurements of the step enéiaye been done on Cu vicinal surfaces.
Our values are in relatively good agreement witk #xperimental values, indicating
L(0)=220 meV/at for Cu(001) steps ati  {@nging from 220 to 450 meV/at for Cu(111)
steps™.

The step interaction energies also depend on thmegy of the surface and of the metal
studied. They are always repulsivA ¥ 0) . The comparison with the elastic displacements
shows that high step interaction energies corregptm high elastic displacements.
Concerning the variations with the metal studiée, higher A coefficients are obtained for
Au and Pt, whereas Ni surfaces give rise to snm#ractions between steps, except for
Ni(111)B vicinals. Concerning the step geometryy ioteraction energies are always found
for (110) vicinals whereas high values are obtaimed111) vicinals, except for Cu where
is higher on Cu(001) vicinals. It is very surprgito obtain very different interactions for

Ni(111)A or B vicinals. A,;,)5 is more than one order of magnitude higher tégn, ,. This

is not the case for the other metals for whigh,,, and A, are similar.

V. Comparison with linear elasticity
In section 3, we have compared the atomic relarattue to steps on a vicinal surface to
the elastic displacements due to lines of elastolds, both computed by atomistic
calculations. This approach was fruitfull in moases, but is limited for two main reasons:
- first, it does not allow to test various forcestdibutions since, in the atomistic
calculations, forces need to apply on atoms;

- second, it does not allow to easily derive tlepshteraction energy.

12



On the contrary, linear elasticity theory allows dalculate the displacement due to
complex force distributions and to extract intei@attenergies. It has been shown that the
elastic displacements created by topological defeculd always be described, in the frame
of linear elasticity, by an adequate distributidnfarces near the defect, provided that the
atoms for which the displacement is studied arefaugh from the defett

Landau and Lifshitz have calculated the elastipoase to a point force at the surface of a
semi-infinite mediurft. In the case of a periodic distribution of forcasalytical calculations
taking into account the crystalline anisotropy tenperformed. For particular distributions,
the harmonic resummation can even be achieves.fiiriexample the case of lines of forces

with a lorentzian broadening.

A. Displacements

For all surfaces studied by atomistic calculatiomsee have compared the atomic
displacements calculated with the analytical resoft the linear elasticity theory. For this
purpose, we have tried to optimize the force distion near the surface in order to reproduce
as correctly as possible the atomic displacem&iéshave tested two different distributions.
Note that for mechanical equilibrium, they all ngedbe dipolar. For practical reasons of
resummation, they are all periodic distributionsliaés of point forces, with a lorentzian
broadening along thgdirection, of widtha. . The different distributions tested are:

- a distribution of “geometric” buried dipoles. Eastep is modeled by an extended dipole
consisting of two lines of opposite forces. Thetfime is at the step edge, and the second line
at the step corner.

- a distribution of point dipoles buried below thaface. The orientation of the lever arm

of the dipoles, their depth and their position glop with respect to the steps are free

parameters.
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The details of the anisotropic linear elasticity-& calculations are given in réf.

1. "geometric buried dipole" distribution

In that case, there are three free parametersaine of the force applied, its orientation
and the cut-off length of the broadeniag. The fitting procedure is a least-square fit tgkin
into account all atoms except step edge and stepecatoms. We have observed that the
elastic response calculated in that way could b glifferent from the elastic response given
by atomistic calculations. Generally, the agreenremtorse. For some cases, i.e. Ni(111) and
Cu(111)B vicinals, a correct agreement is not gesiThe values of the dipoles that allow
the best fits are given in table 5.

In all cases, the value of the torque componentiefelastic dipole found by ALE is
higher than the value found by atomistic calculaioThe differences observed are probably
due to the modification of the elastic constantarriibe surface and near the step. The low
coordination of step edge atoms gives rise to @&tow of the Young modulus in comparison
with bulk atoms. The value of the forces that hawvde applied on these atoms in order to
obtain the wantedelaxations are thus lower if this modification thie elastic constant is
taken into account (i.e. in the atomistic calcalas) than if it is not the case (i.e. for ALE
calculations). The differences could also be duesdoond order corrections to the linear
elasticity theory.

When the terrace length varies, the value of tlastiel dipoles giving the best fit also
varies. This variation for Cu and Pt(111)A vicinalsgiven in figure 7. In most of the cases,
the stretch component varies whereas the torque@aoemt remains constant. This is due to

the fact that the elastic displacements due técstrdipoles are lower than those due to torque

14



dipoles of same value. The observed variation us thainly to be related to the uncertainty
on the value ops.

One of the assets of ALE calculations is to givedly the values of the step interactions.
The basis of the energy calculation is that we @ietermine a force distribution that allows to
correctly describe the displacement field. Thug fundamental to well reproduce the atomic
relaxations. In order to go further, we have theste¢d another force distribution, presenting

more adjustable parameters.

2." Point dipole" distribution buried under the surface

This force distribution derives from the MP Moddut with four differences: the
lorentzian broadening already discussed, the aiem of the lever arm, not necessarily
parallel to the surface, the fact that the dipalesburied under the surface and the crystalline
anisotropy of the material. The point dipole is timait of a buried dipole with a vanishing
distance between the points of application of theds. But, on contrary to the previous
paragraph, the lever arm orientation and the pmosinf the lines of dipoles are free

parameters.

When trying to adjust the SMA relaxations with AL&alculations using dipolar
distributions, one observes that far from the defibe elastic displacements can be adjusted
by several combinations of parameters (positiomerlearm orientation, cut-off length and
force value). In figure 8 is displayed the variatiof the y* for the fit of the atomic
relaxations on Cu, Ni, Pt and Au (15,15,16) surdaes function ofQ, the lever arm
orientation of the elastic dipoles. For ea@hvalue, the free parameters are the force value
and orientation, the position of the dipole linesl dhe cut-of length. As can be seen, a good
fit is possible for differentQ values. In figure 8, one also observes that tlesist some

directions for which it is impossible to obtain arrect adjustment. For Ni(15 15 16), the

15



forbidden direction is close to the step microfageection. This explains why it was not
possible to obtain a good fit using the “geomethatied dipole model. An example of fit by
the two models is given in figure 9 for a Cu(1 ) 88rface. Whereas the fit is not perfect
with the "geometrical buried dipole” model, theisitexcellent with the point dipole model. It

is not surprising since the number of free paramasehigher (6 instead of 3).

The values of the dipoles that allow the best fthwhe atomic relaxations are given in
table 6. A comparison with the results obtainechwite "geometrical buried dipole"” model

can be made. The value of the torque compomenis roughly the same, whereas the value
of the stretch componerp, is considerably modified. This is related to thetfthat stretch
point dipoles give rise to much lower displacemeahtn torque point dipoles of the same

intensity. In the fitting procedure, the uncertgioh the value ofpg is thus much higher than

the uncertainty on the value @f. .

B. Interaction energy

In the case of a dipolar force distribution, ip@ssible to calculate analytically the elastic
interaction energy from the dipole vattieThe elastic energy per dipole line takes the form

B(d) = 5, +d—A2 + O(dij @

where the first term is the elastic energy of amlaied line and the second term, the
interaction energy between lines. Contrary to SMéculations, it is not possible to discuss
the first term which is associated with the eneofjyan isolated step. It has no physical
meaning. First, it cannot be equal to the stepgneince it does not account for the local cost
of the coordination reduction of atoms near th@st&econd, it corresponds to the result of

the calculation of the elastic energy in a domalresg linear elasticity does not apply. For

16



example, when the distance between the points mfcagion of the forces get close to zero,

B, becomes infinite; the crystal present a singylaitthe dipole position.

The coefficient®\ are given in table 7 for the "geometric buriedotig) and "buried point
dipole" distributions that allow the best fits witBMA calculations. Since elastic energy
directly derives from the atomic deformations, tfewce distributions that give the same
deformations far from their application points algove similar values for the elastic
interaction energy. In the case where the fit is carrect for the atomic relaxations, for
example for Ni(16 16 15) when using the "geomelticaied dipole" model, the values found

for the two distributions are very different.

The comparison between the coefficients found b¥Adr large interstep distances and
by SMA from Eq. (6) is given in figure 10. We havet given the values obtained by ALE in
the case of the buried dipole model when the f& waor (for three cases). A good agreement
is found on the whole range of values. The standardation between the values found by
ALE and SMA is of the order of 28% when considerfiggometrical buried dipoles” in the
elasticity calculations, and 18% when considerifmiried point dipoles”. This is not
surprising since the fits of the relaxations arttdsevhen using buried point dipoles. In that
case, depending on the surface studied, the vahtamed by ALE are either higher or lower
than the values obtained by SMA. The most importdifterences are observed for
Ni(61 61 1) for which ALE calculations with burigubint dipoles indicate a value 40% higher
than QMD calculations, and for Cu(15 15 16) for eththe same ALE calculations indicate a

value 70% lower than SMA calculations.

C. Discussion

17



Our comparisons show that the calculation of thepldcements due to a dipolar force
distribution in the framework of the linear elagficallows to reproduce correctly the
relaxations found by SMA. The force distributioratlallows a good fit far from the step is
not unique. Good fits are obtained for differemiale orientations, but two distributions that
give a good agreement for the relaxations also giwglar values for the step interaction

energy.

Small differences are observed between the valugestep interaction energy found by
ALE and by SMA. It is difficult to explain their @in. A first explanation could be due to the
variation of the elastic self-energy of the stepaohs function of the step orientation: when
the surface orientation is rotated, the directiohthe lever arm of the elastic dipole and the
direction of the elastic forces also rotate. Suitlce would lead to a first order correction to

the step elastic energ, with the miscut, and thus to an additiodat coefficient in Eqgs. 6

and 7. We have already mentioned that it is nosiptes to obtain this coefficient by ALE

since we cannot calculate a real value of theielastf-energy of a step. Moreover, our SMA
results show that such a coefficient is always igdge and cannot explain the differences
observed. These differences could be due to thatiar of elastic constants near the surface
and also to the non-linearity of the elastic defations close to the step. This would affect the
step elastic interactions. However, there is noimks/ relation between the differences
observed and these parameters. Thus, the diffeseabserved are probably due to the

uncertainties on the values &f determined by SMA using Eq. (6) and by ALE.

The comparison between the different surfaces efdifferent transition metals studied
shows that the step interactions are related taiiace stress. The step interaction energy is
mainly given by the value of the torque componérthe dipoles, p;, which is roughly given
by the product of the surface stress by the stéghheAs shown by Olivier eal. *', the

variations of surface stress, from one surfacentutleer, are highly related to the attractive
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interaction between atoms through the d-band elestrDue to the lower coordination at the
surface, the number of electrons in the d-bandusted, the electronic repulsion is lowered
and the binding is stronger. In the RGL model,rdrege of the attractive interactions is given

by the q parameter. With the chosen parameterization ferpibtential,q is higher for Au
and Pt than for Cu and Ni for whiadp is very small. The first neighbors have thus ahbig

contribution in the case of Au and Pt, than indhgee Cu and Ni.

The influence of the geometry of the surface onitheractions can also be discussed.
The differences between the metals are higher th)(4urfaces than on (110) surfaces. On
(111) surfaces, which are the most compact surfeme&CC crystals, and for which the
interrow distance is the smallest, there are @ fissghbors in the surface plane, and 3 first
neighbors in the other planes: for Pt(111) and AWLJl the in-plane bindings are
strengthened, leading to high surface stress. @f)(4urfaces, which are the less compact
dense surfaces, there are only 2 first neighbotisarsurface plane and 5 first neighbors in the
other planes. For Pt(110) and Au(110), the surfaress is small, but the interplanar
relaxations are high. For Cu and especially Ni,rthgt neighbors have a greater importance

and the effects previously mentioned are lowered.

These simple considerations allow to understandhallbehaviors observed, except the
case of Ni(111) vicinals. The reason why (111)Binats display important elastic

displacements in opposite to (111)A vicinals rersainexplained.

Conclusion

The comparison between SMA and ALE shows that,firshorder approximation, a step
on a vicinal surface is equivalent to a line ofctrdipoles on a flat surface. The force

distribution that allows to reproduce the atomiaxations far from the step is not unique.
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Buried point dipoles with lever arm oblique to th&face plane give a very good agreement.
Using this simple force distribution, it is possglib fit the atomic relaxations and to obtain,
with a good precision, the elastic step interacterergy. The knowledge of the atomic
relaxations is thus sufficient for determining psety the elastic interaction energy. This is
not trivial since the interaction energy is onlys@cond order correction to the total elastic
energy, whose main contribution is the step sedirgyn This demonstrates that it is possible
to extract correct values for the step interactimos) the measurements by grazing incidence

x-ray diffraction of the atomic relaxations on vial surface¥*%

Tables

terrace orientation (001) (111)A (111)B (110)
Step microfacet (111) (001) (112 (111)
Surface orientation(1,1,+1) (n-1,n-1,n+1) (n+1n+1n-1) (2n+1,2n+1,1)
Number of atoms n+1 n n+1 n+1

per terrace

Interstep distance 1 1 1 1
2sin(@) | sin(a) - cos@)V2 | sin(@) - cos@)v/2 2.2 cos@)

Step height 1 1

1 1 1
2

1
V3 NE 22

Table 1. Geometrical parameters for the vicinafemes of fcc crystals with dense steps.
Values are given in unit of the lattice constamtis the angle between the surface orientation

and (001).
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Ni Cu Pt Au
A (eV) 0.0752 0.18975 0.595 0.4122
& (eV) 1.070 1.2603 2.695 1.790
p 16.999 10.550 10.612 10.229
q 1.189 2.43 4.004 4.036
a, (R) 3.523 3.61 3.924 4.079

Table 2. Parameters of the RGL potential describéths. 1-3 for the different metals

studied.
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Ni Cu Pt Au
Ps(1139) 3.53 1.61 3.41 2.39
Pr (11 39) 1.35 (2.30) 2.10 (2.37) 3.97 (4.06) 2.35 (2.42)
Ps (10 10 11) 9.02 3.57 1.38 0.50
Pr (10 1011) 0.37 (0.45) 1.65 (1.85) 5.44 (5.34) 3.36 (3.27)
Ps (11 11 10) 2.62 1.23 -0.04 1.88
Pr (11 11 10) -1.62 (0.45) 0.40 (1.85) 3.80 (5.34) 3.27 (3.27)
Ps@1411) -1.17 0.24 7.17 4.79
Pr (4141 1) 1.91 (2.02) 1.47 (1.40) 1.35 (1.46) 0.76 (0.84)

Table 3. Values of the elastic dipoles t{(N) that allow the best fits with the atomic
displacements on various vicinal surfaces. Thet lggay cells indicate that the agreement is
not perfect. The values in brackets are the prodftiche step height by the surface stress

(same units).
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Ni Cu Pt Au

Y(001) 2613.72 1272.94 1064.01 577.89
Booy) 273.4 149.3 114.8 62.8
B(0o1) Microfacet 363 156 122 71

Acon) 74 20.3 59.5 38.9
Y(111) 2588.61 1176.88 907.79 491.30
Baina 342.5 237.8 245.6 139.3
B111)A Microfacet 434 242 260 153
Adion 12.8 14.6 129.3 90.6
Baine 326.6 239.3 237.9 132.5
B(111)B Microfacet 580 277 252 148
A111)8 212.5 8.9 229.8 160.9
Y(110) 2777.05 1379.95 1138.01 614.14
Bio) 84.1 16.8 -24.6 -16.5
B110) Microfacet 108 18 -9 -5

Ao 2.2 2.0 1.2 0.9

Table 4. Surface energigs (mJm?) of the nominal surfaces, step energig{meV/at), step

energies obtained from the microfacet decompositod step interaction coefficienf

(meV/at) for the different surfaces studied.
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Ni Cu Pt Au
Ps(1179) 0.78 4.01 12.76 7.79
Pr179) 2.42 2.65 4.19 2.45
Ps (15 15 16) 11.50 2.21 0.03 0.15
Pr (15 15 16) -0.18 1.95 6.12 3.69
Ps (16 16 15) 15.03 4.12 9.29 6.71
Pr (16 16 15) 2.21 1.30 6.21 3.71
Ps (61 61 1) -0.43 0.43 4.21 2.82
Pr (6161 1) 1.96 1.52 1.52 0.87

Table 5. Values of the "geometric buried dipole¥’C N) that allow the best fits of the SMA
atomic relaxations on various vicinal surfaces. Tiglet gray cells indicate that the fit is not

excellent, whereas the dark gray cells indicatedhzorrect fit is not possible.
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Ni Cu Pt Au
Ps179) 0.91 5.54 -9.87 -5.92
Pr (1179) 2.22 2.18 3.43 2.07
Ps (15 15 16) 10.05 3.72 -7.54 -4.59
Pr (15 15 16) 0.83 1.69 4.31 2.64
Ps (16 16 15) 19.49 -2.22 17.30 10.13
Pr (16 16 15) 1.39 2.09 4.81 2.99
Ps (61 61 1) 5.37 -4.00 2.59 1.67
Pr (61 61 1) 2.09 1.36 1.38 0.79

Table 6. Values of the buried point dipoles T40N) that allow the best fits of the SMA

atomic relaxations on various vicinal surfaces. ageement is always excellent.
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Ni Cu Pt Au

GBD PD GBD PD GBD PD GBD PD

Ai17e) |92 5.6 224 | 264 | 561 | 570 | 39.6 | 387

Aisis16  [0.12 24.8 10.1 10.1 67.4 124.4 a7.7 88.7

Ains1615 [16.8 157.2 [6.5 9.9 143.3 201.7 111.3 144.6

Asierny |3.0 2.4 2.4 2.1 15 15 1.1 0.6

Table 7. Value of the interaction energy coeffitién (meV/at) for "geometrical buried
dipoles" (GBD) and for point dipoles (PD). Dark greells indicate that a correct fit of the

relaxations was not possible with the chosen fdrsibution.
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Figures

Figure 1. Schematic of a vicinal surface (in tharaple, the (1 1 19) surface), with indication

of the way how the atoms are label@ds the miscut angle.
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Figure 4. Schematic of a vicinal surface showing fibrce distribution corresponding to the
dipole componentps andpr in the case of a "geometrical buried" dipdleis the level arm

orientation; S and C are the step edge and cotoer positions. In the example chosguys

andpr are positive.
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Figure 9. Comparison of the relaxation fieldis, calculated by SMA andip;, (p) calculated
by ALE for Cu(1179). Dots:Usep; dotted line: "geometrical buried dipole” model;

continuous line: buried point dipole model.
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