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Abstract. The estimation of a density and its derivatives from a finite
mixture under the pairwise positive quadrant dependence assumption is con-
sidered. A new wavelet based linear estimator is constructed. We evaluate
its asymptotic performance by determining an upper bound of the mean inte-
grated squared error. We prove that it attains a sharp rate of convergence for
a wide class of unknown densities.
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1 Introduction

The following mixture density model is considered: we observe n random vari-
ables X1, . . . , Xn such that, for any i ∈ {1, . . . , n}, the density of Xi is the
finite mixture:

hi(x) =
m∑
d=1

wd(i)fd(x), x ∈ [0, 1],

where

• (wd(i))(i,d)∈{1,...,n}×{1,...,m} are known positive weights such that, for any
i ∈ {1, . . . , n},

m∑
d=1

wd(i) = 1,

• f1, . . . , fm are unknown densities.

For a fixed ν ∈ {1, . . . ,m}, we aim to estimate fν and, more generally,

its r-th derivative f
(r)
ν from Pairwise Positive Quadrant Dependent (PPQD)

X1, . . . , Xn.
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Let us now present a brief survey related to this problem under various
configurations. On the one hand, when X1, . . . , Xn are independent, the es-
timation of fν has been considered in e.g. Maiboroda (1996), Hall and Zhou

(2003) and Pokhyl’ko (2005). The estimation of f
(r)
ν has been recently stud-

ied by Prakasa Rao (2010). This is particularly of interest to detect possible
bumps, concavity or convexity properties of fν . On the other hand, when
X1, . . . , Xn are identically distributed i.e. h = h1 = . . . = hn, the estimation
of h for associated X1, . . . , Xn (including PPQD) has been investigated in e.g.
Cai and Roussas (1997), Dewan and Prakasa Rao (1999), Masry (2001) and
Prakasa Rao (2003). The estimation of h(r) has been considered by Chaubey
et al. (2006). However, to the best of our knowledge, the combination of these

two complex statistical frameworks i.e. the estimation of f
(r)
ν , including fν ,

under PPQD conditions is a new challenge.

Such a problem occurs in the study of medical, biological and other types of
data. The most common situation is the following: for any i ∈ {1, . . . , n}, Xi

depends on an unobserved random indicator Ii taking its values in {1, . . . ,m}.
Applying the Bayes theorem, the density of Xi is hi defined with wd(i) =
P(Ii = d) and fd the conditional density of Xi given {Ii = d}. We refer to
Maiboroda (1996) and the references there in. Naturally, in some situations,
X1, . . . , Xn are not independent and this motivates the study of various de-
pendence structures as the PPQD one. Further details and applications on
the concept of associated random variables can be found in Roussas (1999),
Prakasa Rao and Dewan (2001) and Sancetta (2009).

To estimate f
(r)
ν , several methods are possible as kernel, spline, wavelet,

. . . (see e.g. Prakasa Rao (1983, 1999), Härdle et al. (1998) and Tsybakov
(2004)). In this study, we focus our attention on the multiresolution analysis
techniques and, more precisely, the wavelet methodology of Pokhyl’ko (2005)
and Prakasa Rao (2010). We construct a linear wavelet estimator and ex-
plore its asymptotic performance by taking the mean integrated squared error
(MISE) and assuming that f

(r)
ν belongs to a Besov ball. We prove that, under

some specific assumptions, it attains the same rate of convergence as the one
obtained in the independent case.

This paper is organized as follows. Assumptions on the model and some
notations are introduced in Section 2. Section 3 briefly describes the wavelet
basis on [0, 1] and the Besov balls. The linear wavelet estimator and the results
are presented in Section 4. Section 5 is devoted to the proofs.

2 Assumptions

Additional assumptions on the model are presented below. The integers r and
ν refer to those in f

(r)
ν .
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Assumption on f1, . . . , fm. Without loss of generality, for any d ∈ {1, . . . ,m},
we assume that the support of fd is [0, 1] (our study can be extended to
another compact support).

We suppose that there exists a constant C∗ > 0 such that, for any d ∈
{1, . . . ,m},

f
(r)
d (x) ≤ C∗. (2.1)

We suppose that, for any d ∈ {1, . . . ,m} and v ∈ {0, . . . , r},

f
(v)
d (0) = f

(v)
d (1). (2.2)

Assumption on the weights of the mixture. We suppose that the matrix

Γn =

(
1

n

n∑
i=1

wk(i)w`(i)

)
(k,`)∈{1,...,m}2

satisfies det(Γn) > 0. For the considered ν (the one which refers to the

estimation of f
(r)
ν ) and any i ∈ {1, . . . , n}, we set

aν(i) =
1

det(Γn)

m∑
k=1

(−1)k+νγnν,kwk(i), (2.3)

where γnν,k denotes the determinant of the minor (ν, k) of the matrix Γn.

Then aν(1), . . . , aν(n) satisfy

(aν(1), . . . , aν(n)) = argmin
(u1,...,un)∈∩md=1Uν,d

1

n

n∑
i=1

u2
i , (2.4)

where

Uν,d =

{
(u1, . . . , un) ∈ Rn;

1

n

n∑
i=1

uiwd(i) = δν,d

}
and δν,d is the Kronecker delta.

Technical details can be found in Maiboroda (1996).

We set

zn =
1

n

n∑
i=1

a2
ν(i). (2.5)

For technical reasons, we suppose that zn < n.
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Assumptions on X1, . . . , Xn. We suppose that X1, . . . , Xn are PPQD i.e.
for any (i, `) ∈ {1, . . . , n}2 with i 6= ` and any (x, y) ∈ [0, 1]2,

P(Xi > x,X` > y) ≥ P(Xi > x)P(X` > y).

This weak kind of dependence has been introduced by Lehmann (1966).
Examples of PPQD variables can be found in Sancetta (2009).

We suppose that, for any (i, `) ∈ {1, . . . , n}2, there exists a constant
C > 0 such that

sup
(x,y)∈[0,1]2

|hi,`(x, y)− hi(x)h`(y)| ≤ C, (2.6)

where hi,` is the density of (Xi, X`).

We suppose that there exists a constant C > 0 such that

n∑
i=1

i3
i−1∑
`=1

(
a2
ν(i) + a2

ν(`)
)
Cov(Xi, X`) ≤ Cnzn, (2.7)

where aν(1), . . . , aν(n) are (2.3) and zn is (2.5).

This assumption seems important to obtain “suitable” asymptotic prop-
erties in the estimation of f

(r)
ν from PPQD X1, . . . , Xn.

3 Wavelets and Besov balls

Throughout the paper, we work with the wavelet basis on [0, 1] described
below. Let N be an integer such that N > r + 1, and φ and ψ be the
initial wavelet functions of the Daubechies wavelets dbN . In particular, these
functions are compactly supported and belong to Cr+1. Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer η satisfying 2η ≥ 2N such that, for any ` ≥ η, the
collection

B = {φ`,k(.), k ∈ {0, . . . , 2`−1}; ψj,k(.); j ∈ N−{0, . . . , `−1}, k ∈ {0, . . . , 2j−1}},

with an appropriate treatment at the boundaries, is an orthonormal basis of
L2([0, 1]) (the set of square-integrable functions on [0, 1]) and, for any v ∈
{0, . . . , r}, (φj,k)

(v)(0) = (φj,k)
(v)(1). Details can be found in Cohen et al.

(1993).
For any integer ` ≥ η, any h ∈ L2([0, 1]) can be expanded on B as

h(x) =
2`−1∑
k=0

α`,kφ`,k(x) +
∞∑
j=`

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],
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where

αj,k =

∫ 1

0

h(x)φj,k(x)dx, βj,k =

∫ 1

0

h(x)ψj,k(x)dx. (3.1)

A function h belongs to Bs
2,∞(M) if and only if there exists a constant

M∗ > 0 (depending on M) such that (3.1) satisfy

sup
j≥η

22js
∑
k∈Λj

β2
j,k ≤M∗.

We refer to Meyer (1990).

4 Estimator and results

Assuming that f
(r)
ν ∈ Bs

2,∞(M), we define the linear estimator f̂ (r) by

f̂ (r)(x) =
2j0−1∑
k=0

α̂
(r)
j0,k
φj0,k(x), x ∈ [0, 1], (4.1)

where

α̂
(r)
j0,k

=
(−1)r

n

n∑
i=1

aν(i)(φj0,k)
(r)(Xi), (4.2)

aν(1), . . . , aν(n) are (2.3), j0 is the integer satisfying

1

2

(
n

zn

)1/(2s+2r+1)

< 2j0 ≤
(
n

zn

)1/(2s+2r+1)

and zn is defined by (2.5).

The definitions of α̂
(r)
j0,k

and j0, which take into account the PPQD case,

are chosen to minimize the MISE of f̂ (r).
Note that f̂ (r) is close to one considered by (Prakasa Rao, 2010, eq. (4.5))

in the independent case. Further details on derivatives density estimation via
wavelet can also be found in Chaubey et al. (2006) and Hosseinioun et al.
(2010).

Theorem 4.1 below investigates the MISE of f̂ (r) when f
(r)
ν ∈ Bs

2,∞(M).

Theorem 4.1 (Upper bound for f̂ (r)) Let X1, . . . , Xn be n random vari-
ables as described in Section 1 under the assumptions of Section 2. Suppose
that f

(r)
ν ∈ Bs

2,∞(M) with s > 0. Let f̂ (r) be (4.1). Then there exists a constant
C > 0 such that

E
(∫ 1

0

(f̂ (r)(x)− f (r)
ν (x))2dx

)
≤ C

(zn
n

)2s/(2s+2r+1)

.
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The proof of Theorem 4.1 uses a moment inequality on (4.2) and a suitable
decomposition of the MISE.

Let us mention that the obtained rate of convergence is exactly the optimal
one related to the independent case i.e. (zn/n)2s/(2s+2r+1) (see (Prakasa Rao,
2010, Theorem 6.1 and Remark 6.1)).

Note that Theorem 4.1 can be extended to other kinds of associatedX1, . . . , Xn

as Negative Associated (NA), Pairwise Negative Quadrant Dependence (PNQD),
. . . . This is due to the Newman inequality (Newman, 1980, Lemma 3) used in
the proof of Theorem 4.1 which still holds in these cases.

Remark that f̂ (r) is not adaptive with respect to s. Adaptivity can perhaps
be achieved by using a non-linear wavelet estimator as the hard thresholding
one. This approach works in the independent case (see (Pokhyl’ko, 2005, The-
orem 4)). However, the proof of this fact uses technical tools as the Bernstein
and the Rosenthal inequalities and it is not immediately clear how to extend
this to the PPQD case.

5 Proofs

In this section, we consider the density model described in Section 1 under the
assumptions of Section 2. Moreover, C denotes any constant that does not
depend on j, k and n. Its value may change from one term to another and
may depends on φ.

Proposition 5.1 Let X1, . . . , Xn be n random variables as described in Sec-
tion 1 under the assumptions of Section 2. For any k ∈ {0, . . . , 2j0 − 1}, let

α
(r)
j0,k

=
∫ 1

0
f

(r)
ν (x)φj0,k(x)dx and α̂

(r)
jj0 ,k

be (4.2). Then there exists a constant

C > 0 such that
E((α̂

(r)
j0,k
− α(r)

j0,k
)2) ≤ C22rj0

zn
n
.

Proof of Proposition 5.1. Proceeding as in (Prakasa Rao, 2010, eq. (4.6)),
it follows from (2.4), r integrations by parts, (2.2) and, for any v ∈ {0, . . . , r},
(φj,k)

(v)(0) = (φj,k)
(v)(1), that

E(α̂
(r)
j0,k

) =
(−1)r

n

n∑
i=1

aν(i)E((φj0,k)
(r)(Xi))

=
(−1)r

n

n∑
i=1

aν(i)

∫ 1

0

(φj0,k)
(r)(x)hi(x)dx

= (−1)r
m∑
d=1

∫ 1

0

fd(x)(φj0,k)
(r)(x)dx

(
1

n

n∑
i=1

aν(i)wd(i)

)

= (−1)r
∫ 1

0

fν(x)(φj0,k)
(r)(x)dx =

∫ 1

0

f (r)
ν (x)φj0,k(x)dx = α

(r)
j0,k
.
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Therefore

E((α̂
(r)
j0,k
− α(r)

j0,k
)2) = V(α̂

(r)
j0,k

)

=
1

n2

n∑
i=1

n∑
`=1

aν(i)aν(`)Cov((φj0,k)
(r)(Xi), (φj0,k)

(r)(X`))

≤ 1

n2

n∑
i=1

a2
ν(i)V((φj0,k)

(r)(Xi)) +

1

n2

n∑
i=1

n∑
`=1
` 6=i

|aν(i)||aν(`)||Cov((φj0,k)
(r)(Xi), (φj0,k)

(r)(X`))|. (5.1)

Let us bound the first term in (5.1). For any i ∈ {1, . . . , n}, using (2.1) which
implies supx∈[0,1] hi(x) ≤ C∗ and (φj0,k)

(r)(x) = 2j0/22rj0φ(r)(2j0x− k), we have

V((φj0,k)
(r)(Xi)) ≤ E(((φj0,k)

(r)(Xi))
2) =

∫ 1

0

((φj0,k)
(r)(x))2hi(x)dx

≤ C∗2
2rj0

∫ 1

0

(φ(r)(x))2dx ≤ C22rj0 .

Therefore

1

n2

n∑
i=1

a2
ν(i)V((φj0,k)

(r)(Xi)) ≤ C22rj0
1

n2

n∑
i=1

a2
ν(i) = C22rj0

zn
n
. (5.2)

Let us now investigate the bound of the covariance term in (5.1) via two
different approaches.

Bound 1. By a standard covariance equality and (2.6), for any (i, `) ∈ {1, . . . , n}2

with i 6= `, we have

|Cov((φj0,k)
(r)(Xi), (φj0,k)

(r)(X`))|

=

∣∣∣∣∫ 1

0

∫ 1

0

(hi,`(x, y)− hi(x)h`(y))(φj0,k)
(r)(x)(φj0,k)

(r)(y)dxdy

∣∣∣∣
≤

∫ 1

0

∫ 1

0

|hi,`(x, y)− hi(x)h`(y)||(φj0,k)(r)(x)||(φj0,k)(r)(y)|dxdy

≤ C

(∫ 1

0

|(φj0,k)(r)(x)|dx
)2

.

Moreover, since (φj0,k)
(r)(x) = 2(2r+1)j0/2φ(r)(2j0x− k), by the change of

variables y = 2j0x− k, we obtain∫ 1

0

|(φj0,k)(r)(x)|dx = 2rj02−j0/2
∫
|φ(r)(x)|dx.
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Therefore

|Cov((φj0,k)
(r)(Xi), (φj0,k)

(r)(X`))| ≤ C22rj02−j0 . (5.3)

Bound 2. SinceX1, . . . , Xn are PPQD, it follows from (Newman, 1980, Lemma
3) that, for any (i, `) ∈ {1, . . . , n}2 with i 6= `,

|Cov((φj0,k)
(r)(Xi), (φj0,k)

(r)(X`))| ≤

(
sup
x∈[0,1]

|(φj0,k)(r+1)(x)|

)2

Cov(Xi, X`).

Since (φj0,k)
(r+1)(x) = 2(2r+3)j0/2φ(r+1)(2j0x−k) and supx∈[0,1] |φ(r+1)(x)| ≤

C, we have (
sup
x∈[0,1]

|(φj0,k)(r+1)(x)|

)2

≤ C2j0(2r+3).

Therefore

|Cov((φj0,k)
(r)(Xi), (φj0,k)

(r)(X`))| ≤ C2j0(2r+3)Cov(Xi, X`). (5.4)

Combining (5.3) and (5.4), for any (i, `) ∈ {1, . . . , n}2 with i 6= `, we obtain

|Cov((φj0,k)
(r)(Xi), (φj0,k)

(r)(X`))| ≤ C min(2j0(2r+3)Cov(Xi, X`), 2
2rj02−j0).

(5.5)

It follows from (5.5) that

1

n2

n∑
i=1

n∑
`=1
` 6=i

|aν(i)||aν(`)||Cov((φj0,k)
(r)(Xi), (φj0,k)

(r)(X`))|

=
2

n2

n∑
i=2

i−1∑
`=1

|aν(i)||aν(`)||Cov((φj0,k)
(r)(Xi), (φj0,k)

(r)(X`))|

≤ 1

n2

n∑
i=2

i−1∑
`=1

(
a2
ν(i) + a2

ν(`)
)
|Cov((φj0,k)

(r)(Xi), (φj0,k)
(r)(X`))|

≤ C(E + F ), (5.6)

where

E =
1

n2
22rj02−j0

2j0−1∑
i=2

i−1∑
`=1

(
a2
ν(i) + a2

ν(`)
)

and

F =
1

n2
2j0(2r+3)

n∑
i=2j0

i−1∑
`=1

(
a2
ν(i) + a2

ν(`)
)
Cov(Xi, X`).



Density estimation from mixtures under quadrant dependence 9

We have

E ≤ C
1

n2
22rj02−j02j0

n∑
i=1

a2
ν(i) = C22rj0

zn
n
. (5.7)

Using (2.7), it comes

F ≤ 1

n2
22rj0

n∑
i=0

i3
i−1∑
`=1

(
a2
ν(i) + a2

ν(`)
)
Cov(Xi, X`) ≤ C22rj0

zn
n
. (5.8)

Putting (5.1), (5.2), (5.6), (5.7) and (5.8) together, we obtain

E((α̂
(r)
j0,k
− α(r)

j0,k
)2) ≤ C22rj0

zn
n
.

This ends the proof of Proposition 5.1.

�

Proof of Theorem 4.1. We expand the function f
(r)
ν on B as

f (r)
ν (x) =

2j0−1∑
k=0

α
(r)
j0,k
φj0,k(x) +

∞∑
j=j0

2j−1∑
k=0

β
(r)
j,kψj,k(x), x ∈ [0, 1],

where

α
(r)
j0,k

=

∫ 1

0

f (r)
ν (x)φj0,k(x)dx, β

(r)
j,k =

∫ 1

0

f (r)
ν (x)ψj,k(x)dx.

We have, for any x ∈ [0, 1],

f̂ (r)(x)− f (r)
ν (x) =

2j0−1∑
k=0

(α̂
(r)
j0,k
− α(r)

j0,k
)φj0,k(x)−

∞∑
j=j0

2j−1∑
k=0

β
(r)
j,kψj,k(x).

Since B is an orthonormal basis of L2([0, 1]), we have

E
(∫ 1

0

(f̂ (r)(x)− f (r)
ν (x))2dx

)
= A+B,

where

A =
2j0−1∑
k=0

E((α̂
(r)
j0,k
− α(r)

j0,k
)2), B =

∞∑
j=j0

2j−1∑
k=0

(β
(r)
j,k )2.

Using Proposition 5.1 and the definition of j0, we obtain

A ≤ C2j022rj0
zn
n
≤ C

(zn
n

)2s/(2s+2r+1)

.
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Since f
(r)
ν ∈ Bs

2,∞(M), we have

B ≤ C
∞∑
j=j0

2−2js ≤ C2−2j0s ≤ C
(zn
n

)2s/(2s+2r+1)

.

Therefore

E
(∫ 1

0

(f̂ (r)(x)− f (r)
ν (x))2dx

)
≤ C

(zn
n

)2s/(2s+2r+1)

.

The proof of Theorem 4.1 is complete.

�
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