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The estimation of a density and its derivatives from a finite mixture under the pairwise positive quadrant dependence assumption is considered. A new wavelet based linear estimator is constructed. We evaluate its asymptotic performance by determining an upper bound of the mean integrated squared error. We prove that it attains a sharp rate of convergence for a wide class of unknown densities.

Introduction

The following mixture density model is considered: we observe n random variables X 1 , . . . , X n such that, for any i ∈ {1, . . . , n}, the density of X i is the finite mixture:

h i (x) = m d=1 w d (i)f d (x), x ∈ [0, 1],
where

• (w d (i)) (i,d)∈{1,.
..,n}×{1,...,m} are known positive weights such that, for any i ∈ {1, . . . , n}, m d=1 w d (i) = 1,

• f 1 , . . . , f m are unknown densities.

For a fixed ν ∈ {1, . . . , m}, we aim to estimate f ν and, more generally, its r-th derivative f (r) ν from Pairwise Positive Quadrant Dependent (PPQD) X 1 , . . . , X n .

Let us now present a brief survey related to this problem under various configurations. On the one hand, when X 1 , . . . , X n are independent, the estimation of f ν has been considered in e.g. [START_REF] Maiboroda | Estimators of components of mixtures with varying concentrations, Ukrain[END_REF], [START_REF] Hall | Nonparametric estimation of component distributions in a multivariate mixture[END_REF] and [START_REF] Pokhyl'ko | Wavelet estimators of a density constructed from observations of a mixture[END_REF]. The estimation of f (r) ν has been recently studied by Prakasa [START_REF] Rao | Wavelet linear estimation for derivatives of a density from observations of mixtures with varying mixing proportions[END_REF]. This is particularly of interest to detect possible bumps, concavity or convexity properties of f ν . On the other hand, when X 1 , . . . , X n are identically distributed i.e. h = h 1 = . . . = h n , the estimation of h for associated X 1 , . . . , X n (including PPQD) has been investigated in e.g. [START_REF] Cai | Efficient estimation of a distribution function under quadrant dependence[END_REF], [START_REF] Dewan | A general method of density estimation for associated random variables[END_REF], [START_REF] Masry | Multivariate probability density estimation for associated processes: Strong consistency and rates[END_REF] and Prakasa [START_REF] Rao | Wavelet linear density estimation for associated sequences[END_REF]. The estimation of h (r) has been considered by [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density with associated variables[END_REF]. However, to the best of our knowledge, the combination of these two complex statistical frameworks i.e. the estimation of f

(r) ν , including f ν , under PPQD conditions is a new challenge.
Such a problem occurs in the study of medical, biological and other types of data. The most common situation is the following: for any i ∈ {1, . . . , n}, X i depends on an unobserved random indicator I i taking its values in {1, . . . , m}. Applying the Bayes theorem, the density of X i is h i defined with w d (i) = P(I i = d) and f d the conditional density of X i given {I i = d}. We refer to [START_REF] Maiboroda | Estimators of components of mixtures with varying concentrations, Ukrain[END_REF] and the references there in. Naturally, in some situations, X 1 , . . . , X n are not independent and this motivates the study of various dependence structures as the PPQD one. Further details and applications on the concept of associated random variables can be found in [START_REF] Roussas | Positive and negative dependence with some statistical applications, Asymptotics, nonparametrics and time series[END_REF], Prakasa [START_REF] Rao | Associated sequences and related inference problems[END_REF] and [START_REF] Sancetta | Strong law of large numbers for pairwise positive quadrant dependent random variables[END_REF].

To estimate f (r) ν , several methods are possible as kernel, spline, wavelet, . . . (see e.g. Prakasa [START_REF] Rao | Nonparametric functional estimation[END_REF]Rao ( , 1999)), [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF]). In this study, we focus our attention on the multiresolution analysis techniques and, more precisely, the wavelet methodology of [START_REF] Pokhyl'ko | Wavelet estimators of a density constructed from observations of a mixture[END_REF] and Prakasa [START_REF] Rao | Wavelet linear estimation for derivatives of a density from observations of mixtures with varying mixing proportions[END_REF]. We construct a linear wavelet estimator and explore its asymptotic performance by taking the mean integrated squared error (MISE) and assuming that f (r) ν belongs to a Besov ball. We prove that, under some specific assumptions, it attains the same rate of convergence as the one obtained in the independent case. This paper is organized as follows. Assumptions on the model and some notations are introduced in Section 2. Section 3 briefly describes the wavelet basis on [0, 1] and the Besov balls. The linear wavelet estimator and the results are presented in Section 4. Section 5 is devoted to the proofs.

Assumptions

Additional assumptions on the model are presented below. The integers r and ν refer to those in f (r) ν .

Assumption on f 1 , . . . , f m . Without loss of generality, for any d ∈ {1, . . . , m}, we assume that the support of f d is [0, 1] (our study can be extended to another compact support).

We suppose that there exists a constant C * > 0 such that, for any d ∈ {1, . . . , m},

f (r) d (x) ≤ C * . (2.1)
We suppose that, for any d ∈ {1, . . . , m} and v ∈ {0, . . . , r},

f (v) d (0) = f (v) d (1). (2.2)
Assumption on the weights of the mixture. We suppose that the matrix

Γ n = 1 n n i=1 w k (i)w (i) (k, )∈{1,...,m} 2 satisfies det(Γ n ) > 0.
For the considered ν (the one which refers to the estimation of f (r) ν ) and any i ∈ {1, . . . , n}, we set

a ν (i) = 1 det(Γ n ) m k=1 (-1) k+ν γ n ν,k w k (i), (2.3)
where γ n ν,k denotes the determinant of the minor (ν, k) of the matrix Γ n . Then a ν (1), . . . , a ν (n) satisfy

(a ν (1), . . . , a ν (n)) = argmin (u 1 ,...,un)∈∩ m d=1 U ν,d 1 n n i=1 u 2 i , (2.4) 
where

U ν,d = (u 1 , . . . , u n ) ∈ R n ; 1 n n i=1 u i w d (i) = δ ν,d
and δ ν,d is the Kronecker delta.

Technical details can be found in [START_REF] Maiboroda | Estimators of components of mixtures with varying concentrations, Ukrain[END_REF].

We set

z n = 1 n n i=1 a 2 ν (i).
(2.5)

For technical reasons, we suppose that z n < n.

Assumptions on X 1 , . . . , X n . We suppose that X 1 , . . . , X n are PPQD i.e. for any (i, ) ∈ {1, . . . , n} 2 with i = and any (x, y)

∈ [0, 1] 2 , P(X i > x, X > y) ≥ P(X i > x)P(X > y).
This weak kind of dependence has been introduced by Lehmann (1966).

Examples of PPQD variables can be found in [START_REF] Sancetta | Strong law of large numbers for pairwise positive quadrant dependent random variables[END_REF].

We suppose that, for any (i, ) ∈ {1, . . . , n} 2 , there exists a constant C > 0 such that sup

(x,y)∈[0,1] 2 |h i, (x, y) -h i (x)h (y)| ≤ C, (2.6)
where h i, is the density of (X i , X ).

We suppose that there exists a constant C > 0 such that

n i=1 i 3 i-1 =1 a 2 ν (i) + a 2 ν ( ) C ov (X i , X ) ≤ Cnz n , (2.7)
where a ν (1), . . . , a ν (n) are (2.3) and z n is (2.5).

This assumption seems important to obtain "suitable" asymptotic properties in the estimation of f (r) ν from PPQD X 1 , . . . , X n .

Wavelets and Besov balls

Throughout the paper, we work with the wavelet basis on [0, 1] described below. Let N be an integer such that N > r + 1, and φ and ψ be the initial wavelet functions of the Daubechies wavelets dbN . In particular, these functions are compactly supported and belong to C r+1 . Set

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
Then there exists an integer η satisfying 2 η ≥ 2N such that, for any ≥ η, the collection

B = {φ ,k (.), k ∈ {0, . . . , 2 -1}; ψ j,k (.); j ∈ N-{0, . . . , -1}, k ∈ {0, . . . , 2 j -1}},
with an appropriate treatment at the boundaries, is an orthonormal basis of L 2 ([0, 1]) (the set of square-integrable functions on [0, 1]) and, for any v ∈ {0, . . . , r}, (φ j,k ) (v) (0) = (φ j,k ) (v) (1). Details can be found in [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF].

For any integer ≥ η, any h ∈ L 2 ([0, 1]) can be expanded on B as

h(x) = 2 -1 k=0 α ,k φ ,k (x) + ∞ j= 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where

α j,k = 1 0 h(x)φ j,k (x)dx, β j,k = 1 0 h(x)ψ j,k (x)dx. (3.1)
A function h belongs to B s 2,∞ (M ) if and only if there exists a constant M * > 0 (depending on M ) such that (3.1) satisfy

sup j≥η 2 2js k∈Λ j β 2 j,k ≤ M * .
We refer to [START_REF] Meyer | Ondelettes et Opérateurs[END_REF].

Estimator and results

Assuming that

f (r) ν ∈ B s 2,∞ ( 
M ), we define the linear estimator f (r) by

f (r) (x) = 2 j 0 -1 k=0 α(r) j 0 ,k φ j 0 ,k (x), x ∈ [0, 1], (4.1) 
where α(r)

j 0 ,k = (-1) r n n i=1 a ν (i)(φ j 0 ,k ) (r) (X i ), (4.2)
a ν (1), . . . , a ν (n) are (2.3), j 0 is the integer satisfying

1 2 n z n 1/(2s+2r+1) < 2 j 0 ≤ n z n 1/(2s+2r+1)
and z n is defined by (2.5).

The definitions of α(r) j 0 ,k and j 0 , which take into account the PPQD case, are chosen to minimize the MISE of f (r) .

Note that f (r) is close to one considered by (Prakasa Rao, 2010, eq. (4.5)) in the independent case. Further details on derivatives density estimation via wavelet can also be found in [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density with associated variables[END_REF] and [START_REF] Hosseinioun | Nonparametric estimation of the derivatives of a density by the method of wavelet for mixing sequences[END_REF].

Theorem 4.1 below investigates the MISE of f (r) when f

(r) ν ∈ B s 2,∞ (M ).
Theorem 4.1 (Upper bound for f (r) ) Let X 1 , . . . , X n be n random variables as described in Section 1 under the assumptions of Section 2. Suppose that f (r) ν ∈ B s 2,∞ (M ) with s > 0. Let f (r) be (4.1). Then there exists a constant C > 0 such that

E 1 0 ( f (r) (x) -f (r) ν (x)) 2 dx ≤ C z n n 2s/(2s+2r+1)
.

The proof of Theorem 4.1 uses a moment inequality on (4.2) and a suitable decomposition of the MISE. Let us mention that the obtained rate of convergence is exactly the optimal one related to the independent case i.e. (z n /n) 2s/(2s+2r+1) (see (Prakasa Rao, 2010, Theorem 6.1 and Remark 6.1)).

Note that Theorem 4.1 can be extended to other kinds of associated X 1 , . . . , X n as Negative Associated (NA), Pairwise Negative Quadrant Dependence (PNQD), . . . . This is due to the Newman inequality (Newman, 1980, Lemma 3) used in the proof of Theorem 4.1 which still holds in these cases.

Remark that f (r) is not adaptive with respect to s. Adaptivity can perhaps be achieved by using a non-linear wavelet estimator as the hard thresholding one. This approach works in the independent case (see [START_REF] Pokhyl'ko | Wavelet estimators of a density constructed from observations of a mixture[END_REF] Theorem 4)). However, the proof of this fact uses technical tools as the Bernstein and the Rosenthal inequalities and it is not immediately clear how to extend this to the PPQD case.

Proofs

In this section, we consider the density model described in Section 1 under the assumptions of Section 2. Moreover, C denotes any constant that does not depend on j, k and n. Its value may change from one term to another and may depends on φ.

Proposition 5.1 Let X 1 , . . . , X n be n random variables as described in Section 1 under the assumptions of Section 2. For any k ∈ {0, . . . , 2 j 0 -1}, let α (r)

j 0 ,k = 1 0 f (r)
ν (x)φ j 0 ,k (x)dx and α(r) j j 0 ,k be (4.2). Then there exists a constant C > 0 such that E((α (r)

j 0 ,k -α (r) j 0 ,k ) 2 ) ≤ C2 2rj 0 z n n .
Proof of Proposition 5.1. Proceeding as in (Prakasa Rao, 2010, eq. (4.6)), it follows from (2.4), r integrations by parts, (2.2) and, for any v ∈ {0, . . . , r},

(φ j,k ) (v) (0) = (φ j,k ) (v) (1), that E(α (r) j 0 ,k ) = (-1) r n n i=1 a ν (i)E((φ j 0 ,k ) (r) (X i )) = (-1) r n n i=1 a ν (i) 1 0 (φ j 0 ,k ) (r) (x)h i (x)dx = (-1) r m d=1 1 0 f d (x)(φ j 0 ,k ) (r) (x)dx 1 n n i=1 a ν (i)w d (i) = (-1) r 1 0 f ν (x)(φ j 0 ,k ) (r) (x)dx = 1 0 f (r) ν (x)φ j 0 ,k (x)dx = α (r) j 0 ,k . Therefore E((α (r) j 0 ,k -α (r) j 0 ,k ) 2 ) = V(α (r) j 0 ,k ) = 1 n 2 n i=1 n =1 a ν (i)a ν ( )C ov ((φ j 0 ,k ) (r) (X i ), (φ j 0 ,k ) (r) (X )) ≤ 1 n 2 n i=1 a 2 ν (i)V((φ j 0 ,k ) (r) (X i )) + 1 n 2 n i=1 n =1 =i |a ν (i)||a ν ( )||C ov ((φ j 0 ,k ) (r) (X i ), (φ j 0 ,k ) (r) (X ))|. (5.1)
Let us bound the first term in (5.1). For any i ∈ {1, . . . , n}, using (2.1) which implies sup

x∈[0,1] h i (x) ≤ C * and (φ j 0 ,k ) (r) (x) = 2 j 0 /2 2 rj 0 φ (r) (2 j 0 x -k), we have V((φ j 0 ,k ) (r) (X i )) ≤ E(((φ j 0 ,k ) (r) (X i )) 2 ) = 1 0 ((φ j 0 ,k ) (r) (x)) 2 h i (x)dx ≤ C * 2 2rj 0 1 0 (φ (r) (x)) 2 dx ≤ C2 2rj 0 . Therefore 1 n 2 n i=1 a 2 ν (i)V((φ j 0 ,k ) (r) (X i )) ≤ C2 2rj 0 1 n 2 n i=1 a 2 ν (i) = C2 2rj 0 z n n .
(5.2)

Let us now investigate the bound of the covariance term in (5.1) via two different approaches.

Bound 1. By a standard covariance equality and (2.6), for any (i, ) ∈ {1, . . . , n} 2 with i = , we have

|C ov ((φ j 0 ,k ) (r) (X i ), (φ j 0 ,k ) (r) (X ))| = 1 0 1 0 (h i, (x, y) -h i (x)h (y))(φ j 0 ,k ) (r) (x)(φ j 0 ,k ) (r) (y)dxdy ≤ 1 0 1 0 |h i, (x, y) -h i (x)h (y)||(φ j 0 ,k ) (r) (x)||(φ j 0 ,k ) (r) (y)|dxdy ≤ C 1 0 |(φ j 0 ,k ) (r) (x)|dx 2 .
Moreover, since (φ j 0 ,k ) (r) (x) = 2 (2r+1)j 0 /2 φ (r) (2 j 0 x -k), by the change of variables y = 2 j 0 x -k, we obtain

1 0 |(φ j 0 ,k ) (r) (x)|dx = 2 rj 0 2 -j 0 /2 |φ (r) (x)|dx.
Therefore

|C ov ((φ j 0 ,k ) (r) (X i ), (φ j 0 ,k ) (r) (X ))| ≤ C2 2rj 0 2 -j 0 .
(5.3) Bound 2. Since X 1 , . . . , X n are PPQD, it follows from (Newman, 1980, Lemma 3) that, for any (i, ) ∈ {1, . . . , n} 2 with i = , 2r+3) .

|C ov ((φ j 0 ,k ) (r) (X i ), (φ j 0 ,k ) (r) (X ))| ≤ sup x∈[0,1] |(φ j 0 ,k ) (r+1) (x)| 2 C ov (X i , X ). Since (φ j 0 ,k ) (r+1) (x) = 2 (2r+3)j 0 /2 φ (r+1) (2 j 0 x-k) and sup x∈[0,1] |φ (r+1) (x)| ≤ C, we have sup x∈[0,1] |(φ j 0 ,k ) (r+1) (x)| 2 ≤ C2 j 0 (
Therefore

|C ov ((φ j 0 ,k ) (r) (X i ), (φ j 0 ,k ) (r) (X ))| ≤ C2 j 0 (2r+3) C ov (X i , X ).
(5.4) Combining (5.3) and (5.4), for any (i, ) ∈ {1, . . . , n} 2 with i = , we obtain

|C ov ((φ j 0 ,k ) (r) (X i ), (φ j 0 ,k ) (r) (X ))| ≤ C min(2 j 0 (2r+3) C ov (X i , X ), 2 2rj 0 2 -j 0 ). (5.5) It follows from (5.5) that 1 n 2 n i=1 n =1 =i |a ν (i)||a ν ( )||C ov ((φ j 0 ,k ) (r) (X i ), (φ j 0 ,k ) (r) (X ))| = 2 n 2 n i=2 i-1 =1 |a ν (i)||a ν ( )||C ov ((φ j 0 ,k ) (r) (X i ), (φ j 0 ,k ) (r) (X ))| ≤ 1 n 2 n i=2 i-1 =1 a 2 ν (i) + a 2 ν ( ) |C ov ((φ j 0 ,k ) (r) (X i ), (φ j 0 ,k ) (r) (X ))| ≤ C(E + F ), (5.6) 
where

E = 1 n 2 2 2rj 0 2 -j 0 2 j 0 -1 i=2 i-1 =1 a 2 ν (i) + a 2 ν ( ) and F = 1 n 2 2 j 0 (2r+3) n i=2 j 0 i-1 =1 a 2 ν (i) + a 2 ν ( ) C ov (X i , X ).
We have

E ≤ C 1 n 2 2 2rj 0 2 -j 0 2 j 0 n i=1 a 2 ν (i) = C2 2rj 0 z n n .
(5.7)

Using (2.7), it comes

F ≤ 1 n 2 2 2rj 0 n i=0 i 3 i-1 =1 a 2 ν (i) + a 2 ν ( ) C ov (X i , X ) ≤ C2 2rj 0 z n n .
(5.8)

Putting (5.1), (5.2), (5.6), (5.7) and (5.8) together, we obtain E((α (r)

j 0 ,k -α (r) j 0 ,k ) 2 ) ≤ C2 2rj 0 z n n .
This ends the proof of Proposition 5.1.

Proof of Theorem 4.1. We expand the function f .

Therefore

E 1 0 ( f (r) (x) -f (r) ν (x)) 2 dx ≤ C z n n 2s/(2s+2r+1)
.

The proof of Theorem 4.1 is complete.

  ν (x)ψ j,k (x)dx.We have, for any x ∈ [0, 1],f (r) (x) -f (r) r) (x) -f (r) ν (x)) 2 dx = A + B,Using Proposition 5.1 and the definition of j 0 , we obtain A ≤ C2 j 0 2 2rj 0 z n n
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