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1 Motivations

We observe n random variables X1, . . . , Xn such that, for any i ∈ {1, . . . , n},
the density of Xi is the finite mixture:

hi(x) =

m∑
d=1

wd(i)fd(x), x ∈ [0, 1],

where m ∈ N∗,

– (wd(i))(i,d)∈{1,...,n}×{1,...,m} are known positive weights such that, for any
i ∈ {1, . . . , n},

∑m
d=1 wd(i) = 1,

– f1, . . . , fm are unknown densities.

We assume that X1, . . . , Xn are pairwise positive quadrant dependent (PPQD)
(to be defined in Section 2). For a fixed ν ∈ {1, . . . ,m}, we aim to estimate fν
from X1, . . . , Xn.

The estimation of fν when X1, . . . , Xn are independent has been con-
sidered in, e.g., Maiboroda (1996), Hall and Zhou (2003), Pokhyl’ko (2005)
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and Prakasa Rao (2010). When X1, . . . , Xn are identically distributed i.e.
h = h1 = . . . = hn, the estimation of h in the PPQD case (and, a for-
tiori, the positively associated case) has been investigated in, e.g., Cai and
Roussas (1997), Dewan and Prakasa Rao (1999), Masry (2001), Prakasa Rao
(2003) and Chaubey et al (2006). However, to the best of our knowledge, the
estimation of fν under dependence conditions (as PPQD) is a new challenge.

To estimate fν , several methods are possible (kernel, spline,wavelet, . . . )
(see e.g. Prakasa Rao (1983, 1999), Härdle et al (1998) and Tsybakov (2004)).
In this study, we adopt the wavelet methodology of Pokhyl’ko (2005) and
Prakasa Rao (2010). We construct a linear wavelet estimator. We evaluate its
performance by taking the mean integrated squared error (MISE) and assum-
ing that fν belongs to a Besov ball.

This paper is organized as follows. Assumptions on the model and some
notations are introduced in Section 2. Section 3 briefly describes the wavelet
basis on [0, 1] and the Besov balls. The linear wavelet estimator is presented in
Section 4. The upper bound theorem is set in Section 5. Section 6 is devoted
to the proofs.

2 Assumptions

Additional assumptions on the model are presented below.

Assumption on f1, . . . , fm. Without loss of generality, for any d ∈ {1, . . . ,m},
we assume that the support of fd is [0, 1] (our study can be extended to
another compact support).

Assumptions on X1, . . . , Xn. Recall that X1, . . . , Xn are PPQD i.e. for any
(i, `) ∈ {1, . . . , n}2 with i 6= ` and any (x, y) ∈ [0, 1]2,

P(Xi > x,X` > y) ≥ P(Xi > x)P(X` > y).

This kind of dependence was introduced by Lehmann (1966).
We assume that there exist positive real numbers b0, . . . , bn−1 satisfying
1. for any (i, `) ∈ {1, . . . , n}2,

C(Xi, X`) = b|i−`|, (1)

2. there exist two constants C > 0 and θ ∈ [0, 1) such that

n−1∑
u=0

bu ≤ Cnθ. (2)

For instance, if there exists γ ≥ 0 such that, for any (i, `) ∈ {1, . . . , n}2,
C(Xi, X`) = 1/(1 + |i− `|γ), then (2) is satisfied with θ = 0 if γ > 1 and
θ = 1− γ if γ ∈ [0, 1).
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Assumption on the weights of the mixture. We suppose that the matrix

Γn =

(
1

n

n∑
i=1

wk(i)w`(i)

)
(k,`)∈{1,...,m}2

is nonsingular i.e. det(Γn) > 0. For the considered ν (the one which refers
to the estimation of fν) and any i ∈ {1, . . . , n}, we set

aν(i) =
1

det(Γn)

m∑
k=1

(−1)k+νγnν,kwk(i), (3)

where γnν,k denotes the determinant of the minor (ν, k) of the matrix Γn.
Then, for any d ∈ {1, . . . ,m},

1

n

n∑
i=1

aν(i)wd(i) =


1 if d = ν,

0 otherwise,

(4)

and

(aν(1), . . . , aν(n)) = argmin
(b1,...,bn)∈Rn

1

n

n∑
i=1

b2i .

Technical details can be found in Maiboroda (1996).
We set

zn =
1

n

n∑
i=1

a2ν(i). (5)

For technical reasons, we suppose that zn < n1−θ where θ refers to (2).

3 Wavelets and Besov balls

Wavelet basis. Let N ∈ N∗ and (φ, ψ) be the initial wavelet functions of
the Daubechies wavelets dbN . Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer τ satisfying 2τ ≥ 2N such that the collection

B = {φτ,k(.), k ∈ {0, . . . , 2τ−1}; ψj,k(.); j ∈ N−{0, . . . , τ−1}, k ∈ {0, . . . , 2j−1}},

(with an appropriate treatments at the boundaries) is an orthonormal basis
of L2([0, 1]), the set of square-integrable functions on [0, 1]. We refer to
Cohen (1993).
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For any integer ` ≥ τ , any h ∈ L2([0, 1]) can be expanded on B as

h(x) =

2`−1∑
k=0

α`,kφ`,k(x) +

∞∑
j=`

2j−1∑
k=0

βj,kψj,k(x),

where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =

∫ 1

0

h(x)φj,k(x)dx, βj,k =

∫ 1

0

h(x)ψj,k(x)dx. (6)

Besov balls. Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to
Bsp,r(M) if and only if there exists a constant M∗ > 0 (depending on M)
such that the associated wavelet coefficients (6) satisfy

 ∞∑
j=τ−1

2j(s+1/2−1/p)

2j−1∑
k=0

|βj,k|p
1/p


r

1/r

≤M∗.

We set βτ−1,k = ατ,k. In this expression, s is a smoothness parameter and
p and r are norm parameters. For a particular choice of s, p and r, Bsp,r(M)
contain the Hölder and Sobolev balls. See Meyer (1990).

4 Estimator

Assuming that fν ∈ Bsp,r(M) with p ≥ 2, we define the linear estimator f̂L by

f̂L(x) =

2j0−1∑
k=0

α̂j0,kφj0,k(x), (7)

where

α̂j0,k =
1

n

n∑
i=1

aν(i)φj0,k(Xi), (8)

aν(1), . . . , aν(n) are defined by (3), j0 is the integer satisfying

1

2

(
n1−θ

zn

)1/(2s+4)

< 2j0 ≤
(
n1−θ

zn

)1/(2s+4)

,

zn is defined by (5) and θ is the one in (2).

The definition of j0, which takes into account the PPQD case, is chosen to
minimize the MISE of f̂L.
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5 Result

Upper bound for f̂L is given in Theorem 1 below.

Theorem 1 Let X1, . . . , Xn be n random variables as described in Section 1
under the assumptions of Section 2. Suppose that fν ∈ Bsp,r(M) with s > 0,

p ≥ 2 and r ≥ 1. Let f̂L be (7). Then there exists a constant C > 0 such that

E
(∫ 1

0

(
f̂L(x)− fν(x)

)2
dx

)
≤ C

( zn
n1−θ

)2s/(2s+4)

.

The proof of Theorem 1 uses moment inequalities on (8) and a suitable de-
composition of the MISE.

Due to the PPQD case (without other assumptions on the dependence of

X1, . . . , Xn), the rate of convergence of f̂L is naturally greater than the optimal
one obtained in the independent case i.e. (zn/n)2s/(2s+1) (see (Pokhyl’ko 2005,
Theorem 1)).

Note that the linear wavelet estimator is not adaptive with respect to s.
Adaptivity can perhaps be achieved by using a non-linear wavelet estimator as
the hard thresholding one. This approach works in the independent case (see
(Pokhyl’ko 2005, Theorem 4)), but the proof of this fact uses technical tools
as the Bernstein’s inequality and Rosenthal’s inequality. It is not immediately
clear how to extend this to the PPQD case.

6 Proofs

In this section, C represents a positive constant which may differ from one
term to another.

Proposition 1 Let X1, . . . , Xn be n random variables as described in Section
1 under the assumptions of Section 2. For any k ∈ {0, . . . , 2j0−1}, let αj0,k be
the wavelet coefficient (6) of fν and α̂jj0 ,k be (8). Then there exists a constant
C > 0 such that

E
(

(α̂j0,k − αj0,k)
2
)
≤ C23j0

zn
n1−θ

.

Proof of Proposition 1. It follows from (4) that

E(α̂j0,k) =
1

n

n∑
i=1

aν(i)E(φj0,k(Xi)) =
1

n

n∑
i=1

aν(i)

(
m∑
d=1

wd(i)

∫ 1

0

fd(x)φj0,k(x)dx

)

=

m∑
d=1

∫ 1

0

fd(x)φj0,k(x)dx

(
1

n

n∑
i=1

aν(i)wd(i)

)

=

∫ 1

0

fν(x)φj0,k(x)dx = αj0,k.
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Therefore

E
(

(α̂j0,k − αj0,k)
2
)

= V (α̂j0,k)

=
1

n2

n∑
i=1

n∑
`=1

aν(i)aν(`)C (φj0,k(Xi), φj0,k(X`))

≤ 1

n2

n∑
i=1

n∑
`=1

|aν(i)||aν(`)||C (φj0,k(Xi), φj0,k(X`)) |. (9)

Since X1, . . . , Xn are PPQD, it follows from (Newman 1980, Lemma 3) that,
for any (i, `) ∈ {1, . . . , n}2 with i 6= `,

|C (φj0,k(Xi), φj0,k(X`)) | ≤

(
sup
x∈[0,1]

|(φj0,k(x))′|

)2

C(Xi, X`). (10)

Using (10) and (1), we obtain

1

n2

n∑
i=1

n∑
`=1

|aν(i)||aν(`)||C (φj0,k(Xi), φj0,k(X`)) | ≤
1

n2
AB, (11)

where

A =

(
sup
x∈[0,1]

|(φj0,k(x))′|

)2

, B =

n∑
i=1

n∑
`=1

|aν(i)||aν(`)|b|i−`|.

Let us now bound A and B in turn.
Upper bound for A. Since φ ∈ C1([0, 1]), we have (φj0,k(x))′ = 23j0/2φ′(2j0x−

k), so
sup
x∈[0,1]

|(φj0,k(x))′| ≤ 23j0/2 sup
x∈[0,1]

|φ′(x)| = C23j0/2.

Hence

A ≤ C23j0 . (12)

Upper bound for B. We have

B = b0nzn + 2

n∑
i=2

i−1∑
`=1

|aν(i)||aν(`)|bi−`

≤ b0nzn +

n∑
i=2

i−1∑
`=1

(
a2ν(i) + a2ν(`)

)
bi−`

= b0nzn +

n∑
i=2

i−1∑
u=1

(
a2ν(i) + a2ν(i− u)

)
bu

= b0nzn +

n∑
i=2

a2ν(i)

i−1∑
u=1

bu +

n∑
i=2

i−1∑
u=1

a2ν(i− u)bu.
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Using (2), we obtain

n∑
i=2

a2ν(i)

i−1∑
u=1

bu ≤ nzn

(
n−1∑
u=0

bu

)
≤ Cznnθ+1

and

n∑
i=2

i−1∑
u=1

a2ν(i− u)bu =

n−1∑
u=1

bu

n∑
i=u+1

a2ν(i− u) ≤ nzn

(
n−1∑
u=0

bu

)
≤ Cznnθ+1.

Hence

B ≤ Cznnθ+1. (13)

Putting (9), (11), (12) and (13) together, we obtain

E
(

(α̂j0,k − αj0,k)
2
)
≤ C23j0

zn
n1−θ

.

This complete the proof of Proposition 1.

�

Proof of Theorem 1. We expand the function fν on B as

fν(x) =

2j0−1∑
k=0

αj0,kφj0,k(x) +

∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x),

where

αj0,k =

∫ 1

0

fν(x)φj0,k(x)dx, βj,k =

∫ 1

0

fν(x)ψj,k(x)dx.

We have

f̂L(x)− fν(x) =

2j0−1∑
k=0

(α̂j0,k − αj0,k)φj0,k(x)−
∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x).

Since B is an orthonormal basis of L2([0, 1]), we have

E
(∫ 1

0

(
f̂L(x)− fν(x)

)2
dx

)
= A+B,

where

A =

2j0−1∑
k=0

E
(

(α̂j0,k − αj0,k)
2
)
, B =

∞∑
j=j0

2j−1∑
k=0

β2
j,k.

Using Proposition 1 and the definition of j0, we obtain

A ≤ C2j023j0
zn
n1−θ

≤ C
( zn
n1−θ

)2s/(2s+4)

.
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Since p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Hence

B ≤ C2−2j0s ≤ C
( zn
n1−θ

)2s/(2s+4)

.

Therefore

E
(∫ 1

0

(
f̂L(x)− fν(x)

)2
dx

)
≤ C

( zn
n1−θ

)2s/(2s+4)

.

The proof of Theorem 1 is complete.

�
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