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Abstract 

 

We have studied the step-step interactions on the Pt(997) vicinal surface. Grazing 

incidence X-ray diffraction (GIXD) allowed us to measure the elastic atomic relaxations near 

the surface due to the steps. By means of the model of buried elastic dipoles, within the 

framework of anisotropic linear elasticity (ALE) calculations, the surface stress of Pt(111), 

and the elastic interaction between steps are deduced. The values so-obtained are compared to 

the values previously measured on the Pt(779) surface with the same technique. The 

comparison shows the strong influence of step geometry on step interactions. 

 

1. Introduction 

Among vicinal surfaces of transition and noble metals, (111) platinum vicinal surfaces 

have attracted a considerable interest. In particular, due to the high regularity achieved by the 

array of monoatomic steps obtained when cutting a Pt crystal a few degrees from the (111) 
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direction, such surfaces have been used as nucleation centers for the guided growth of 

metallic nanowires [1,2,3]. The specific properties of Pt steps have also been enlightened in 

numerous catalysis studies [4,5,6]. Beside this technological interest, fundamental properties 

of platinum stepped surfaces (atomic relaxations, thermodynamics...) have been investigated 

by various experimental techniques such as scanning tunneling microscopy (STM) [7,8,9,10], 

low energy electron microscopy (LEEM)[11,12], and grazing incidence X-Ray diffraction 

(GIXD) [13, 14]. Theoretical investigations have also been performed using semi-empirical 

potentials [15], tight-binding (TB) approximation [16], embedded atom method (EAM) [17] 

or density functional theory (DFT)  [16,18,19,20]. 

As compared for example with similar copper surfaces for which numerous studies were 

performed [21,22], there is still little data available on the energetics of Pt (111) vicinal 

surfaces. Concerning the relative energy of steps, STM experiments [7] have first shown that 

the free energy of steps with {111} microfacet orientation was 13% lower than the free 

energy of steps with {100} orientation. This was confirmed by recent STM analysis of the 

shape fluctuations of 2D-islands on Pt(111), giving step energies =Aβ 0.348 ± 0.016 eV for 

{100} steps and =Bβ 0.300 ± 0.014 eV for {111} steps. On the theoretical side, the first 

calculations have determined a nearly equal value of the step energy: == BA ββ 0.34 

eV/atom, using EAM [17], or =Bβ 0.47 eV/atom for {111} steps and =Aβ 0.46 eV/atom for 

{100} steps using DFT [18]. However, more recent DFT calculations succeeded in 

reproducing the experimental anisotropy observed: =Aβ 0.40 eV/at and =Bβ 0.35 eV/at 

( 88.0/ =AB ββ ) [19], or =Aβ 0.43 eV/at and =Bβ 0.38 eV/at  ( 88.0/ =AB ββ ) [20]. 

The magnitude of the A constant for the 2/ dA  elastic interaction between steps was more 

controversial. From the STM measurement of the terrace width distribution on Pt(997), a 

surface with (111) terraces and {111} steps, a first value of the interaction energy constant of 

=A 2.4 eV.Å [23] was deduced, which value was further re-evaluated in a more refined 
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analysis to the value of =A 6 eV.Å [24]. In contrast, a value of only 0.5 eV.Å [14] for the 

elastic interaction energy between steps has been determined from the GIXD measurement of 

elastic relaxations on Pt(977), a surface with (111) terraces and {100} steps. Since it is 

generally assumed that the major contribution to the step interaction comes from elastic 

interaction [14,25], the difference between the two sets of measurements, by GIXD for {100} 

type steps and from the TWD measurement for {111} steps,  cannot be attributed to the 

influence of other interactions, not accessible by GIXD, such as electronic interactions or 

electrostatic interactions between steps. It is at first surprising to find such a huge difference 

on the A  value between these step orientations on Pt(111) vicinal surfaces, whereas the step 

formation energies Aβ  and Bβ are found to be very similar.  

These differences give rise to suspicion that something was misunderstood or that other 

effects remain to be discovered in our understanding of vicinal surfaces, thus casting doubt on 

all the theories developed to model these systems. Thus some effort has to be made to answer 

the question of the origin of the difference observed between {111} and {100} steps on 

Pt(111) vicinals: we have studied by GIXD the atomic relaxations near the surface of Pt(997) 

and compared the results with those obtained by the same technique on Pt(779). The paper is 

organized as follows. The experiment is described in Section 2. The results are analyzed in 

detail in Section 3 in the frame of the buried dipole model. We show that a quantitative value 

of the step interaction energy can be derived from the measurements or from the calculation 

of the atomic displacements. Section 4 is devoted to a general discussion and to the 

conclusion. 

 

2. Experimental 

2.1 Sample preparation 
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GIXD experiments were performed on the ID3 beamline at the ESRF storage ring. The 

sample was a disk of 1 cm diameter, with one side polished and oriented along the (997) 

direction. The sample was positioned and prepared inside an ultrahigh vacuum chamber that 

was coupled to a six-axis diffractometer. Sample cleaning was achieved by cycles of Ar 

sputtering at 2 kV for 2 h at a pressure of 7.10-5 mbar, followed by heating during 5 min at 

650°C under 5.10-7 mbar O2 and final annealing during 2 min at 850°C under UHV. After 

several cycles of sputtering and annealing, no carbon nor oxygen contaminations could be 

detected by Auger electron spectroscopy. 

 

2.2 Sample geometry 

The Pt(997) surface consists of (111) terraces, separated by ]011[  steps. The number of 

]011[  atomic rows in a terrace is equal to 9. The intra-row distance, i. e. the distance between 

two consecutive atoms along the step edge is 2/0a , where 92.30 =a  Å is the lattice 

constant of Pt. The inter-row distance is 8/300 ad = , and the interstep distance is 

=d 72/18830a =20.1 Å. A schematic of the surface is given in Fig. 1. The miscut angle, 

i.e. the angle between (111) and (997) is =θ 6.45°. 

To define the basis for surface coordinates, we have used the orthogonal vectors 
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The corresponding h , k , and l  indices are used for indexing a reflection in reciprocal 

space. The reciprocal-space transformation from the surface coordinate (hkl ) to the standard 

fcc coordinates (HKL ) is given by: 
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2.3 GIXD measurements 

For GIXD measurements, monochromatic X-rays with a photon energy of 17 keV were 

selected by using a Si(111) monochromator. The incidence angle was kept fixed at 1° of the 

(997) surface. The scattered X-rays were detected using a NaI scintillation counter. 

Fluorescence was eliminated by use of an analyzer crystal mounted before the detector. 209 

structure factors obsF  were acquired by performing standard rocking scans along 5 crystal 

truncation rods (CTR): (0 2 l  ), (32 0 l  ), (34 0 l  ), (36 0 l  ), and (38 0 l  ). For (0 2 l  ), only 

the atomic relaxations along z  contribute to the shape of the rod (there is not any relaxations 

along y  for symmetry reasons). For the other rods, the atomic relaxations along x  are 

dominant for small l  values. 

Voigt curves were used for integration of the profile of the rocking scans and deriving the 

diffracted intensity. The standard instrumental correction was applied to the structure factors 

for taking into account the geometry of the diffractometer. 

 

2.4 Raw experimental results 

Fig. 2 displays a map in the reciprocal space of the diffracted intensity around the 

(34 0 L ) rod. Two Bragg spots are visible, at == Braggll 3 on the (34 0 l ) rod and at 

=Braggl 28 on the (36 0 l ) rod. They correspond to maxima of intensity, for which all atoms of 

the crystal diffract in-phase. Along a CTR, when going away from the Bragg peak, the 

variation of amplitude is not a monotonous decrease. Minima and maxima of the diffracted 

intensity are clearly visible. 
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In Fig. 3, all data points are presented as a function of the momentum transfer l
~

 along l  

with respect to the value corresponding to the nearest Bragg spot: Bragg

~
lll −= . As can be 

seen, sharp intensity variations occur for all rods at the same relative position l
~

. For 

example, along the (34 0 l ) and (36 0 l ) rods, the diffracted intensity has a minimum at 

≈l
~

12; along the (32 0 l ) and (34 0 l ) rods, the diffracted intensity has a minimum at ≈l
~

34. 

Apart from these minima, very sharp variations of the structure factors are clearly visible, for 

example, around at ≈l
~

-25 for the (38 0 l ) rod or at ≈l
~

25 for the (32 0 l ) rod. These abrupt 

variations occur in a very narrow domain of l  values. They are thus related in real space to 

slowly varying atomic displacements extending deep into the bulk of the crystal. As has been 

pointed out previously [26], they are related to the elastic displacements due to atomic 

relaxations near the step edge; they will be now discussed in detail. 

It is also worth noting that the width of the CTRs varies slowly with l, allowing 

measurement of the rod intensities far from the Bragg peaks. This is the first indication that 

the steps are well ordered and that the surface may be below its roughening transition.  

 

3. Analysis 

3.1 Elastic modes and diffraction spectrum 

3.1.1 Elastic modes 

The variations of the diffracted intensity for a stepped surface is associated with the elastic 

relaxation modes near the surface of the crystal [26]. Atomic relaxations for atoms in the 

vicinity of the step edge occur due to the change in the number and symmetry of neighbouring 

atoms, and to the modification of the local electronic density of states near the steps. Since the 

steps form a periodic network of straight lines at the surface of the crystal, the elastic 

displacements at the surface can be written in a Fourier series: 
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r

 with y  (direction parallel to the step) due to symmetry 

reasons. The periodic surface relaxations propagate elastically into the bulk and the 

displacements of bulk atoms keep the surface periodicity, with depth dependant phase and 

amplitude:  

( )∑ ∑
∞

−∞=

=
n p

n xipqzpqipnuzxu )exp()exp(,),( 000 κrr
  (2) 

where, for each mode considered, nκ  is a complex numbers that reflects the crystal anisotropy 

(see below) and determines the phase and amplitude variation of u
r

 with depth. We have 

( ) ( )∑=
n

pnupU ,00

rr
. Eq. (2) can be rewritten in a more concise way: 

( )∑ ∑
∞

−∞=

=
n p

pn rqipnuru )exp(,)( ,0

rrrrr
 (3) 

where 
















=

0

, 0

pq

pq

q

n

o

pn

κ

r
 and  

















=
z

y

x

r
r

. According to the continuous model, the evaluation of 

the elastic relaxations at each atomic position gives the discrete atomic relaxations Nu
r

.  

 The elastic modes have been studied by Croset and Prévot [27,28] for surfaces of cubic 

crystal with dense steps. This applies in the present case since Pt is a fcc crystal and since 

steps on Pt(997) runs along the [ ]011  direction. In the frame of anisotropic linear elasticity, it 

is shown that nκ  are given by the resolution of a 6th order secular equation, with coefficient 

depending only on the elastic constants of the crystal and of the orientation of the surface. In 

the case where ( zx0 ) is a plane of symmetry, the secular equation reduces to a 4th order 
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equation in which solutions are complex numbers. Their real part gives the propagation 

direction for each elastic mode, whereas the imaginary part gives the z  attenuation. In the 

case of an isotropic crystal one obtains 1)Im( −=κ . For Pt(997), the values found for κ  are 

i458.1465.01 −−=κ , i613.0172.02 −=κ , i458.1465.03 +−=κ , and i613.0172.04 +=κ . 

3κ  and 4κ  have a positive imaginary part; since 0<z  in the bulk, the corresponding modes 

diverge in the bulk, and must be rejected.  

Thus, the atomic relaxations in the bulk depend on the values of the only two first elastic 

modes. The first mode  propagate along a direction close to ]011[ , and decays rapidly into 

the bulk. The attenuation length of the p th harmonic is given by ))Im(2/( 1κπpd , giving 2.2 

Å only, for the first harmonic. The second elastic mode  propagate along a direction close to 

]111[  and decays more slowly into the bulk, and the attenuation length for the first harmonic 

is 5.2 Å. For each mode, the real part of κ  defines the very same variation of the phase with 

depth for all Fourier components. This defines specific directions that reflect the elastic 

anisotropy of the medium. Due to the large attenuation length of elastic modes, the relaxations 

of many non equivalent atoms (around 20 atoms for such a depth) have thus to be taken into 

account in order to fit correctly the GIXD results. However, since these relaxations are not 

independant, the number of free parameters for the fitting procedure is restricted.  

 

3.1.2 Diffraction spectrum 

A first order expansion of the expression of the diffracted amplitude allows us to easily 

interpret the GIXD results [26]: 
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where the sum runs over all the atoms n  of the crystal with unrelaxed position nr
v

. According 

to the second term, each harmonic of each mode corresponds to new diffraction satellites in 

addition to the Bragg spots. The positions of the satellites with respect to the Bragg spots are 

given by )Re( ,pnq
r

. Along the x  direction (h  index), 0pqqx =  that is the periodicity of the 

array of CTR. The diffraction satellites are thus located on the crystal truncation rods. Along 

the l  index direction, the position of these satellites on a rod is given by 

[ ] 0Bragg )Re(cotan pql nκθ −+ , where Braggl  is the position of the Bragg spot considered, and 

θcotan0q  is the distance along the l  direction between the Bragg spots of two consecutive 

rods. 

The interferences between the amplitude associated with the diffraction satellites and the 

fundamental of the rod determine the shape of the sharp variations that are observed on the 

rods, whereas the full width at half maximum of the diffraction satellites along l  is 

)Im(3 zq−  (sharper is the intensity modulation for slower attenuation in the bulk). Let us 

consider the first positive harmonic 0q  of the elastic displacements. For Pt(997), using our 

system of reduced units, 25cotan0 =θq . The satellite associated with the first elastic mode 

appears at a distance 7.231 =∆l  from the Bragg spot, with a width 1.71 =w , whereas the 

satellite associated with the second elastic mode appears thus at 5.252 =∆l  with a narrower 

width 32 =w . The interferences of these satellites with the fundamental of the rods are clearly 

experimentally observed as shown in Fig. 3. The positions of the satellites associated with 

these modes are indicated by dotted lines in Fig. 3. 

 

3.2 Model for surface relaxation and atomic displacements 

Atomic displacements due to step relaxations have been shown to be the same as elastic 

displacements due to lines of force dipoles applied on a flat continuous interface, with the 



 10 

same periodicity as the steps [29,28]. Using Hooke's law and mechanical equilibrium at the 

surface and in the bulk, it is possible to derive analytically the elastic displacements due to 

such dipoles. For this purpose, one generally assumes that the lines have a lorentzian shape in 

the xdirection [27,28]. 

However, for a given vicinal surface, the dipole orientation, the position with respect to 

the step edge and the lever arm orientation of the dipoles are a priori unknown. These 

parameters can be adjusted to reproduce the relaxations given by numerical simulations. This 

has been performed for vicinal surfaces of transition metals, using a model with semi-

empirical potentials derived from tight binding considerations [15]. However, the comparison 

with GIXD experimental results for Cu and Pt vicinals [14,25] shows that the predicted 

displacements (from the tight binding model) are approximately half the value of the ones 

obtained by a fit of the experimental data. This indicates that such semi-empirical potentials 

hardly reproduce the finest details of surface relaxations. The real dipole parameters are better 

obtained via a direct fit of the GIXD results, by the analytical calculations of the elastic 

displacements. 

We proceed in that way for analyzing our GIXD data and the measured diffracted 

intensities are fitted by adjusting only 9 free parameters: the positions 0x  and 0z  of the lines 

of dipoles with respect to the step edge, the width ca  of the lorentzian shape, the lever arm 

orientation of the dipoles Ω , the two components of the dipole: the stretch component Sp  

and the torque component Tp , a step roughness factor β  and the mean relaxation of the two 

first terrace planes, 1dz  and 2dz . No Debye-Waller factors have been used, and the atomic 

positions only depend on the parameters listed above. 

In our calculation, the roughness is taken into account in the frame of the model of 

Robinson [30]. In this model, suitable for a weakly rough surface, each plane above the 

reference surface is characterized by a fractional occupancy )(np , which is the probability of 
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finding an atom in the n th plane. In the model of Robinson, )(np  follows an exponential 

attenuation: )(np = nξ . =ξ 0 for an ideal surface and =ξ 1 for a surface above the 

roughening transition (where all planes are equiprobable and no reference plane could be 

defined anymore). The diffracted amplitude measured is then attenuated by a factor:  

( )
)/)(2cos(21

1

Bragg
2

2

rough
lll

F
∆−−+

−=
πξξ
ξ

 (5) 

where Braggl  is the position of a Bragg spot along the rod and where l∆  is the distance 

between two consecutive Bragg spots along a rod (in our case, i.e. using surface coordinates 

)(hkl  described in section 2.2,  l∆ =211). 

The fit is performed by means of a mapping of the parameter space (nine free parameters), 

combined with the Levenberg-Marquardt method [31]. A good fit of the experimen,tal 

structure factors is obtained with the elastic dipole intensities Sp =2.3±0.2 nN and 

Tp =1.1±0.1 nN. The corresponding R-factor [32] computed is 

15.0obscalcobs =−= ∑∑ FFFR , where obsF  and calcF  are respectively the measured and 

simulated structure factors. 

The roughness factor used for this fit, β =0.59±0.08, is small, considering the fact that the 

terraces have a large width of 9 atomic rows. This shows that the surface is well below its 

Kosterlitz-Thouless roughening transition. Due to surface roughness, the maximum 

attenuation of the measured structure factors, in our measurements, is equal to 0.4. In Fig. 4 is 

displayed the comparison between measured and simulated structure factors, using atomic 

positions from the continuous elastic model. The different parameters of the dipole used are 

given in Table 1, whereas a scheme of the dipole is drawn in the top right corner of Fig. 4. 

The corresponding elastic displacements are drawn in Fig. 5. The displacements depend 

mainly on the lever arm orientation Ω  and on the p values ( Sp  and Tp ). The relaxation of 
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the two first terrace planes, 1dz  and 2dz  appear as negligible, and could be fixed to 0 without 

changing the quality of the fit. As it is displayed in Fig. 5, one observes along the [ ]211  axis 

both an oscillatory behavior of the relaxations when x  varies and its decay with z . Near the 

surface the mean displacements are higher in the x  direction than in the z  direction. In the 

bulk, the opposite is true. This shows the opposite effects of the two different modes 

responsible of the elastic displacements: near the surface, both modes contribute to the atomic 

displacements, whereas deep into the bulk, the first mode becomes negligible. The step edge 

and corner atoms relax in an opposite direction, in the way of a "smoothing" of the step edge. 

 

3.3 Surface stress 

It is interesting to have a precise measure of Tp  since its value can be directly related to 

the surface stress of the nominal surface )111(Ptτ  through the relation:  

Pt(111)StepτhpT =  (6) 

where == 3/0Step ah 2.26Å is the step height. This equation, first stated by Marchenko and 

Parshin [29], has been shown to be a good approximation for various vicinal surfaces [15]. 

Reversing Eq. (6), one obtains =Pt(111)τ 4.9 Nm-1 for Tp =1.1±0.1 nN as determined in this 

study.  

Experimentally, it is very difficult to measure the surface stress. However, ab initio 

calculations provide today accurate surface parameters for dense surfaces. Theoretical values 

of Pt(111)τ  have been derived in that way: Feibelman, within the local density approximation, 

has obtained =Pt(111)τ  6.3 Nm-1 [18]. Needs and coworkers, with a similar technique, have 

obtained =Pt(111)τ  5.6 Nm-1 [33]. Note that the value we obtain (4.9 Nm-1) is in the same 

range of magnitude as these theoretical predictions, although slightly lower. It is closer to the 
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value =Pt(111)τ 4.1 Nm-1 found from similar GIXD measurements of the elastic dipole density 

on Pt(779) [14]. 

Pt(997) and Pt(779) experimental dipole values may be further compared since both 

surfaces have the same terrace orientation, namely (111). They differ only by their step 

orientation and the step microfacets have respectively the {100} and (111) orientations. Since 

the surface stress of dense terraces is isotropic, the value Pt(111)StepτhpT =  should not depend 

on the step orientation. In a first attempt, the GIXD experimental data on Pt(779) [13] were 

interpreted by means of a Green function numerically computed from semi-empirical 

potentials derived from tight-binding considerations, where the force distribution considered 

was a dipole applied to the step edge and step corner atoms [14]. A surface stress value 

=Pt(111)τ 4.1 Nm-1 was found. In order to have a direct comparison between Pt(997) and 

Pt(779), the measured structure factors have been fitted again, but with the present analytical 

buried dipole model. The result is indicated in the right column of Table 1, and remains close 

to the early one. The torque dipole density =Tp 0.82 nN is only slightly lower, giving a lower 

estimate of the surface stress: =Pt(111)τ 3.6 Nm-1. Thus, the analysis, within the same model, of 

the GIXD results gives values of the torque dipole (4.9 and 3.6 Nm-1) that slightly depends on 

the step orientation. The fact that, within the same model, the value of the torque dipole that 

fits the GIXD results depends on the step orientation demonstrates either that Eq. (6) is only 

an approximate, or the dipole determined does not exactly reflects the force distribution 

applied at the step edge. 

Let us recall that if the elastic displacements are directly determined by fitting the 

experimental structure factors, the force distribution is derived assuming three main 

assumptions: 

- standard linear elasticity is valid; 

- the surface is the limit of a semi-infinite continuous half-space; 
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- the elastic constants are the same everywhere within the bulk, up to the surface. 

In fact, the linear elasticity calculations do not take into account modifications of the 

elastic constants near the surface and more especially near step edges. Actually, it is shown 

through a model with suitable manybody interaction potentials that a stiffening of some elastic 

constants occurs near steps of vicinal surfaces of transition metals [34]. Such an effect would 

reduce the atomic displacements for one given applied force. By using bulk elastic constants 

for the elastic calculations, one neglects this effect, and the fit of the atomic displacements 

gives an undervalue of the dipole density. 

Another alternative may be that the experimental Tp  value would be slightly 

underestimated due to step disorder. As pointed out in [26], thermal step disorder reduces the 

contribution of integer-order harmonics in the Fourier decomposition of the elastic 

displacements, leading to a decrease of the amplitude of the satellite associated with the 

elastic mode considered. However, such an attenuation is here well taken into account by 

means of the Robinson model for surface roughness (see Eq. (5)). 

 

3.4 Step-step elastic interactions 

The elastic interaction energy between two straight steps can be obtained from the value 

of the elastic dipoles experimentally measured. The interaction energy Intβ  between two force 

dipoles is inversely proportional to the square of the step-step distance [29]: 2
int /)( dA=θβ . 

The total free energy β  of a regular array of steps is thus the sum of the isolated step 

formation energy 0β  and this step-step interaction: 

2
0

2
02

2

0 )/(6 dd

E

d

A +=+= βπββ  (7) 

The coefficient A  depends on the elastic constants of the substrate, and on the 

characteristics of the dipoles (lever arm orientation, stretch and torque component). It can be 
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analytically computed [27]. In particular, A  depends quadratically on p , with a prefactor 

depending on the lever arm orientation Ω  and on the orientation ϕ  of the forces acting on the 

lever arm. 

Using the values of the elastic dipoles determined by GIXD for Pt(997), and equations 

given in ref. [27], one finds 20011002 ±=E  meV/atom, where “per atom” means per 

interatomic distance along the step edge, which is equal to 2/0a  in our case. This 

corresponds to a value 4.1=A  eV.Å. Applying the very same calculation for Pt(779), a much 

lower value is obtained: 2003602 ±=E  meV/atom ( 460=A  meV.Å). Note that this last 

value is well consistent with the one derived in ref. [14] for the same surface. There is thus a 

factor of three between the elastic interactions between steps on Pt(997) and on Pt(779). This 

difference does not only result from the difference in the component Sp  and Tp  of the 

dipoles, that are respectively 10% and 35% higher in absolute value for Pt(997) than for 

Pt(779). Both the dipole lever arm orientation Ω  and the orientation ϕ  of the forces acting on 

the lever arm play a role. In order to illustrate the weight of these parameters, the evolution of 

),(2 ϕΩE  versus Ω  and ϕ  is drawn in Fig. 6 for Pt(997) and Pt (779), with the same dipole 

density 4.2=p  nN, that is the mean of the Pt(997) ( 55.2=p  nN) and Pt(779) ( 25.2=p  nN) 

values. The evolution of ),(2 ϕΩE  is very similar for the two surfaces. 2E  displays two 

minima for 0=ϕ  (pure stretch dipoles), and two maxima for ϕ  close to 90° (pure torque 

dipoles). For Pt(997), the characteristics of the dipoles are =Ω 173° and =ϕ 154°. This 

corresponds to a region of rather high 2E  values, and where the dependence of 2E  with ϕ  is 

weak. For Pt(779), the characteristics of the dipoles are =Ω 101° and =ϕ 21°. This 

corresponds to a region of low 2E  values, between the two minima of 2E . 

The small differences between the two curves of Fig. 6 are due to the crystalline 

anisotropy of Pt: =44C 0.0765 1012 Nm-2, whereas =11C 0.3467 1012 Nm-2, and =12C 0.2507 
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1012 Nm-2 [35]. Note that for both surfaces, we have chosen the convention that steps are 

ascending from the left to the right, so that the ]011[  axis is oriented in opposite direction for 

the two surfaces. However, the crystalline anisotropy is not at the origin of the strong 

variations of ),(2 ϕΩE  observed. These variations are due to the buried nature of the elastic 

dipole, and similar effects would be observed on isotropic crystals, or on crystals with reverse 

anisotropy [27]. The geometry of the step plays thus an important role for the dipole 

orientation. However, it seems not possible to correlate precisely the step geometry to the 

dipole orientation (lever arm orientation Ω  and force orientation ϕ ). 

 

4. Discussion and conclusion 

4.1 Discussion 

The present result for the step-step interaction energy ( =A 1.4 eV.Å) by GIXD 

measurements on Pt(997) is lower than the values obtained from the analysis of STM 

measurements of the step fluctuation : from the measurements of the terrace width distribution 

(TWD) on the (997) surface [8], the first value of =A 2.4 eV.Å [36] has been deduced and 

reevaluated to =A 6 eV.Å in a subsequent analysis of the TWD [24]. 

We have used the recent STM measurements [10] of the step stiffness on Pt(111) to 

reanalyze the results of  Hahn et al. [8]. Since it is not the aim of this paper to discuss how 

step interactions energies can be derived from TWDs, we shall only mention the procedure 

used in our present analysis. The TWDs were analyzed in the capillary wave approximation 

[37, 38]. In this model, the kink formation energy along a step kE  and the step interaction 

energy A  are analytically related to the step stiffness β~  and to the variance 2w  of the TWD. 

In such a model, using the experimental values 2
0

2 095.1 dw =   and β~ =1.16 eV/at measured 

respectively at 900 K [8] and at 653 K [10], one gets kE =0.223 eV/at for the kink energy and 
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=A 2.60 eV.Å for the step interaction energy, in agreement with ref. [23]. Note that the use of 

the capillary wave approximation in the analysis of the data is valid if the measurement 

temperature is above the roughening temperature RT . Firstly, this is qualitatively shown by 

the wide TWD measured [8], much larger than the universal TWD at RT  [37]. Secondly, the 

obtained kE  and A  values lead to RT = 570 K, which validate our approximation. 

We cannot exclude that these values are overestimated and marred by a high uncertainty 

since the determination of the step stiffness and of the TWD were done in two different 

experimental studies and at two different temperatures [8,9]. Note also that the simple 

analysis of the TWD as performed in [36, 24] or in the present paper is rather rough since 

only one point of the step-step correlation function is considered. Only a full 2-d analysis of 

the step roughness, like the consistent analysis of GIXD and STM measurements of the full 

correlation functions (see [39] for Cu(115)) or the present GIXD measurements on large 

segments of the CTRs with the subsequent elastic analysis allows extracting much more 

accurate values of the step interaction constant.  

Our measurements confirm that step interactions are much higher on Pt vicinals than on 

Cu vicinals [25, 36, 24, 38], but of the same order of magnitude as on a (332) Au vicinal 

surface, for which 950=A  meV.Å has been determined by GIXD [40]. The elastic 

interactions can also be compared to the electrostatic interactions between steps. These 

interactions come from the presence of electrostatic dipoles at the steps. The interaction 

follows Eq. 7 with an 2E  coefficient proportional to the square of the electrostatic dipole. 

Such dipoles have been measured on Pt(111) vicinal surfaces, with the two types of step 

orientation [41]. The vertical component of the electrostatic dipole at a step measured for 

{111}-type steps (resp. {100}-type steps) is equal to 0.52 D/atom (resp. 0.64 D/atom), and 

contributes to the interaction energy for =2E 35 meV/atom (resp. 53 meV/atom). Whereas 

elastic interactions depend highly on the step orientation, this dependence appears thus much 
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weaker for electrostatic interactions. For both surfaces, electrostatic interactions are much 

lower than elastic interactions. This confirms, if necessary, that the elastic interaction 

dominates and is thus the interaction driving the surface roughness behavior. 

Our results can also be used for the comparison of the isolated step free energy on the two 

types of (111) vicinals. STM measurements undoubtedly show that the free energy of steps on 

Pt(111) is anisotropic [7]. More precisely, the free energy of steps with {111} microfacet 

orientation is 13% lower than the free energy of steps with {100} microfacet orientation. This 

ratio is accurately obtained from the observation of the shape of large islands for which elastic 

interactions should be negligible. On the contrary, DFT calculations have been performed on 

vicinals with a small interstep distance: (331), (221), (211) and (533), with three or four 

atomic rows per terrace [18,19] or on a nominal surface with striped islands [20]. In all cases, 

the contribution of the step-step interaction to the step energy is not negligible: if one 

extrapolates the elastic interactions between steps, using Eq. 7 with the values of 2E  

determined by GIXD, one finds that the contribution of the elastic interaction energy to the 

step energy should be, for example, of 0.092 eV/atom for Pt(221), and 0.025 eV/atom for 

Pt(533). As a result, the step energy, extrapolated from the experimental measurements of the 

island shape fluctuations and from the GIXD experiments should be 0.373 eV/at for Pt(553) 

steps and 0.392 eV/at for Pt(221) steps. Our experiments show that at such small distances, 

the energy anisotropy for isolated steps is compensated by step repulsive interactions that are 

higher for {111} steps than for {100} steps. Note that  this does not allow to recover the 

values of step energies computed by DFT [18,19], except for (221) steps in ref. [19] (see 

Table 2). 

Of course, at such small interstep distances, Eq. 7 is not strictly valid. Higher order terms 

are not negligible and lead generally to a reduction of the elastic interaction energy, with 

respect to the 2
2 / dE  value. Atomistic calculations using semi-empirical potentials derived 
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from tight-binding consideration [15] have shown that for Pt(221), the elastic energy was 

reduced by 26% with respect to the value extrapolated from Pt(997), whereas this reduction 

was of 12% for Pt(335) with respect to the value determined for Pt(779). 

However, this shows that step energies computed on vicinal surfaces with a high miscut 

cannot directly been used for determining step energy of isolated steps without any estimate 

of the step interaction energy. 

 

4.2 Conclusion 

We have measured by GIXD the Crystal Truncation Rods of a Pt(997) surface. The data 

has been analyzed by a model based on linear elasticity. We have shown that the model of a 

buried dipole reproduces well the atomic displacements due to steps. The good agreement 

between experimental and calculated structure factors allows us to determine with good 

precision the characteristics of the force distribution at the steps. 

The value so-obtained of the elastic dipole allows us to measure a value of 4.9 Nm-1 for 

the surface stress of the Pt(111) terraces and a coefficient of the step-step elastic interactions 

of =A 1.4 eV.Å. These results compare well with results of DFT calculations of the surface 

stress [18,33] and STM measurements of the step interactions [23,24].  

By comparing our results on Pt(997) with previous measurements performed with the 

similar technique on Pt(779), we find that despite the fact that elastic dipoles have nearly the 

same density for these two surfaces, the elastic interactions are 3.5 times higher on Pt(997) 

than on Pt(779). The differences between these two surfaces, which are mainly due to the 

orientation of the dipole lever arm with respect to the surface plane, show the importance of 

the step geometry on the elastic interactions. 

Finally, we have shown that elastic interactions have to be considered when comparing 

the experimental values of the free energy of isolated steps and DFT calculations of the free 



 20 

energy of steps on vicinal surfaces. Whereas isolated {111}-type steps are favored with 

respect to {100}-type steps, this effect is compensated by elastic interactions for short 

interstep distances, leading to nearly equal step free energies for the two kinds of steps on 

(211) and (221) surfaces. 
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Tables 

 Pt(997) Pt(779) 

0x  (Å) 0.5±0.08 -0.9 

0z  (Å) -1.0±0.2 -0.75 

)/ln( 0aac  -2.7±0.2 -9.9 

Ω  (degrees) 173±3 101 

Sp  (nN) -2.3±0.2 2.1 

Tp  (nN) 1.1±0.1 0.82 

1dz  (Å) 0.015±0.01 -0.026 

2dz  (Å) -0.007±0.01 -0.017 

 

Table 1. Parameters of the elastic dipoles used for fitting the GIXD results on Pt(997), and 

comparison with Pt(977). (0x , 0z ) is the position of the lines of  dipoles with respect to the 

step edge, ca  is the width of the lorentzian shape, Ω  is the lever arm orientation of the 

dipoles, Sp  and Tp  are the stretch component  and the torque component of the dipole, and 

1dz  and 2dz  are the mean relaxation of the two first terrace planes. Positive value for Sp  and 

Tp  correspond to the standard case of a contraction of the step edge due to a tensile surface 

stress for both the terraces and the step microfacets. 
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Step β  (eV/at) 
exp. [10] 

( )2
02 ddE   

(eV/at) 
[this work] 

β  (eV/at) 
extrapolated 

β  (eV/at) 
DFT [18] 

β  (eV/at) 
DFT [19] 

(211) step  0.045 0.393  0.47 
(533) step  0.025 0.373 0.470  
(322) step  0.016 0.364  0.43 
{100}  
isolated step 

0.348 0. 0.348   

(221) step  0.092 0.392 0.463 0.38 
{111}  
isolated step 

0.300 0. 0.300   

Table 2. values of the step formation and interaction energies on various Pt vicinal surfaces. 

In the first column are given the values found from STM analysis of the island shape 

fluctuations on Pt(111) [10], in column 2 are given the values determined by GIXD from the 

present analysis, column 3 is the sum of the first two columns, whereas the results of DFT 

calculations [18,19] are given in the last two columns. 
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Figures 
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Fig. 1. Schematic of the Pt(997) surface, including the unit cell ),,( cba
rrr

 for X-rays 

measurements. 
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Fig. 2. Reciprocal space map of the diffracted intensity around the (34 0 L ) rod (color 

online). 
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Fig. 3. Experimental structure factors of four crystal truncation rods on Pt(997), as function of 

Bragglll −=~
 (color online). Blue squares: (32 0 l ) rod; green crosses: (34 0 l ) rod; red 

triangles: (36 0 l ) rod; black dots: (38 0 l ) rod. The dotted lines correspond to the positions 

of the satellite spots associated with the elastic modes, at Braggll −  multiple of 23.7 and 25.5 

(see text). 
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Fig. 4. Comparison between experimental and theoretical structure factors for Pt(997) (color 

online). Black dots: experiments; full red line: simulation with the elastic response to lines of 

dipoles. The parameters used for the fit are given in Table 1. The schematic of the force 

dipole used for fitting the X-rays is drawn in the top right corner. 
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Fig. 5. Elastic displacements )(tu
r

 used for analyzing the GIXD results on Pt(997) and Pt(779) 

(color online). Continuous black line: xu ; red dotted line: zu . For Pt(997) (resp. Pt(779)), t  is 

along a [ ]211  (resp. [ ]211 ) axis, and 24/2500 at =  (resp. 24/230a ) is the interstep 

distance projected along the t  axis. The corresponding atoms are indicated by dots in the 

upper schematic. 
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Fig. 6. Evolution of the coefficient 2E  of the step interaction energy with dipole lever arm 

orientation Ω  and dipole orientation ϕ . 0=ϕ  corresponds to a pure stretch dipole, whereas 

°= 90ϕ  corresponds to a pure torque dipole. Left: for Pt(997); right: for Pt(779). The value of 

the dipole density used for the determination of 2E  is the same for both surfaces: 4.2=p  nN. 

The experimental values found for Pt(997) (resp. Pt(779)) are indicated by a flag on the 

graphs; they correspond to =Ω 173° and =ϕ 154° (resp.  =Ω 101° and =ϕ 21° ). 

 

 


