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Abstract

We have studied the energetics, relaxation andactiens of steps on the Au(332) vicinal
surface, using a combination of grazing incidencea¥X diffraction (GIXD), anisotropic
linear elasticity (ALE) theory, andb initio density functional theory (DFT). We find that the
initial force distribution on a bulk-truncated sac€, as well as the resulting pattern of atomic
relaxations, can be reproduced excellently by aedudipole elastic model. The close
agreement obtained between experimental and ctddukxray diffraction profiles allows us

to precisely determine the value of the elastio@iplensity at the steps. We also use these



results to obtain an experimental estimate of thitase stress on an unreconstructed Au(111)

facet, 7,4,y =231 04 Nm™, and the value of the step-step elastic interactoergy:

A=950+150 meV.A.

. INTRODUCTION

Vicinal surfaces are obtained by cutting a crystinise to a dense plane. They are
characterized by terraces of the dense plane atientseparated by steps. The presence of
these steps can be exploited for possible techiwabgpplications, e.g., the steps can serve as
nucleation centres for the growth of metallic naites? In such cases, the regularity of the
wire organization obtained is determined by theutaaty of the array of steps of the bare
surface. At finite temperature, steps fluctuate thuéhermal motiori. The step fluctuations
are governed by both the step-step interactionstlaadink creation energy. While the kink
creation energy is a very local energetic parametp interactions have a long-range
component.

Different contributions to the step interactionsrdze distinguished. Steps entropically
repel one another through the condition that tvepsicannot cross each other; when the steps
are close together, the number of allowed configoma is reduced, and this reduction of
entropy is equivalent to an interstep repulsi@teps also interact electronically through the
modification of the density of state§,electrostatically due to the presence of electist
dipoles at the step€ and thermally through the modification of theibrational free energy.
They also interact elastically through the longgamlisplacement fields generated by atomic
relaxations at the step3lt is generally assumed that the most importantrdaution, at least
for large terraces, is the elastic contribution.

Over the years, several authors have come up Jaiti@ models to describe step-step

interactions® 21314 general, these works assume a model for theefdistribution that



arises at step edges when a crystal is cleaverk&teca vicinal surface; the resulting pattern
of displacements and the corresponding elasticggn@nd, thus, the elastic step interaction
energy) are then obtained using continuum elagttbiéory. In recent years, it has become
possible to test the validity of these models 0 tmays: (i) experimentally, by comparison
with the results obtained from grazing incidenceraX- diffraction (GIXD), and (ii)
computationally, by comparison with the resultsanied fromab initio density functional
theory (DFT) calculations.

GIXD experiments have been recently performed otinal surfaces of transition
metals'>*® The model of a buried elastic dipole has been shewwell reproduce the
experiments, and linear elasticity has been usethé&asuring the elastic interactions between
steps on Pt(779) and Cu(223) vicinal surfaces.bétin cases, elastic interactions were found
to be much higher than electrostatic interactionevkn from the literature. However, the
values found also differed from the values of tihepsinteraction derived from scanning
tunnelling microscopy (STM) measurements. For @8)2the elastic interaction obtained by
GIXD was one order of magnitude higher than theerattion derived from STM
measurements. For Pt(997), it was smallér®

There have also been earlier calculations of stepgetics usingb initio DFT.*2%%1:22n
these calculations, the focus was primarily on iolotg the difference between the formation
energies of terraces with the two kinds of closekpd steps possible on a face-centered-
cubic (fcc) (111) or hexagonally close-packed (QO€drface. These papers showed that a
precise computation of this very small (~10 - 10@Wh) energy difference required
extremely precise Brillouin zone sampling and largeit cells, and was therefore
computationally demanding. For these reasons,vefyg difficult to quantitatively derive the
step interaction energy from the angular dependehtiee surface energy, and only a falw

initio results have been obtained concerning the stepaatiten energy>2*



In this paper, we use both of these approacheshtmparticular case of the Au(332)
surface, and show that the results thus obtaine@late well with the buried dipole model
introduced by Prévot and Cros&t* In section II, the experimental measurements and
theoretical methods are described. The experimam@ltheoretical results are presented in
section lll. Section 1V is devoted to a preciselgsia of the results in the frame of the buried
dipole model. We show that a quantitative valu¢hefstep interaction energy can be derived
from the measurements or from the calculation efdtomic displacements. The conclusions

are given in section V.

[I. MEASUREMENTSAND CALCULATIONS
A. Sample

The sample was a single crystal consisting of adrameter disk, polished to a mirror-
like surface and cut normal to the [332] directioFfhe fcc (332) surface obtained consists of
(111) terraces that are six atomic rows wide, spdrby (L11) -faceted steps; a schematic
atomistic model is shown in Fig. 1la. The sampldaser is cleaned in ultrahigh vacuum
(UHV) by standard Ar ion sputtering at 600 eV fd& min, followed by annealing at 800 K
for 10 min. After ten of these cycles, the crystalquality of the surface was found to be
very good, as checked by the low energy electréinadtion (LEED) pattern and scanning
tunneling microscopy (STM) images over the wholmgle. Fig. 1b shows a typical STM
image recorded slightly above room temperaturewsigthe regular array of step edges and

thermal kinks.

B. GIXD



GIXD experiments were performed on the DW12 beagnhh LURE-DCI storage ring.
The sample was introduced in UHV chambers and ¢hte dere collected by means of a z-
axis diffractometer. The base pressure in the teasnwas 18° Torr. The sample could be
transferred from the analysis chamber to a prejparathamber equipped with a four grid
LEED and a cylindrical mirror analyzer Auger speateter. The X-ray data collection was
performed using 15 keV photons with an incidencglerkept fixed at 0.3°, which

corresponds to the angle of total external reftectiTo define the basis, we have used the

-1 1 1 3
orthogonal vectorsi =| -1 ’625 -1|,andc=| 3|.
3 0 2

Therefore, @ is normal to the steps, corresponding to the wigtabetween two

consecutive step edges, which is 13.5b4is parallel to the steps, corresponding to the

system zone axis (its modulus being the interatadisitance of pure gold, i.e. 2.88 A) add

is normal to the surface plane. In the followinigtlaé data are presented relative to this basis.
The correspondind, k, and| indices are used for indexing a reflection in peacal

space. The reciprocal-space transformation fronsthface coordinatehkl) to the standard

fcc coordinates KIKL ) is given by:

H -2 22 3Th

Kl=L|-2 —22 3]k 1)
22

L 6 0 2|l

We have performed standard rocking scans alongusirirystal truncation rods (CTR)
for determining the structure factors in differemgions of the reciprocal space. The

integrated intensities were corrected using thegutare reported in Ref. 25.



C. Abinitio calculations

Theab initio DFT calculations were performed using the PWsdegavhich forms a part
of the Quantum-ESPRESSO distributfSnThe interaction between ions and valence
electrons was described using an ultrasoft pseudopal, and exchange-correlation effects
were described using the local density approximatias parametrized by Perdew and
Zunger’” A plane wave basis set was used, with an energyoftuof 40 Ry for
wavefunctions, and 320 Ry for charge densities.WAf&ied that force distributions, atomic
displacements, the surface energy and the stegyaes well-converged with this choice of
basis set. However, for computational reasonsag Wund that to obtain a well-converged
value of the surface stress, it was needed to goutth higher cut-offs of 70 and 560 Ry for
wavefunctions and charge densities respectivelyloBn zone sampling was performed
using Monkhorst-Pack meshes, together with the fdegiel-Paxton smearing scheéfheith
a smearing width of 0.05 Ry.

For bulk Au in the fcc structure, we have obtaitieel lattice parameter as 4.05 A, which
agrees well with the experimental value of 4.08 We have also computed the elastic
constants of Au: since one our of aims is to amatygab initio results within the framework
of linear elasticity theory, it is important to cectly reproduce the elastic properties of Au by

ab initio calculations. For a cubic crystal, there are thnelependent elastic constar@s,,
C,, andC,,. They were obtained in a standard viapy subjecting a bulk Au fcc crystal to
an homogeneous strain, an orthorhombic strain amdraoclinic strain, and then relating the
change in total energy to the strain applied.

From this procedure, we have obtaingd, =209.6GPa, C, =182.0GPa and
C,, =36.5GPa. The corresponding experimental values are419%63.0 and 42.0 GPa

respectively® the agreement between calculated and experimesitas is thus found to be

reasonable.



We have also tested oab initio calculations on a flat and unreconstructed Au(111)
surface. We obtain a surface energy of 0.071 éwWA13 Nm', and a surface stress of
0.191 eV/& = 3.06 Nm*; these numbers are in reasonably good agreeméntprévious
calculations We obtain a pattern of near-surface relaxationgratthe first interlayer

distanced,, is expanded by 0.78 %, and the second interlgy&eisg d,, iS contracted by

-0.43%, with respect to the bulk interlayer spacifigis somewhat surprising that,, is

expanded, since the general expectation is thalmmetfaces should relax inward. However,
a number of calculations, using both all-electrad pseudopotential methods, have reported
an outward expansion of the surface layer on umstcacted Au(111**We note that it is
not possible to compare this finding directly wekperimental results, since the Au(111)
surface is actually reconstructed, and it is exgkdhat this reconstruction will affect
interlayer spacings near the surface.

The calculations on the Au(332) surface were paréat using a 17-layer vicinal slab,
where the middle layer was kept fixed, and the olstgers on both sides were allowed to
relax. The force convergence threshold was fixetDdtRy/bohr = 0.041 nN. Periodic images
were separated by a vacuum of ~14 A along the(surface normal) direction; this
corresponds to about six interlayer spacings. Kipmints used were obtained using a
(3x12x1) Monkhorst-Pack mesh. It was verified th@ displacements away from bulk-
truncated positions did not change noticeably aneiasing the number of layers in the slab,
the vacuum spacing, or number of k-points.

Forces were calculated using the Hellmann-Feynrhaorem®*** Moreover, we have
computed the step formation energy from an appatprcombination of the computed total
energies for four different systems: (1) a slabhwiB832) surfaces on both sides, and

containing N, atoms, (2) a slab with (111) surfaces on both sided containingN, atoms,

(3) a single-atom bulk unit cell with k-point sanmgi commensurate to that used in (1), and



(4) a single-unit bulk unit cell with k-point sanmd commensurate to that used in (2). The

corresponding total energies are denote®gsE,, E,, E, respectively. The step formation

energy S is then given by:

1o _(16)( 1) _
B=1E-NE) [sj@(Eg NLE,) @

Here, the factors o% appear because the slabs have two surfaces, affactbr ofl%
is related to the exposed surface area on a visimdihce that consists of six-row terraces

separated by {111}-faceted steps. The reason fertibo different values used for bulk

energies E, and E,) is that one hopes, in this way, to obtain a céaoen in the errors due

to finite Brillouin zone sampling. In our casl, =45 andN, = 9.

[l.RESULTS
A. Experimental GIXD results
Along each CTR, the diffracted amplitude is of aaimaximum at the Bragg position,

i.e. atl =1 However, when going away from the Bragg peak, @ahwlitude does not

Bragg *

decrease smoothly: at particular value$ o$harp variations of the amplitude occur. In Rig.
all data points are presented as a function ofrtbmentum transfel alongl with respect to

the value corresponding to the nearest Bragg srpgtt ol As can be seen, the positions

Bragg *

where the sharp variations occur are often the damall rods, and thus depend mainly on
| . For example, sharp variations of the amplitude aways present near=+8. As has

been pointed out previousi§,these sharp variations are related to elasticlatiements

penetrating deeply into the bulk; they will be dissed in detail in section IV.



B. Abinitio results

As expected, a bulk-truncated Au(332) surface, wladiratoms are fixed at the positions
they would have in an infinite bulk crystal, is raitequilibrium. The forces on such a bulk-
truncated Au(332) slab are presented in Fig. 3gnifscant forces are experienced primarily
by the two atoms at the top and the bottom of p stige; the forces on all other atoms are
considerably smaller. Moreover, the forces on these atoms are approximately equal in
magnitude (~1.1 nN/atom) and opposite in directisith the forces acting in such a way as
to favor a rounding of the sharp step edge. Tihwge were to consider the forces exerted on
all the top and bottom corner atoms at a step dtigee are roughly equivalent to a line of

force dipoles, with a torque component density@f=0.80 nN, and a stretch component
densityps =0.41 nN. Such an arrangement of dipoles, obtaingeddnsidering only the

forces on the atoms directly at the step edgeepcted in Fig. 4a. Upon extending this
further by taking into account the forces on theeseatoms nearest to the step edge, we

obtain p; =0.90 nN, and p; =0.05 nN. The large change op; when extending the

calculation to all the atoms is due to the presafi@estretch dipole surface density below the
terraces, as can be seen in Fig. 3a.

In response to this force distribution, atomic fioes relax away from their bulk-
truncated positions. The resulting pattern of dispinents is shown in Fig. 3b. Not
surprisingly, the largest displacements occur ffier atoms directly at the top and bottom of
the step edge, which move in roughly opposite tivas, by about 0.3 A, resulting in a
blunting of the sharp step edge. However, thereppeeciable displacements of several other
atoms in the vicinity of the step edge; the veealgoattern of these displacements resembles a

vortex. The mean relaxation of the terrace, itee,relaxationdz, of the six terrace atoms in
the (111) direction, islz, = 0.041A, and for the next six atoms, i.e., for the atqust below

the surfacedz, = —0.002A. The interlayer distance',—z', between the terrace plane and the



(111) plane below is thus expanded by 2.0% witpeesto its bulk value. This relaxation is
in the same direction as (but 2.6 times higher thiha relaxation of the first interplanar

distance on an unreconstructed Au(111) surfaceSseton IIC).

C. Comparison between experimental and theoretical structure factors

We have used the atomic positions calculatednitio for computing theoretical structure
factors. For this purpose, only half of the slabofscourse used (from the surface to the
middle of the slab used in the simulations). Thaulteof the comparison is drawn in Fig. 5.
For this comparison, only two adjustable paramegges introduced: a scale factor and a
roughness factor. Vicinal surfaces often exhibitn noegligible roughness due to the
fluctuation of the interstep distance. In GIXD ma&asnents, this causes a broadening of the
CTRs when going away from Bragg spots, leading lmsa of intensity when integrating the
rocking-scan profiles for obtaining the structueetbrs. We account for the roughness by

making use of the model suggested by Robiri3dn.this model, the diffracted intensity is

) - éY
corrected by a factoF,,, = [1+Ez —2&cos@n(l —1,)/Al )]

where |, is the position of a

Bragg spot along the rod, andl is the distance between two consecutive Braggssgdonhg

a rod. In our case)l =44. In the model of Robinson the roughness exppréens related to
the fractional occupancy of the planes above tfererce surface. More precisel§f; is the
probability of finding an atom in th@™ plane above the surfacé.=0 for an ideal surface,

and ¢ =1 for a surface above the roughening transitiomuncase, the planes that have to be

considered are the (332) planes. Thus, for vicinalases small variations of the terrace

width lead to a strong increase in the value of
Fogn Varies slowly with . Without taking roughness into account, the thicak

structure factors measured far from the Bragg spo#son average always higher than the



experimental ones. The variations of the amplitati¢he diffracted wave are qualitatively

well reproduced by the theory with a roughness egpbé =0.38. Note that in our case, the
maximum value ofl —I0|/AI is 0.27, giving rise to a maximum attenuation hef tiffracted

intensity by a factof~,, =0.31.

rough
As can be seen in Fig. 5, the positions of the ménof amplitude along the rods are well
reproduced by the simulation. However, considetimg logarithmic scale in the intensity,

some rods are not perfectly fitted and require aemefined analysis. This is the case, for

example, for the]@ 01)and (L_l 0 1) rods. This indicates that tlad initio results, although
rather close to the experiments, are not perfecthgreement with them.

Note that modifying the theoretical valuesdafplacement by introducing a simple scale
factor does not lead to a significant improvementhe quality of the fit. Determining the
individual atomic displacements independently soahot practicable because of the very
large number of variables involved. We have to fambther approach toward fitting the
experimental results. Moreover, it is still desleatp understand the underlying physics that
governs the pattern of relaxations, and to estinta¢eimportance of the different factors
governing the step interactions. With such a goahind, in the following, we perform an
analysis of the data based on linear elasticitgrhewith adjustable parameters for the dipole
of forces at the step edge, in order to obtain ecipe value of the step-step interaction.
Indeed, we will show by comparison with thb initio results that the buried dipole model
gives, with a very high accuracy, the atomic disphaents, even for atoms very close to the

step edge.

IV.RESULT ANALYSIS

A. Origin of the modulation of the amplitude along the rods



For a vicinal surface, the variations of the difbed amplitude have been ascribed to the
elastic relaxation modes near the surface of tistal’® Atomic relaxations for atoms near
the step occur due to the change in the numbesgmdnetry of neighboring atoms, and the
modification of the local electronic density of te& near the steps. These relaxations
propagate elastically into the bulk. Since the stepm a periodic array of straight lines at the
surface of the crystal, the elastic displacementsexpressed naturally as a Fourier series

where each mode takes the form:

U = Uy(d,) expfa,2) expfa,X), 3)

where U is the elastic displacement, is the wavevector in the direction parallel to the
surface and perpendicular to the step, apdis a complex number. Since the steps are
periodically spaced, with an interstep distardte we haveq, =27p/d where p is an
integer. These elastic modes have been studieddseCand Prévdt**who showed that for
each value ofg,, there exist only three possible elastic mode$ wjit = kg, ; herek is a
complex number with negative imaginary part, resglfrom the resolution of a sixth-order
secular equatiork depends only on the elastic constants of thealrgsid on the direction of
a, 13 Moreover, in the case whereQz) is a plane of symmetry, the secular equationaes

to a fourth-order equation and only two modes havee considered. This is still the case for
the [110] steps running on the (332) surface of a cubjstat. For Au(332), the resolution of

the fourth-order equation fay, > @ives the following values fok : k, =-088- 147 and

k, =+026- 049 3 The real part ok gives the propagation direction for the elastice®

whereas the imaginary part gives the attenuatiodejpth of the displacements and is thus
negative sincez< Qn the bulk. Note that in the case of an isotrogigstal one always

obtainsIm(k) = - 1 For Au(332), the first mode is thus more rapidtienuated, whereas the



second mode penetrates deeper into the bulk. FqB3R) the interstep distance is

d =13.5 A. The attenuation length of the second medets—-d /27im(k,) =4.4 A.

A first order expansion of the expression for thfratted amplitude allows us to easily
interpret the GIXD result® To each elastic displacement mode correspond risaation
satellites, apart from the Bragg spot. The positbthe satellites with respect to the Bragg

spots is given byRe([) . Moreover, due to the fact that the spacing betvibe rods is given

by 2n/d, the diffraction satellites are located on crydtahcation rods. The position of

these satellites on a rod is given By
= g,cotard - Re(,), (4)

where 6 is the miscut angle of the vicinal surface. Thierference between the amplitudes
associated with the diffraction satellites and finedamental of the rod determines the shape

of the sharp variations that are observed on tlas.rblote also that the full width at half
maximum of the diffraction satellites alohgs —\/§Im(qz) .

Let us consider the first positive harmonic of #lastic displacementsy, = 277/d . For
Au(332), using our system of reduced uniigcotard = . T8e satellite associated with the
first elastic mode, for whiclRe(,) =q, Rek,) =-1.2, appears thus eb:[= 9®ith a width
w, = 3.6 whereas the satellite associated with the seclastiemode for whiclRe(g,)= 0.4
appears aﬂ; = 7.6with a narrower widthw, =12. The relative intensity of the satellite
depends mainly on the produ@ﬂo, where Q is the scattering vector andg), is defined in

equation (3). As a result, sin€@, varies from one rod to another, the different rddsnot

exhibit the same shape. The measurement of twoabd#ferent positions of the reciprocal

space should allow one to separate out the cotitsibwf the two modes for each value of

Oy -



B. Elastic relaxations

It should be possible to directly access the a@astiaxation modes by measuring the
diffracted amplitude along crystal truncation robfsthe case of elastic displacements due to
steps on a vicinal surface, the different elasticles can also be derived from the distribution
of elastic forces equivalent to a step. As alreantioned, steps on vicinal surfaces are
equivalent to lines of force dipolé%'® Using Hooke's law and mechanical equilibrium &t th
surface and in the bulk, it is possible to derike elastic displacements due to the dipoles.
The different harmonics of the force distributiore @btained by a Fourier transform of the
force density distribution near the step. Whalke initio calculations (such as the ones
presented in this paper) now enable us to obt&matbmistic force distribution, in order to go
over to a continuum description that is free ofysiarities, one has to use some smoothened
form to describe the variation in the forces along@senerally, a combination of lorentzian
profiles along thex direction is assumed:** Steps are thus described by opposite lines of
forces forming lines of elastic dipoles. When suoh approximation is made, analytical
formulae can easily be obtain&t*

For a given vicinal surface, the dipole orientatitie position with respect to the step
edge and the lever arm orientation of the dipolesaapriori unknown. Howeverthese
parameters can be derived from numerical simulatiosing eitheab initio calculations or
some parametrized model for interatomic interagtidduch a procedure has previously been
carried out for vicinal surfaces of transition metaising semi-empirical potentials derived
from tight binding consideratioré. However, the comparison with experimental results
obtained for Pt and Cu vicind?s® showed that the predicted displacements were tpugh
two times lower than the experimental ones.

We have mentioned in Section IIIB above that thredaistribution computed kb initio

DFT calculations on an unrelaxed bulk-truncatedh s$aequivalent to a dipolar distribution.



We have also checked that the calculated atompatiements are in good agreement with
the response to an elastic dipole. For this purpesehave compared the atomic relaxations
presented in Fig. 3a to the result of an elasticutation with lines of point dipoles at the
steps. Five free parameters, namely, the amplitadentation, position with respect to the
step edge alongand z, and the lever arm orientation of the dipolesajisted in order to
obtain the best agreement with e initio results for relaxation. We find that the calcutiate
relaxations are equivalent to the elastic respafisn elastic dipole density having a torque

component p; =0.61+0.04 nN and a stretch component1.8+0.3 nN. The dipole
orientation is presented in Fig. 4b. The valueppf is close to the value derived from the
initial force distribution, whereas the value pf is very different. The difference between

the value ofp, determined from the initial force distribution athet value ofp, determined

from the comparison with linear elasticity could dee to a modification of the elastic
constants at the surface and especially near #ye estige. A stiffening of some elastic
constants has been found near the steps of visimtdces of transition metaf$Such effects
are not taken into account in our linear elasti@gjculations. A stiffening of the elastic
constants at the step edge could thus explainigieihvalue obtained for the dipole directly
calculated from the initial force distribution.

However, such effects cannot explain the differenuieserved for the value qfs. The
high value of p; determined by linear elasticity calculations cobkl due to the fact that

these calculations also fit the stretch dipoles &éha present below the terraces. Moreover, the

contribution of stretch dipoles to the atomic désgments is much smaller than torque

dipoles:**” and a high value ops can be compensated by a small reductiorpof Thus,

ps is not a very relevant parameter for describing atomic relaxations. The dipole that

gives the best fit to the computed relaxationsoeated 0.97 A below the step edge, with a



shift of -1.07 A along thex direction. In Fig. 6, we compare the relaxatiomécalated
analytically using linear elasticity theory (dottéides) with those obtained by numerical
simulation using DFT (filled circles). The closeregment between these two sets of data
shows that, at least for Au(332), approximatingpstdy buried point dipoles works
remarkably well. Excepting the relaxations aloxngf the atoms just below the terrace plane,
all relaxations are very well reproduced. Thisifies the following choice for analyzing our
GIXD data: we have fitted the diffracted amplitugith the elastic displacements calculated
analytically using the model of lines of buried aigs. We have used nine free parameters:
the positionx, and z, of the lines of dipoles with respect to the stdges the widtha, of

the lorentzian shape, the lever arm orientatiothefdipolesQ, the two components of the
dipole: the stretch componempt, and the torque componept , a roughness factaf and the
mean relaxationsgz; and dz,, of the two first terrace planes in the (111) cliien.

Using the values indicated in the last column dbl€dl for these parameters, a perfect fit
of the experimental data is obtained. The comparisetween measured and simulated
amplitudes using an adjustable dipole is shownign F. All rods are well reproduced. The
values found fordz, and dz, are small, in accordance with the theoretical jotemhs. In fact,
the quality of the fit depends mainly on the valoé$wo parametersé and p,. As already
mentioned,¢ is given by the surface roughness and determiresverall attenuation of the
intensity far from the Bragg spots whilp, determines mainly the amplitude of the sharp
variations in diffracted intensity. We thus obtdire same value of as in Section IlIC,
namely ¢ =0.38. For p,, we obtain a slightly lower value than the theicsdt one:

p; =0.5 nN instead of 0.61 nN.

In Table 1, we have also given the correspondingrpaters for the elastic dipole

equivalent to a step in order to obtain #keinitio results for atomic relaxations. The values



found for the two sets of parameters (second amd tolumns in Table I) are very close,
which explains why the fit was already good whemgislirectly the values computed ap

initio DFT. From the comparison with experiments, it gppehowever that the theoretical
value of p; is slightly higher than the experimental valueslpossible that the value qf;
experimentally measured is slightly underestimateel to step disorder. As has been pointed
out® step disorder reduces the contribution of integeler harmonics in the Fourier
decomposition of the elastic displacements. Singg these harmonics contribute to the
measured signal, step disorder leads to a decog¢dise value ofp, measured, in comparison
with data obtained on a perfect surface.

The elastic displacements corresponding to the fiiest the GIXD data with an elastic
dipole are drawn in Fig. 6. As already mentiondése displacements depend mainly on the
value of p;. This is due to the fact that elastic displacemelue to pure stretch dipoles are
much smaller than displacements due to pure todip@es’**’ Since GIXD is sensitive to
atomic displacements, the uncertainty in the coegbwilue ofp; is thus much smaller than

the uncertainty inps. The comparison withb initio results shows that the atomic relaxations

measured alongx are close to the relaxations computad initio, whereas the atomic

relaxations along are approximately one third lower than the theocaételaxations.

C. Surface stress

It is very interesting to precisely measupe since its value can be directly related to the

surface stress of the nominal surfagg,,; :

pT = hStepTAu (111 (5)

where h.,__ is the step height. This equation, first statedMBrchenko and Parshifl,has

Step

been shown to be correct for a lot of vicinal scefs, in particular for Au(111) vicinafé.



Inverting equation (5), one obtains,,,,;, = 21 Nm™. Since Au(332) vicinals are not

reconstructed, we measure here the surface stfess anreconstructed Au(111) surface.
Such an experimental determination of the surfamss for Au(111) has not, to the best of
our knowledge, been performed by other technigBeme measurements of the mean surface

stressr,, of small crystalline particles have been performedr example, Solliard and
Flueli®® have foundr,, =3 Nmi', but the method used does not allow one to sepdinat

contributions of the different facet orientatiofi$ie difference between the surface stress of a
reconstructed and an unreconstructed Au(l1ll) saurfaave also been measured, but
measurements have been performed in soldfiand the absolute value of the surface stress
could not be determined from the experiments.

However, several previous authors have perforateditio DFT calculations where they
have computed the surface stress on Au(lll); theye hobtained values of

Tauary =3-3 Nnit,* 2.6 Nni',*? and 2.8 Nrit.*® In this study, we have found a quite similar

value, with 7,,,,, =3.06 Nm'. Using this value andy,,=0.236 nm in Eq. 5, we obtain

tep
p; =0.72 nN. This value is slightly lower than the \eduwbtained from owab initio DFT

computation of forces (0.8 — 0.9 nN), and sligltigher than the value of the elastic dipole
that fits theab initio DFT calculations (0.61 nN). This indicates thatingsthis method, a
quite good precision on the surface stress valaaldibe obtained.

We point out that the surface stress on an unréxaaried Au(111) facet is a parameter of
considerable interest, since it has been showray @ key role in the self-organization of

Au(111) vicinal surface$’ It is also important to know its value since iuttplay a role in
the mechanisms leading to tl?@x+/3 reconstruction of Au(11%* From the comparison

between experiments and theory, we can make twothgpes for determining the surface

stress. In the first hypothesis, assuming that(gpis still valid, and using the experimental



value p; =0.50 nN, we obtairr,,,,, =21 Nm™. In the second hypothesis, we notice that
the torque component of the elastic dipole denslich fits the GIXD results is 18% lower
than the one that fits thab initio results and we assume that the same factor shpplg for

the surface stress. In that case, we obtif,, = N®3. These two values differ by only

16%. Thus, from the experimental uncertainty onvidleie of p, and from the uncertainty on

the derivation ofr,,,,; using the elastic dipole density, we estimate that GIXD

determnation of the surface stresg jg,,, = 23+ NoH,

D. Elastic interactions

From the experimentally measured value of the ieladipoles, the elastic interaction

energy between two straight steps can be obtaifieel interaction energys,,, between two
steps is, in a first order approximation, inversgigportional to the square of the interstep

distance® B..(6) = Ald*+0(1/d®). For a regular array of steps, this interactiomsto the
step energyps, of an isolated step so that the step energy cavritten as:

T A E
+?F:ﬁo+_2- (6)

,8:,80 d2

For a regular vicinal surfacedA depends only on the value of the elastic dipadesthe
ovalues of the elastic constants, and on the sirfeientation’’ In particular, A depends
quadratically onpg and p,, with a prefactor depending on the lever arm daton. Except
for Q close to 0 orn, i.e. when the lever arm of the dipoles is pradlycparallel to the
surface, the contribution opg is much smaller than the contribution pf. This means that
except for this particular lever arm orientatioripales that give rise to small elastic

displacements also give rise to small interactietwieen steps. This is still the case here since

Q=7nl/2.



Using the values of the elastic dipoles determimgd>1XD, and equations given in Ref.
14, we find E, =720+180meV/at, for d expressed in number of atomic rows. This
corresponds to a valué& =950+150 meV.A, when all distances are expressed in A. The
value of elastic step interactions on Au(332) isstimuch higher than the value of the elastic
step interactions on Cu(223), for which an expentakvalue of E, =50meV/at has been
found!® but closer to the value found for step interactioon Pt(779), for which
E, = 400meV/at™ It is also possible to compute elastic interactimom ab initio results,
using the values of the theoretical elastic digbbt fits the computed atomic relaxations. In
that case, we findE, =860meV/at. Since the relaxations calculatgd initio are slightly
higher than the values found by GIXD, the elastteractions are also found to be higher.

We can compare the step elastic interaction testép formation energy computed using
Eqg. (2), which givess =248 meV/at. Usinge, =860meV/at andd = 5.4 rows, we find that
E,/d* =29 meV/at, and thug3, = 2h®eV/at. Experimentally, we are not able to measure
this quantity since we do not know the non-elagtd of the step formation energy, i.e. the
local cost for reducing the number of neighborsstep edge atoms. However, the fact Hiat

initio calculations reproduce quite well atomic relaxatioould indicate that the value @

computed is quite good.

V.CONCLUSION
We have measured by GIXD the Crystal TruncationRoidan Au(332) surface. These
data have been analyzed both by a direct comparistinab initio calculations and by a
model based on linear elasticity. We have shownhtti@experimentally obtained diffraction
profiles are in good agreement with the displacdmenbtained from ourab initio

calculations. Moreover, the calculated atomic dispiments can be well reproduced by a



simple elastic model with a buried line of dipoldhe comparison between the results
obtained by the fit of GIXD experiments and thie initio simulations shows that the main
parameter, which is the torque dipole generatethbystep edge, is slightly overestimated by
ab initio calculations, in relation with the calculated sod stress value, for which we are
able to obtain the absolute value. The small ddfiees between experiments and simulations
could be due to the experimental roughness aloagstep edges which is not taken into
account in the analysis, or to fine details of dlfeeinitio calculations, for example related to
the fact that the computed values of the elastisstamts differ from the experimental values.
This provides a good test to check the importarfcdifterent terms in the calculations of
atomic displacements by these methods. Finally,védae of the step edge torque dipole
allows us to estimate the strength of the step-stegaction on Au(111) vicinal surfaces,
which is found to be high as compared to other hnetsurfaces. This explains the narrow
terrace width distribution observed on these sedawhich can be a crucial parameter for the

measurements of physical properties of naturaliopatterned surfacés.
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tables

ab initio GIXD
Initial forces Comparison
with elasticity
Schematic Fig. 4a Fig. 4b Fig. 4c
X, (A) -0.61 -1.07 -1.02
z,(R) -1.09 -0.97 -0.94
In(a, /a,) -3.9 -2.8
Q (degrees) 119 102 93
ps (NN) 0.41 1.8+0.3 1.7+0.5
p; (NN) 0.80 0.61+0.04 0.50+0.08
dz,(A) 0.001 0.016
dz,(AR) 0.001 0.016
C,, (GPa) 209.6 192.44
C,, (GPa) 182.0 162.98
C. (GPa) 36.5 42.00
a, (R) 4.05 4.08
E, (meV/at) 860£150 720+£180

Table 1. Parameters describing the elastic diposesl for fitting theab initio and GIXD

results. &, , z,) is the position of the lines of dipoles withpest to the step edge, is the
width of the lorentzian shap&} is the lever arm orientation of the dipolgs, and p; are

the stretch component and the torque componetiteotlipole, anddz, and dz, are the
mean relaxation of the two first terrace planesthe [111] direction. Forab initio
calculations, two sets of values are given. In lgfe column are indicated the parameters
deduced from the values of the forces exerted erstbp edge and corner atoms on a bulk-
truncated slab. In this casg, and z, are at the midpoint of the step edge and stepecorn
positions andQ is given by the step orientation. In the seconldroa are given the values
obtained from the comparison with linear elasticiéyculations. In the table are also given the
elastic constants used in the linear elasticitycudations, and the value of the dipole

interaction energy, .



Figures

Fig. 1. (a) Schematic diagram of the atomic arrareyg on the Au(332) surface, including

the unit cell (4,b,¢) for GIXD measurements, and (b) 40 nm STM imagehef Au(332)

surface.
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Fig. 2. Experimental structure factors of crystahtation rods on Au(332), as a function of

| =1 =lg,4, (color online).



Fig. 3. Results, obtained froab initio density functional theory calculations, for (a¢ florce
distribution on a bulk-truncated slab with (332¢da, and (b) the atomic relaxations, i.e., the
displacements away from bulk-truncated positionst €larity, the relaxations have been

amplified by a factor of 50



Fig. 4. Schematic diagrams showing the dipolarithistions given in Table 1. (a) point dipole
equivalent to the initial force distribution on thep edge (S) and corner (C) atoms computed
by DFT for a bulk-truncated slab, (b) elastic paigole giving the same displacements as the
atomic relaxations computed by DFT, and (c) elgsbint dipole that gives the best fit to the
GIXD results. Q is the orientation of the lever arm of the dipwi¢h respect to the surface,

and x, and z, are the position of the dipole with respect to $hkep edge. The dipole is the
sum of a torque componerb, and a stretch componernis. Note that the (b) and (c)

distributions are very similar.
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Fig. 5. Comparison between experimental and thieatettructure factors for Au(332). The
dots are the experimental data, while the linesfaevalues calculated making use of e

initio DFT results for atomic relaxations.



—
[ o : o
0.05 -, 0.05 |- ]
= i
>I<° 0 ; 0r
Ra¥ / L
./ o
_ o 1 r®
0.05||||I||||I||||I|||| _0.05||||I||||I||||I||||
0 5 10 15 20 0 5 10 15 20

position with respect to the step edge position with respect to the step edge

Fig. 6: atomic relaxations alongand z on Au(332). The atoms are numbered according to
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relaxations calculated usirap initio DFT; the dotted lines indicate the elastic respdiossa
point dipole fitted to theab initio relaxations, drawn in Fig. 4b and correspondinghi®
second column of Table 1; the continuous line shelastic response to a point dipole fitted

to the GIXD results, drawn in Fig. 4c and correspog to the third column of Table 1.
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Fig. 7. Comparison between experimental and thigatedtructure factors for Au(332). Dots:
experiments; full line: simulation with elastic piacements due to lines of dipoles. The

parameters used for the elastic displacementsiega m the third column of Table 1.



