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Lipschitz stability in an inverse problem for the

Kuramoto-Sivashinsky equation

Lucie Baudouin∗, Eduardo Cerpa†, Emmanuelle Crépeau‡, and Alberto Mercado†

Abstract

In this article, we present an inverse problem for the nonlinear 1-d Kuramoto-Sivashinsky

(K-S) equation. More precisely, we study the nonlinear inverse problem of retrieving the

anti-diffusion coefficient from the measurements of the solution on a part of the boundary

and also at some positive time in the whole space domain. The Lipschitz stability for this

inverse problem is our main result and it relies on the Bukhgĕım-Klibanov method. The

proof is indeed based on a global Carleman estimate for the linearized K-S equation.
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AMS subject classifications: 35R30, 35K55.

1 Introduction

We focus in this paper on an inverse problem that consists in the determination of a coefficient

in a partial differential equation (pde) from the partial knowledge of a given single solution of

the equation. This class of problems (single-measurement coefficient inverse problems) was

investigated using Carleman estimates for the first time in [7] by Bukhgĕım and Klibanov.

See [20], [21] and the recent book [3] for details about the so-called Bukhgĕım-Klibanov

method. This method was initially used to prove uniqueness for inverse problems (i.e.

that each measurement corresponds to only one coefficient) from local Carleman estimates

(estimates valid for solutions with compact support in the interior of the domain), as in [7].

Regarding the continuity of the inverse problem of recovering the source term, the first

Lipschitz stability result for a multidimensional wave equation was obtained by Puel and

Yamamoto [25] using the uniqueness result and a compactness-uniqueness argument.
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Global Carleman estimates (valid for solutions considered in the whole domain and sat-

isfying boundary conditions) were applied to parabolic equations by first time in [18], where

Lipschitz stability of an inverse problem is established. Since then, this type of inverse

problems for parabolic equations has received a large amount of attention. The primary

difference with respect to hyperbolic inverse problems is that parabolic problems are not

time-reversible: therefore, an additional measurement must be added if that method is ap-

plied. As one can read in the discussion of the introduction of [18], the knowledge of the

full-state of the solution for some positive time is required. Proving the Lipschitz stability

without this assumption, which is usually needed when global Carleman inequalities are

used, is still an open problem. Nevertheless, there are some uniqueness results with less

assumptions on the measurements, that can be found in the litterature, such as [27] or some

other inversion method in [20, 22].

Recent results regarding linear parabolic problems can be found in [5] (discontinuous

coefficient), [13] (systems), [19] (network) and the references therein. In [6, 15, 27], nonlinear

parabolic equations were even considered.

Among others pde’s coefficient/source inverse problems where Carleman estimates have

been used we can mention, without being exhaustive, logarithmic stability [4], Calderón

problem [14] or Schrödinger equation [2].

In this paper, we consider a 1D nonlinear fourth-order parabolic equation called Kuramoto-

Sivashinsky (K-S) equation. This equation was proposed independently by Kuramoto and

Tsuzuki [23] as a model for the phase turbulence in reaction diffusion systems, and by

Sivashinsky [28], as a model the physical phenomena of plane flame propagation, were the

combined influence of diffusion and thermal conduction of a gas is described.

The K-S equation with non-constant coefficients describing the diffusion σ = σ(x), and

the anti-diffusion γ = γ(x), is given as







yt + (σ(x)yxx)xx + γ(x)yxx + yyx = g, ∀(t, x) ∈ Q,

y(t, 0) = h1(t), y(t, 1) = h2(t), ∀t ∈ (0, T ),

yx(t, 0) = h3(t), yx(t, 1) = h4(t), ∀t ∈ (0, T ),

y(0, x) = y0(x), ∀x ∈ (0, 1),

(1)

where Q := (0, T )×(0, 1), σ : [0, 1] → R
∗
+, and the functions y0, g, hj are the initial condition,

the source term and the boundary data respectively. All these terms are assumed to be known

and compatible.

In this nonlinear pde, the fourth-order term models the diffusion, and the second-order

term models the incipient instabilities. We consider the inverse problem of retrieving the

anti-diffusion coefficient γ from boundary measurements of the solution. This corresponds for

instance to getting information on the instability of a reaction-diffusion media by measuring

a single solution, which could represent a flame propagating on the domain. Concerning

the boundary measurements we will make, it is worth to mention that in a fourth-order
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parabolic problem like KS, boundary data uxx and uxxx are referred to as Neumann data,

which in fact represent heat flux [24] in this kind of models.

To the knowledge of the authors there are no results in the literature concerning the

determination of coefficients for this nonlinear equation. However, a Carleman estimate has

been used to obtain the null-controllability of the K-S equation in reference [10] for the

constant coefficient case. Other results on the control of the KS equation can be found in

[17, 1, 12, 24, 9].

Since the linearized equation is parabolic, we know that boundary measurements will not

be sufficient to prove stability and we must consider an additional measurement of the full

solution for a given time T0 (as in [5, 18] among others).

Our first result involves the local well-posedness of the nonlinear equation (1). A less

regular framework can be used for this equation but the method applied in this paper

requires the solution and its time-derivative to be at least in L2(0, T ;H4(0, 1)). Therefore,

let us introduce the following notations for the functional spaces appearing in this paper:

Yk := C([0, T ];Hk(0, 1)) ∩ L2(0, T ;Hk+2(0, 1)), for k ∈ N;

F := {f ∈ L2(0, T ;H4(0, 1))
/
ft ∈ L2(0, T ;L2(0, 1))};

Z := {z ∈ Y6

/
zt ∈ Y2}.

(2)

Theorem 1.1 Let γ ∈ H4(0, 1) and σ ∈ H4(0, 1) be such that

σ(x) ≥ σ0 > 0, ∀x ∈ (0, 1). (3)

There exists ε > 0 such that if y0 ∈ H6(0, 1), g ∈ F, and hj ∈ H2(0, T ) for j = 1, . . . , 4

satisfy the compatibility conditions

y0(0) = h1(0), y0,x(0) = h3(0), y0(1) = h2(0), y0,x(1) = h4(0), (4)

and

‖y0‖H6(0,1) ≤ ε, ‖g‖F ≤ ε, ‖hj‖H2(0,T ) ≤ ε for j = 1, . . . , 4, (5)

then the K-S equation (1) has a unique solution y ∈ Z .

Once the existence of solutions to the K-S equation has been established (see Section 2),

the following inverse problem is addressed:

Is it possible to retrieve the anti-diffusion coefficient γ = γ(x) from the measure-

ment of yxx(t, 0) and yxxx(t, 0) on (0, T ) and from the measurement of y(T0, x)

on (0, 1), where y is the solution to Equation (1) and T0 ∈ (0, T )?

A local answer for this nonlinear inverse problem is given (see section 4). To be more specific,

let γ̃ be given and fixed. We denote by ỹ the solution to Equation (1) with γ replaced by γ̃.

This paper focuses on the following question concerning the unknown γ and y.
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Stability: Is it possible to estimate ‖γ̃ − γ‖L2(0,1) by suitable norms ‖ỹ(T0, x) − y(T0, x)‖
in space and ‖ỹxx(t, 0) − yxx(t, 0)‖, ‖ỹxxx(t, 0)− yxxx(t, 0)‖ in time?

Of course, a positive answer implies the usual uniqueness result.

Uniqueness: Do the equalities of the measurements ỹxx(t, 0) = yxx(t, 0) and ỹxxx(t, 0) =

yxxx(t, 0) for t ∈ (0, T ) and ỹ(T0, x) = y(T0, x) for x ∈ (0, 1) imply γ̃ = γ on (0, 1)?

In order to answer these questions, we use the Bukhgĕım-Klibanov method. First, a

global Carleman estimate for the linearized K-S equation with non-constant coefficients is

obtained. It is then used to prove the main result which can be stated as follows.

To precisely state the results we prove in this article, we introduce, for m > 0, the set

L∞
≤m(0, 1) =

{
γ ∈ L∞(0, 1)s.t. ‖γ‖L∞(0,1) ≤ m

}
.

Theorem 1.2 Let us consider σ ∈ H4(0, 1) satisfying (3), γ ∈ H4(0, 1), g ∈ F and the data

y0 ∈ H6(0, 1) and hj ∈ H2(0, T ) for j = 1, . . . , 4 under the compatibility conditions (4). Let

y ∈ Z be the solution of (1), and ỹ ∈ Z the solution corresponding to a given γ̃ ∈ H4(0, 1)

instead of γ. We assume that there exists η > 0 and T0 ∈ (0, T ) such that

inf {|ỹxx(T0, x)| , x ∈ (0, 1)} ≥ η, (6)

Then, given M > 0, there exists a positive constant C depending on the parameters

(T,m,M, η), such that for every γ ∈ L∞
≤m(0, 1),

‖γ − γ̃‖2L2(0,1) ≤ C ‖yxx(·, 0)− ỹxx(·, 0)‖2H1(0,T ) + C ‖yxxx(·, 0) − ỹxxx(·, 0)‖2H1(0,T )

+ C ‖y(T0, ·) − ỹ(T0, ·)‖2H4(0,1) + C ‖y(T0, ·)− ỹ(T0, ·)‖4H1(0,1) (7)

for all y satisfying

‖y‖Z ≤M.

This inequality states the stability of the inverse problem. Before giving the outline of

our paper and the proofs of the different steps, we want to give several comments on this

result.

Remark 1.3 For numerical purposes it would be interesting to know explicitly how the con-

stant C in (7) depends on the diffusion σ or on the time T . This kind of question has been

addressed in [11, 16] for observability constant in the framework of second-order parabolic

equations. In those papers the authors got an exponential dependence on both the constant

diffusion and the time.

Remark 1.4 One can show that there exist solutions satisfying assumption (6). We present

two different arguments:

1. We take ε > 0 given by Theorem 1.1, and some y0 ∈ H6(0, 1) such that inf
x∈(0,1)

∣
∣y0xx

∣
∣ ≥ ε/2.

For arbitrary boundary data and source term belonging to the corresponding spaces, by

Theorem 1.1 there exists a solution ỹ ∈ C([0, 1];H6(0, 1)) with ỹ(0, ·) = y0. Using
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Sobolev injection and continuity, we obtain the existence of a time T0 > 0 such that

(6) is fulfilled with η = ε/4.

2. We can also prove that there exist solutions satisfying (6) without asking T0 to be small,

but instead, constraining the source term and boundary data as follows: Let y0 be the

initial data and T0 belong to (0, T ). Let us pick up a state y1 = y1(x) strictly convex.

We consider the trajectory ỹ(t, x) = T0−t
T0

y0(x) +
t
T0
y1(x), which is the solution of

equation (1) with source term given by g = ỹt + (σ(x)ỹxx)xx + γ(x)ỹxx + ỹỹx and the

boundary data given by the traces of ỹ. Thus, ỹ(T0, x) = y1(x) and hence the trajectory

ỹ satisfies (6).

Therefore, the set of data and solutions where our stability result is valid is not empty.

Remark 1.5 We obtain the same result if ỹ has a different initial condition than y. See in

Section 4, that the term v(x, 0) of system (46) does no play any role in the result.

Remark 1.6 We can complete inequality (7) by the following:

‖yxx(·, 0)− ỹxx(·, 0)‖2H1(0,T ) + ‖yxxx(·, 0)− ỹxxx(·, 0)‖2H1(0,T )

+ ‖y(T0, ·)− ỹ(T0, ·)‖2H4(0,1) + ‖y(T0, ·)− ỹ(T0, ·)‖4H1(0,1)

≤ C
(

‖y − ỹ‖2H1(0,T ;H4(0,1)) + ‖y − ỹ‖4C([0,T ];H1(0,1))

)

.

This inequality follows directly from standard Sobolev injections. It indicates that the required

measurements are finite if y and ỹ belong to the space H1(0, T ;H4(0, 1)) and this is true if

y and ỹ are solutions in Z provided by Theorem 1.1.

Remark 1.7 As stated in the introduction, an internal measurement at t = T0 is required if

this method, using Carleman estimates, is used to prove the stability for this type of inverse

problem for parabolic equations. Nevertheless, this is probably a technical point since there is

no counter-example that demonstrates whether this assumption is required for stability. In

[27], uniqueness (but not stability) is proven using a very different technique in an inverse

problem for a parabolic equation and without any internal measurements in the whole space

domain. One can also mention a method in [22] that can deliver uniqueness from hyperbolic

equations to parabolic ones.

Remark 1.8 In this paper, the boundary measurements are located at x = 0, but the result

would be the same if we measure at x = 1 instead. Indeed, the choice of a suitable weight

function in the proof of the Carleman estimate in Section 3 is critical to impose the side of

measurement.

This article is organized as follows. The well-posedness result stated in Theorem 1.1 is

proved in Section 2. A global Carleman estimate for a general K-S equation is given and

proved in Section 3. Finally, Section 4 contains the use of the Bukhgeim-Klibanov method

to prove the Lipschitz stability of the inverse problem stated in Theorem 1.2.
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2 On the Cauchy problem for KS equation

This section presents a proof of Theorem 1.1 in a more general case including time dependent

lower-order coefficients. We consider the following K-S system







yt + (σ(x)yxx)xx + γ(x)yxx +G1yx +G2y + yyx = g, ∀(t, x) ∈ Q,

y(t, 0) = h1(t), y(t, 1) = h2(t), ∀t ∈ (0, T ),

yx(t, 0) = h3(t), yx(t, 1) = h4(t), ∀t ∈ (0, T ),

y(0, x) = y0(x), ∀x ∈ (0, 1),

(8)

where G1, G2 belong to H1(0, T ;H4(0, 1)), g ∈ F and y0 ∈ H6(0, 1) is compatible with

hj ∈ H2(0, T ) for j = 1, . . . , 4. Recall that the coefficients satisfy γ ∈ H4(0, 1), σ ∈ H4(0, 1)

and hypothesis (3).

First, we only consider the main part of the linear differential operator in the next

proposition.

Proposition 2.1 Let z0 ∈ H6 ∩H2
0 (0, 1) and f ∈ F. Then, the following equation







zt + (σ(x)zxx)xx = f, ∀(t, x) ∈ Q,

z(t, 0) = 0, z(t, 1) = 0, ∀t ∈ (0, T ),

zx(t, 0) = 0, zx(t, 1) = 0, ∀t ∈ (0, T ),

z(0, x) = z0(x), ∀x ∈ (0, 1),

(9)

has a unique solution z ∈ Z and there exists C > 0 such that

‖z‖Z ≤ C (‖f‖F + ‖z0‖H6) .

Proof. The operator

H4 ∩H2
0 (0, 1) ⊂ L2(0, 1) −→ L2(0, 1)

z 7−→ (σ(x)z′′(x))′′,

is simultaneously positive, coercive and self-adjoint. By the Hille-Yosida-Phillips Theo-

rem (see [8]), it generates a strongly continuous semigroup in L2(0, 1). Therefore, for

each z0 ∈ H4 ∩ H2
0 (0, 1) and f ∈ C1([0, T ];L2(0, 1)), Equation (9) has a unique solution

z ∈ C([0, T ];H4 ∩H2
0 (0, 1)) ∩ C1([0, T ];L2(0, 1)).

We will demonstrate that the solutions z ∈ Z (refer to the notation introduced in (2)),

can be obtained by taking z0 and f sufficiently regular.

We now search for some energy estimates that indicate the space where the solutions lie on

depending on the regularity of the data. Suppose that there are solutions sufficiently regular

to perform the following computations. Equation (9) is multiplied by z and integrated over

(0, 1) in space. Some integrations by parts give

d

dt

(∫ 1

0

|z(t, x)|2 dx
)

+

∫ 1

0

|zxx(t, x)|2 dx ≤ C

(∫ 1

0

|f(t, x)|2 dx+

∫ 1

0

|z(t, x)|2 dx
)

. (10)
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Throughout this paper, C denotes a positive constant that may vary from line to line. To

make the reading easier, we denote for any function u of x and t,
∫∫

Q

u =

∫ T

0

∫ 1

0

u(t, x) dxdt

Using Gronwall’s lemma, we first obtain that for all t > 0,
∫ 1

0

|z(t, x)|2 dx ≤ C

(∫∫

Q

|f |2 +

∫ 1

0

|z0|2 dx
)

. (11)

Then, (10) is integrated over [0, T ] and (11) is used to get
∫∫

Q

|zxx|2 ≤ C

(∫∫

Q

|f |2 +

∫ 1

0

|z0|2 dx
)

. (12)

Inequalities (11) and (12) finally imply that

‖z‖2Y0
≤ C

∫∫

Q

|f |2 + C

∫ 1

0

|z0|2 dx. (13)

Now, equation (9) is multiplied by (σzxx)xx and integrated over (0, 1) in space. Some

integrations by parts give also

1

2

d

dt

(∫ 1

0

σ|zxx(t, x)|2 dx
)

+

∫ 1

0

|(σzxx(t, x))xx|2 dx =

∫ 1

0

f(t, x)(σzxx(t, x))xx dx.

Using the inequality ab ≤ 1
2
a2 + 1

2
b2, we get

d

dt

(∫ 1

0

σ|zxx(t, x)|2 dx
)

+

∫ 1

0

|(σzxx(t, x))xx|2 dx ≤
∫ 1

0

|f(t, x)|2 dx. (14)

Using Gronwall’s lemma, from(14) and (3) we obtain that for all t > 0,
∫ 1

0

|zxx(t, x)|2 dx ≤ C

(∫∫

Q

|f |2 +
∫ 1

0

|z′′0 |2 dx
)

. (15)

Then, (14) is integrated over [0, T ] and (15) is used to get
∫∫

Q

|(σzxx)xx|2 ≤ C

(∫∫

Q

|f |2 +

∫ 1

0

|z′′0 |2 dx
)

, (16)

and then, taking into account that σ ∈ H4, we get
∫∫

Q

|zxxxx|2 ≤ C

(∫∫

Q

|f |2 +

∫ 1

0

|z′′0 |2 dx
)

+ C‖z‖L2(0,T ;H3(0,1)). (17)

For any ε > 0, from Ehrling’s Lemma (see Theorem 7.30 in [26]) and (11), we have that

‖z‖L2(0,T ;H3(0,1))≤ ε‖z‖L2(0,T ;H4(0,1)) + C‖z‖L2(0,T ;L2(0,1))

≤ ε‖z‖L2(0,T ;H4(0,1)) + C

(∫∫

Q

|f |2 +
∫ 1

0

|z0|2 dx
)

.
(18)

Taking ε > 0 small enough, inequalities (15), (17) and (18) imply that

‖z‖2Y2
≤ C

∫∫

Q

|f |2 + C‖z0‖2L2(0,T ;H2(0,1)). (19)

On the other hand, Equation (9) is derived with respect to time. Thus q := zt satisfies






qt + (σ(x)qxx)xx = ft, ∀(t, x) ∈ Q,

q(t, 0) = 0, q(t, 1) = 0, ∀t ∈ (0, T ),

qx(t, 0) = 0, qx(t, 1) = 0, ∀t ∈ (0, T ),

q(0, x) = f(0, x)− (σz′′0 (x))
′′, ∀x ∈ (0, 1).

(20)
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Using estimate (19), we obtain q ∈ Y2 if (f(0, x) − (σz′′0 (x))
′′) ∈ H2(0, 1) and ft ∈

L2(0, T ;L2(0, 1)). These hypotheses are fulfilled if z0 ∈ H6 ∩ H2
0 (0, 1) and f ∈ F . Note

that F ⊂ C([0, T ];H2(0, 1)). From the equation satisfied by z and the fact that f ∈ F and

zt ∈ Y2, we determine that z ∈ Y6, which concludes the proof of Proposition 2.1. �

Then, we focus on the linear problem with non-homogenous boundary conditions and

low-order coefficients that depend on time.

Proposition 2.2 Let z0 ∈ H6(0, 1), f̂ ∈ F, G1, G2 ∈ H1(0, T ;H4(0, 1)) and hj ∈ H2(0, T )

for j = 1, . . . , 4 satisfying the compatibility conditions with z0. Then, the equation






zt + (σ(x)zxx)xx + γ(x)zxx +G1zx +G2z = f̂ , ∀(t, x) ∈ Q,

z(t, 0) = h1(t), z(t, 1) = h2(t), ∀t ∈ (0, T ),

zx(t, 0) = h3(t), zx(t, 1) = h4(t), ∀t ∈ (0, T ),

z(0, x) = z0(x), ∀x ∈ (0, 1),

(21)

has a unique solution z ∈ Z and there exists C > 0 such that

‖z‖Z ≤ C

(

‖f̂‖F + ‖z0‖H6 +
4∑

j=1

‖hj‖H2

)

.

Proof. We first prove this result for null boundary data (i.e. for hj = 0 for j = 1, . . . , 4 and

therefore z0 ∈ H6 ∩H2
0 (0, 1)).

For any ŵ ∈ Z, Π(ŵ) is defined as the solution of (9) with f = (f̂−γ(x)ŵxx−G1ŵx−G2ŵ).

Note that f ∈ F and therefore Π(ŵ) ∈ Z is well defined.

If T is small enough, then Π is a contraction. Indeed, for any w, ŵ ∈ Z, we have

‖Π(ŵ)− Π(w)‖Z ≤ C‖γ(x)(wxx − ŵxx) +G1(wx − ŵx) +G2(w − ŵ)‖F

≤ C‖w − ŵ‖L2(H6) + C‖wt − ŵt‖L2(H2) (22)

≤ CT
1

4 ‖w − ŵ‖L4(H6) + CT
1

4 ‖wt − ŵt‖L4(H2)

≤ CT
1

4 ‖w − ŵ‖Y6
+ CT

1

4 ‖wt − ŵt‖Y2

≤ CT
1

4 ‖w − ŵ‖Z , (23)

where the space Lm(0, T ;Hn(0, 1)) is denoted as Lm(Hn).

Hence, the operator Π has a unique fixed point in Z, which is the solution of (21) with

hj = 0 for j = 1, . . . , 4. Using standard arguments and the linearity of this equation, the

solution can be extended to a larger time interval.

In order to prove the general case, take hj ∈ H2(0, T ), j = 1, . . . , 4 compatible with z0. It

is not difficult to find a function ψ ∈ H2(0, T ;C∞([0, 1])) satisfying the boundary conditions

of (21). For instance take ψ(x, t) =
∑4

j=1 pj(x)hj(t) where p1(x) = 2x3 − 3x2 + 1, p2(x) =

−2x3 + 3x2, p3(x) = x3 − 2x2 + x and p4(x) = x3 − x2. In particular we have Lψ :=

ψt + (σ(x)ψxx)xx + γ(x)ψxx +G1ψx +G2ψ ∈ F . Then, if w is the solution of equation (21)

with null boundary data, initial condition w0 −ψ(·, 0), and right-hand side equal to f̂ −Lψ,

let us define z = w + ψ. It is not difficult to see that z is the required solution. �
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Remark 2.3 The third-order term zxxx can be added to Equation (21). Indeed, in that case

(22) becomes C‖w − ŵ‖L2(H7) + C‖wt − ŵt‖L2(H3), which is bounded by

CT
1

4 ‖w − ŵ‖1/2
L∞(H6)

‖w − ŵ‖1/2
L2(H8)

+CT
1

4 ‖wt − ŵt‖1/2L∞(H2)
‖wt − ŵt‖1/2L2(H4)

.

This last expression is bounded by (23). The remainder of the proof is the same.

Again, by using a fixed point theorem, we can prove Theorem 1.1 for equation (8).

Let y0 ∈ H6(0, 1), hj ∈ H2(0, 1) compatible with y0, and g ∈ F . For any v ∈ Z, we define

Λ(v) as the solution of (21) with f̂ = (g− vvx) and z0 = y0. Note that f̂ ∈ F and therefore

Λ(v) ∈ Z is well defined. Indeed, if v ∈ Y3 and vt ∈ Y0, then we have

(vvx)xxxx = (10vxxvxxx + 5vxvxxxx + vvxxxxx) ∈ L2(0, T ;L2(0, 1))

and

(vvx)t = vtvx + vvxt ∈ L2(0, T ;L2(0, 1)).

Furthermore, we can prove

‖Λ(v)‖Z ≤ C

(

‖g‖F + ‖vvx‖F + ‖y0‖H6 +
4∑

j=1

‖hj‖H2

)

≤ C

(

‖g‖F + ‖v‖2Z + ‖y0‖H6 +
4∑

j=1

‖hj‖H2

)

.

(24)

Let ε > 0 and suppose that y0, hj and g satisfy (5). Consider v such that ‖v‖Z ≤ R

with R > 0 satisfying C(6ε + R2) < R. From (24), we obtain ‖Λ(v)‖Z < R. Thus, the

application Λ maps the ball BR := {v ∈ Z
/
‖v‖Z ≤ R} into itself.

We will now prove that Λ : BR → BR is a contraction. For any z, v ∈ BR, Λ(z) − Λ(v)

is the solution of (21) with z0 = 0, hj = 0 for j = 1, . . . , 4 and f̂ = vvx − zzx. We obtain

the estimate

‖Λ(z)− Λ(v)‖Z ≤ C‖vvx − zzx‖F ≤ C (‖(v − z)vx‖F + ‖z(vx − zx)‖F ) .

Using the definition (2) of the space F , v, z ∈ C([0, 1];H6(0, 1)) →֒ L∞(0, T ;W 5,∞(0, 1))

and vt, zt ∈ C([0, 1];H6(0, 1)) →֒ L∞(0, T ;W 1,∞(0, 1)), we obtain

‖Λ(z) − Λ(v)‖Z ≤ C(‖v‖Z + ‖z‖Z )‖v − z‖Z ≤ 2CR‖v − z‖Z ,

which implies that Λ is a contraction if R is chosen small enough. More precisely, we can

choose R, ε such that 2CR < 1 and C(6ε+R2) < R. Hence, the map Λ has a unique fixed

point y ∈ Z, which is the unique solution of (8). Thus, we have proven Theorem 1.1. �

3 Global Carleman inequality

In this section, a global Carleman inequality will be proved for the linearized K-S equation.

We define the space

V = {v ∈ L2(0, T ;H4 ∩H2
0 (0, 1))

/
Lv ∈ L2((0, T )× (0, 1))} (25)

9



where

Lv = vt + (σvxx)xx + q2vxx + q1vx + q0v

with qj ∈ L∞(Ω) for j = 0, 1, 2.

Consider β ∈ C4([0, 1]) such that for some r > 0 we have, for all x ∈ (0, 1):

0 < r ≤ β(x),

0 < r ≤ β′(x),

β′′(x) ≤ −r < 0,

|σ′(x)β′(x)| ≤ r

4
min

z∈[0,1]
{σ(z)}.

(26)

For instance, if σ is constant, we can consider β(x) =
√
1 + x.

On the other hand, given T0 ∈ (0, T ) we can choose φ0 ∈ C1([0, T ]) such that

φ0(0) = φ0(T ) = 0, and

0 < φ0(t) ≤ φ0(T0) for each t ∈ (0, T ).
(27)

For example, if T0 = T/2, we can use φ0(t) = t(T − t).

We finally define the function

φ(t, x) =
β(x)

φ0(t)
, (28)

for (t, x) ∈ (0, T )× [0, 1], which is the weight function of the Carleman estimate. From (26)

and (27) it is not difficult to see that φ satisfies the following properties:

∃C > 0 such that φ ≤ Cφx and

φn ≤ Cφm for each positive integers n < m.
(29)

Theorem 3.1 Let φ be a function defined by (28) and m > 0. Then there exists λ0 > 0 and

a constant C = C(T, λ0, r,m) > 0 such that if ‖qi‖L∞((0,T )×(0,1)) ≤ m for i = 0, 1, 2 then we

have

∫ T

0

∫ 1

0

e−2λφ

(
|vt|2 + |(σvxx)xx|2

λφ
+ λ7φ7|v|2 + λ5φ5|vx|2 + λ3φ3|vxx|2 + λφ|vxxx|2

)

dxdt

≤ C

∫ T

0

∫ 1

0

e−2λφ|Lv|2 dxdt

+ C

∫ T

0

e−2λφ(t,0)

(

λ3φ3
x(t, 0)σ(0)

2|vxx(t, 0)|2 + λφx(t, 0)σ
2(0)|vxxx(t, 0)|2

)

dt (30)

for all v ∈ V, for all λ ≥ λ0.

As we pointed out in the Introduction, a Carleman estimate for the K-S equation with

constant coefficients σ and γ was previously obteined in [10]. The final goal in that work

was to prove null-controllability with boundary controls. Thus, (30) is a generalization to

the case of non-constant coefficients.
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Proof. Consider the following operator P defined in Wλ := {e−λφv : v ∈ V} by

Pw = e−λφL(eλφw).

We then obtain the decomposition Pw = P1w + P2w +Rw, where

P1w = 6λ2φ2
xσwxx + λ4φ4

xσw + (σwxx)xx + 6λ2(φ2
xσ)xwx (31)

P2w = wt + 4λ3φ3
xσwx + 4λφxσwxxx + 4λ3φx(φ

2
xσ)xw (32)

Rw = λφtw + 2λφxσxxwx + λ2φ2
xσxxw + λφxxσxxw

+6λφxσxwxx + 6λ2φxφxxσxw + 6λφxxσxw + 2λφxxxσxw

+4λ2φxφxxxσw + 6λφxxσwxx + 3λ2φ2
xxσw + 4λφxxxσwx

+λφxxxxσw + q0w + q1wx + q1λφxw

+ q2wxx + 2λq2φxwx + λ2q2φ
2
xw + λφxxq2w

− 2λ3φ2
xφxxσw − 2λ3φ3

xσxw. (33)

Thus,

‖Pw −Rw‖2L2(Q) = ‖P1w‖2L2(Q) + 2 〈P1w,P2w〉+ ‖P2w‖2L2(Q)

where 〈·, ·〉 is the L2(Q) scalar product.

For any v ∈ V we obtain vt ∈ L2(0, T ;L2(0, 1)) and then v ∈ C([0, T ];L2(0, 1)). From

the construction of φ (see (27)), we obtain w ∈ C([0, T ];L2(0, 1)) and w(x, 0) = w(x, T ) = 0

for any w ∈ Wλ.

Let us define the notations

I(w) = −6λ7

∫ T

0

∫ 1

0

φ6
xφxxσ

2|w|2 dxdt,

I(wx) = −λ5

∫ T

0

∫ 1

0

φ4
xσ(30φxxσ + 12φxσx)|wx|2 dxdt,

I(w2x) = −λ3

∫ T

0

∫ 1

0

φ2
xσ(58φxxσ + 40φxσx)|wxx|2 dxdt,

I(w3x) = −λ
∫ T

0

∫ 1

0

σ(2φxxσ − 4φxσx)|wxxx|2 dxdt,

and

Ix =

∫ T

0

(10λ3φ3
xσ

2|wxx|2 + 2λφxσσxx|wxx|2 + 2λφxσ
2|wxxx|2)

∣
∣
∣
∣

1

x=0

dt

The following weighted norm is defined, for any w ∈ Wλ, as

‖w‖2
λ,φ

=

∫ T

0

∫ 1

0

(
λ7φ7|w|2 + λ5φ5|wx|2 + λ3φ3|wxx|2 + λφ|wxxx|2

)
dxdt.

We first require the following

Lemma 3.2 Under the hypothesis of Theorem 3.1, there exists δ > 0 such that

〈P1w,P2w〉L2(Q) ≥ δ ‖w‖2
λ,φ

+ Ix (34)

for λ large enough and for all w ∈ Wλ.
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Proof. It is sufficient to prove that

〈P1w, P2w〉L2 =
3∑

k=0

I(wkx) +R0(w) + Ix (35)

for a large enough λ, for all w ∈ Wλ, where |R0(w)| ≤ λ−1 ‖w‖2
λ,φ

.

Indeed, let us first assume that we have (35). From the hypotheses in (26) we easily

check that there exists ε > 0 such that φ satisfies for all x ∈ (0, 1),

φxx(x) ≤ −εφ < 0,

30φxx(x)σ(x) + 12φx(x)σx(x) ≤ −εφ < 0,

58φxx(x)σ(x) + 40φx(x)σx(x) ≤ −εφ < 0, and

2φxx(x)σ(x)− 4φx(x)σx(x) ≤ −εφ < 0.

(36)

Then from (29) and assuming (35) we obtain, for λ large enough,

〈P1w, P2w〉L2 =

3∑

k=0

I(wkx) +R0(w) + Ix

≥ 2δ ‖w‖2
λ,φ

− |R0(w)|+ Ix

≥ δ ‖w‖2
λ,φ

+ Ix.

(37)

Let us now prove (35): we write 〈P1w,P2w〉L2(Q) =
4∑

i,j=1

Ii,j where Ii,j denotes the L2-

product between the i-th term of P1w in (31) and the j-th term of P2w in (32).

Integrations by parts in time or space are performed on each expression Ii,j . Each resulting

expression will be included in one of the terms of the right-hand side of (35). The results

are listed below, and we indicate for each term where it will be included.

• I1,1 = −I4,1 + 3λ2

∫∫

Q

(φ2
xσ)t|wx|2

︸ ︷︷ ︸

R0(w)

• I1,2 = −12λ5

∫∫

Q

(φ5
xσ

2)x|wx|2

︸ ︷︷ ︸

I(wx)

.

• I1,3 = −12λ3

∫∫

Q

(φ3
xσ

2)x|wxx|2

︸ ︷︷ ︸

I(w2x)

+12λ3

∫ T

0

[

φ3
xσ

2|wxx|2
]1

0

dt

︸ ︷︷ ︸

Ix

• I1,4 = 12λ5

∫∫

Q

[φ3
xσ(φ

2
xσ)x]xx|w|2

︸ ︷︷ ︸

R0(w)

− 24λ5

∫∫

Q

φ3
xσ(φ

2
xσ)x|wx|2

︸ ︷︷ ︸

I(wx)

.

• I2,1 = −λ
4

2

∫∫

Q

(φ4
xσ)t|w|2

︸ ︷︷ ︸

R0(w)

.

• I2,2 = −2λ7

∫∫

Q

(φ7
xσ

2)x|w|2

︸ ︷︷ ︸

I(w)

.

• I2,3 = −2λ5

∫∫

Q

(φ5
xσ

2)xxx|w|2

︸ ︷︷ ︸

R0(w)

+6λ5

∫∫

Q

(φ5
xσ

2)x|wx|2

︸ ︷︷ ︸

I(wx)

.
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• I2,4 = 4λ7

∫∫

Q

φ5
xσ(φ

2
xσ)x|w|2

︸ ︷︷ ︸

I(w)

.

• I3,1 =
1

2

∫ 1

0

[

σ|wxx|2
]T

0

dx = 0.

• I3,2 = −2λ3

∫∫

Q

[(φ3
xσ)xxσ]x|wx|2

︸ ︷︷ ︸

R0(w)

+4λ3

∫∫

Q

(φ3
xσ)xσ|wxx|2

︸ ︷︷ ︸

I(w2x)

+2λ3

∫∫

Q

(φ3
x)xσ

2|wxx|2

︸ ︷︷ ︸

I(w2x)

− 2λ3

∫ T

0

[

φ3
xσ

2|wxx|2
]1

0

dt

︸ ︷︷ ︸

Ix

.

• I3,3 = 2λ

∫ T

0

[

φxσσxx|wxx|2
]1

0

dt

︸ ︷︷ ︸

Ix

− 2λ

∫∫

Q

(φxσσxx)x|wxx|2

︸ ︷︷ ︸

R0(w)

+8λ

∫∫

Q

φxσσx|w3x|2

︸ ︷︷ ︸

I(wxxx)

+2λ

∫ T

0

[

φxσ
2|wxxx|2

]1

0

dt

︸ ︷︷ ︸

Ix

− 2λ

∫∫

Q

(φxσ
2)x|wxxx|2

︸ ︷︷ ︸

I(wxxx)

.

• I3,4 = 4λ3

∫∫

Q

(φx(φ
2
xσ)x)xxσwwxx

︸ ︷︷ ︸

R0(w)

− 4λ3

∫∫

Q

(φx(φ
2
xσ)x)xσ|wx|2

︸ ︷︷ ︸

R0(w)

+4λ3

∫∫

Q

φx(φ
2
xσ)xσ|w2x|2

︸ ︷︷ ︸

I(w2x)

.

• I4,1 = 6λ2

∫∫

Q

(φ2
xσ)xwxwt, which is canceled when adding with I1,1.

• I4,2 = 24λ5

∫∫

Q

(φ2
xσ)xφ

3
xσ|wx|2

︸ ︷︷ ︸

I(wx)

.

• I4,3 = 12λ3

∫∫

Q

[(φ2
xσ)xφxσ]xx|wx|2

︸ ︷︷ ︸

R0(w)

− 24λ3

∫∫

Q

(φ2
xσ)xφxσ|wxx|2

︸ ︷︷ ︸

I(w2x)

.

• I4,4 = −12λ5

∫∫

Q

(φ2
xσ)x(φ

3
xσ)x|w|2

︸ ︷︷ ︸

R0(w)

.

Summing up all the terms, we obtain (35). �

Then, we will prove a Carleman inequality for the conjugated operator P .

Lemma 3.3 There exists λ0 > 0 such that for all λ ≥ λ0 we have, for all w ∈ Wλ,

∫ T

0

∫ 1

0

(
λ7φ7|w|2 + λ5φ5|wx|2 + λ3φ3|wxx|2 + λφ|wxxx|2

)
dxdt

+‖P1w‖2L2(Q) + ‖P2w‖2L2(Q) ≤ C‖Pw‖2L2(Q) − Ix.
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Proof.

From hypothesis (26) and the inequalities listed in (36), we know that there exists δ > 0

such that
3∑

k=0

I(wkx) ≥ δ ‖w‖2
λ,φ

(38)

for a parameter λ large enough.

Besides, from the definition (33), the fact ‖qi‖L∞((0,T )×(0,1)) ≤ m for i = 0, 1, 2, and

(29), it is trivial to check that

‖Rw‖2L2((0,T )×(0,1)) ≤ C

(

λ6

∫∫

Q

φ6|w|2 + λ2

∫∫

Q

φ2|wx|2 + λ2

∫∫

Q

φ2|wxx|2
)

≤ Cλ−1 ‖w‖2
λ,φ
.

(39)

Thus, for λ large enough, we have

‖P1w‖2L2 + 2 〈P1w,P2w〉+ ‖P2w‖2L2 = ‖Pw −Rw‖2L2

≤ 2 ‖Pw‖2L2 + 2 ‖Rw‖2L2

≤ 2 ‖Pw‖2L2 + Cλ−1 ‖w‖2
λ,φ
.

(40)

From Lemma 3.2 and estimates (40) and (38), we conclude the proof of Lemma 3.3. �

To complete the proof of Theorem 3.1, we have to deal with the norms fo P1w and P2w

appearing in Lemma 3.3. From the definition of P2w, and because (26) holds, we have

1

λφ
|wt|2 ≤ 2

λφ
|P2w|2 +C

(
λ5φ5|w|2 + λ5φ5|wx|2 + λφ|wxxx|2

)

and
∫∫

Q

1

λφ
|wt|2 ≤ C

∫∫

Q

|P2w|2 + C ‖w‖2λ,φ
for λ large enough. A similar result is proven for (σwxx)xx and P1w, and we then have

∫∫

Q

1

λφ

(
|wt|2 + |(σwxx)xx|2

)
≤ C

∫∫

Q

(
|P1w|2 + |P2w|2

)
+ C ‖w‖2λ,φ . (41)

From (41) and Lemma 3.3 we obtain

∫∫

Q

1

λφ
(|wt|2 + |(σwxx)xx|2) + λ7φ7|w|2 + λ5φ5|wx|2 + λ3φ3|wxx|2 + λφ|wxxx|2

≤ C

∫∫

Q

|Pw|2 − CIx. (42)

To handle the terms in Ix, we note that for any x ∈ (0, 1) and λ large enough,

−Cλ
∫ T

0

φx(x, t)σ(x)σxx(x)|wxx(x, t)|2dt ≤ Cλ3

∫ T

0

φx(x, t)
3σ(x)2|wxx(x, t)|2dt.

Then

− CIx ≤ Cλ3

∫ T

0

φx(0, t)
3σ(0)2|wxx(0, t)|2dt+Cλ

∫ T

0

φx(0, t)σ(0)
2|wxxx(0, t)|2dt (43)

and from (42) and (43) we obtain

∫∫

Q

1

λφ

(
|wt|2 + |(σwxx)xx|2

)
+ ‖w‖2λ,φ ≤ C

∫∫

Q

|Pw|2

+ Cλ3

∫ T

0

φx(0, t)
3σ(0)2|wxx(0, t)|2dt+Cλ

∫ T

0

φx(0, t)σ(0)
2|wxxx(0, t)|2dt. (44)
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Computing the derivatives of eλφw it is trivial to prove that

∣
∣
∣∂

k
xv
∣
∣
∣

2

=
∣
∣
∣∂

k
x(e

λφw)
∣
∣
∣

2

≤ C

k∑

j=0

∣
∣
∣λ

k−jφk−j∂j
xw
∣
∣
∣

2

for each k = 0, . . . , 3. Therefore

∫ T

0

∫ 1

0

e−2λφ
(

λ7φ7|eλφw|2 + λ5φ5|(eλφw)x|2 + λ3φ3|(eλφw)xx|2 + λφ|(eλφw)xxx|2
)

dxdt

≤ C‖w‖λ,φ.

Considering finally that Pw = e−λϕLv, we obtain Carleman estimate (30). �

Remark 3.4 We considered the function β to be increasing. This allows the Carleman

inequality to be obtained with boundary terms at x = 0. If a decreasing function β was used

instead, then an inequality with boundary terms at x = 1 would have been obtained. As

discussed in the following section, the boundary terms in the Carleman inequality are related

to the location of the observations in the inverse problem.

4 Inverse Problem

In this section, the local stability of the nonlinear inverse problem stated in Theorem 1.2

will be proved following the ideas of [7] and [21]. The proof is splited in several steps.

Step 1. Local study of the inverse problem

Let γ, γ̃, y and ỹ be defined as in Theorem 1.2. If we set u = y − ỹ and f = γ̃ − γ, then u

solves the following K-S equation:







ut + (σ(x)uxx)xx + γuxx + ỹux + ỹxu+ uux = f(x)ỹxx(x, t), ∀(t, x) ∈ Q,

u(t, 0) = u(t, 1) = 0, ∀t ∈ (0, T ),

ux(t, 0) = ux(t, 1) = 0, ∀t ∈ (0, T ),

u(0, x) = 0, ∀x ∈ (0, 1).

(45)

Then, in order to prove the stability of the inverse problem mentioned in the introduction,

it is sufficient to obtain an estimate of f in terms of uxx(·, 0), uxxx(·, 0) and u(T0, ·), where
γ̃ and ỹ are given, γ ∈ H4(0, 1) and u is the solution of Equation (45).

We begin by deriving Equation (45) with respect to time. Thus, v = ut satisfies the

following equation:







vt + (σvxx)xx + γvxx + ỹvx + ỹxv = fỹxxt − g, ∀(t, x) ∈ Q,

v(t, 0) = v(t, 1) = 0, ∀t ∈ (0, T ),

vx(t, 0) = vx(t, 1) = 0, ∀t ∈ (0, T ),

v(0, x) = fR(x, 0), ∀x ∈ (0, 1),

(46)

where g(x, t) = u(x, t)yxt(x, t) + ux(x, t)yt(x, t).
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The proof of Theorem 1.2 relies on the use of the Carleman estimate given in Theo-

rem 3.1. This result will be used twice. First, Equation (46) allows to estimate v in terms of

f , ỹxx and g. Then, Equation (45) will be used to handle the terms u and ux, which appear

in the expression of the source term g. The details are given in the next step below.

Step 2. First use of the Carleman estimate

Similarly to the proof of the Carleman estimate, we set w = e−λφv. Then, we work on the

term

I = 2

∫ 1

0

∫ T0

0

w(t, x)wt(t, x) dtdx.

On the one hand, we can calculate I and bound it from below. Indeed, using w(0, x) =

e−λφ(0,x)v(0, x) = 0 for all x ∈ (0, 1) and Equation (45), we can easily obtain

I =

∫ 1

0

|w (T0, x)|2 dx

=

∫ 1

0

e−2λφ(T0,x) |(fỹxx − (σuxx)xx − γuxx − ỹux − ỹxu− uux) (T0, x)|2 dx

≥
∫ 1

0

e−2λφ(T0,x)|f(x)|2 |ỹxx (T0, x)|2 dx− C ‖u (T0)‖2H4(0,1) − C ‖u (T0)‖4H1(0,1)

where C depends on ‖γ‖L∞(0,1), ‖ỹ(T0)‖W1,∞(0,1) and ‖σ‖W2,∞(0,1).

On the other hand, in order to estimate I from above we apply the Carleman estimate (44)

to Equation (46) using q0 = ỹx and q1 = ỹ, which are uniformly bounded in L∞((0, T ) ×
(0, 1)) by the hypothesis in Theorem 1.2. We obtain that

I = 2

∫ 1

0

∫ T0

0

w(t, x)wt(t, x) dtdx

≤
(∫ 1

0

∫ T0

0

λφ(t, x)|w(t, x)|2 dtdx
) 1

2
(∫ 1

0

∫ T0

0

|wt(t, x)|2
λφ(t, x)

dtdx

) 1

2

≤ Cλ−3

∫ 1

0

∫ T

0

e−2λφ|f(x)ỹxxt(x, t)|2 dxdt+ Cλ−3

∫ 1

0

∫ T

0

e−2λφ|g(x, t)|2 dxdt

+Cλ−3

∫ T

0

e−2λφ(0,t)(λ3φ3
x(0, t)σ

2(0)|vxx(0, t)|2 + λφx(0, t)σ
2(0)|vxxx(0, t)|2) dt.

Step 3. Second use of the Carleman estimate

Considering that g = uyxt + uxyt, we will now use a Carleman estimate for the solution of

Equation (45) in order to manage the term in g of the previous inequality. The unknown

trajectory y is nevertheless such that yxt and yt belong to L∞(0, T ;L∞(0, 1)) since y ∈ Z.

Thus, we have

∫∫

Q

e−2λφ|g|2 ≤ 2

∫∫

Q

e−2λφ|u|2|yxt|2 + 2

∫∫

Q

e−2λφ|ux|2|yt|2

≤ C

∫∫

Q

e−2λφ (|u|2 + |ux|2
)
.

Then we can apply Carleman estimate (44) to equation (45), using the identity ỹxu +

uux = uyx, and taking q0 = yx and q1 = ỹ, which are bounded in L∞((0, T ) × (0, 1)). We

16



can choose λ0 as large as possible in Theorem 3.1: we then obtain

∫∫

Q

e−2λφ|g|2 ≤ Cλ−5

∫∫

Q

e−2λφ
(
λ7|u|2 + λ5|ux|2

)

≤ Cλ−5

∫∫

Q

e−2λφ|fỹxx|2

+ Cλ−5

∫ T

0

e−2λφ(0,t)(λ3φ3
x(0, t)σ

2(0)|uxx(0, t)|2 + λφx(0, t)σ
2(0)|uxxx(0, t)|2) dt.

Gathering all the estimates of I and g that were obtained above, we have

∫ 1

0

e−2λφ(T0,x)|f(x)|2 |ỹxx (T0, x)|2 dx− C ‖u (T0)‖2H4(0,1) − C ‖u (T0)‖4H1(0,1)

≤ Cλ−3

∫∫

Q

e−2λφ|fỹxxt|2 + Cλ−8

∫∫

Q

e−2λφ|fỹxx|2

+ Cλ−8

∫ T

0

e−2λφ(0,t)(λ3φ3
x(0, t)σ

2(0)|uxx(0, t)|2 + λφx(0, t)σ
2(0)|uxxx(0, t)|2) dt

+ Cλ−3

∫ T

0

e−2λφ(0,t)(λ3φ3
x(0, t)σ

2(0)|vxx(0, t)|2 + λφx(0, t)σ
2(0)|vxxx(0, t)|2) dt.

From the hypothesis of the theorem, we have ỹ ∈ C([0, T ];H6(0, 1)), ỹt ∈ C([0, T ];H2(0, 1)),

and |ỹxx(T0, ·)| > η > 0 in (0, 1). Using also that the Carleman weight function satisfies (27)

thus e−2λφ(t,x) ≤ e−2λφ(T0,x) in (0, T )× (0, 1), we obtain

∫ 1

0

e−2λφ(T0,x)|f(x)|2 dx

≤ C
(

λ−3

∫ 1

0

e−2λφ(T0,x)|f(x)|2 dx+ ‖u (T0)‖2H4(0,1) + ‖u (T0)‖4H1(0,1)

+λ−8

∫ T

0

e−2λφ(0,t)(λ3φ3
x(0, t)σ

2(0)|uxx(0, t)|2 + λφx(0, t)σ
2(0)|uxxx(0, t)|2) dt

+λ−3

∫ T

0

e−2λφ(0,t)(λ3φ3
x(0, t)σ

2(0)|vxx(0, t)|2 + λφx(0, t)σ
2(0)|vxxx(0, t)|2) dt

)

.

Therefore, the regularity of φ (that come from the assumptions on β and φ0) allows to

prove that choosing λ0 large enough, we obtain the existence of a constant C that depends

on r,K, T, λ0,m such that ∀λ > λ0,

‖f(x)‖2L2(0,1) ≤ C
(

‖u(T0, ·)‖2H4(0,1) + ‖u (T0, ·)‖4H1(0,1)

+ ‖uxx(·, 0)‖2H1(0,T ) + ‖uxxx(·, 0)‖2H1(0,T )

)

.

This estimate leads to the local stability of the initial inverse problem since f = γ̃ − γ and

u = y − ỹ and we have proved Theorem 1.2.
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