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cPrincipia Marine, 1 rue de la Noë, BP 22112, F-44321 Nantes CEDEX 3, FRANCE

Abstract

In this article, we extend a domain decomposition method, based on the FETI-
DP linear solver, to applications such as passenger ship analysis. More generally,
the method is designed for large-scale elastic analysis of a structure which ex-
hibits geometrical and structural heterogeneities, such as plate and stiffener
assemblies in presence of structural details. The problem of the structural het-
erogeneities on the subdomain interfaces, arising from the presence of stiffeners
or elastic joints on these interfaces, is addressed. A suited interface connection
between subdomains modeled with plate elements in the case of a 3D assembling
is proposed and tested. The selection of an efficient preconditioner is presented,
and the performances and results are discussed in terms of convergence rate for
several examples.

Key words: Domain Decomposition Method, FETI-DP, preconditioning,
structural heterogeneity, ship structure
PACS: 45.10.Db, 46.15.Cc, 46.70.Lk

1. Introduction

For the design and verification of large-scale structures, such as passenger
ships, there is often only one prototype produced, which is the final product.
Because real-scale tests of such structures are very expensive and difficult to
manage, the designers now often rely on finite element simulations.

Numerical simulation plays an increasing role in ship design, besides or asso-
ciated to classification societies, responsible for approving ship design, rules and
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regulations. These rules and regulations are based on the experience feedback
obtained by monitoring a large number of vessels; they often lead to oversizing
design practice. Extensive use of numerical simulations started only recently in
this field, partly due to the advent of new designs and innovative structures,
for which there are no feedback yet, and consequently, for which rules and reg-
ulations are not reliable. In addition, increasing the worldwide competition in
structural optimization and safety level requires an accurate evaluation of the
safety margins and more detailed numerical analyses.

Obtaining local results at the scale of structural details is a challenge because
the large ratio of the details characteristic length to the whole structure length
leads to a huge finite element model. Due to the memory and processor limits,
solving this kind of problem with a classical direct technique is prohibitive,
especially when this problem is embedded into an optimization loop. Using a
simplified global model of the structure is therefore mandatory.

A classical approach (the so-called global-local method) can be decomposed
in three steps. In the first step, a local or microscopic problem is solved on the
fine scale model of the detail to derive its global or macroscopic (homogenized)
behavior, that is used in the global model of the structure, see Figure 1. In a
second step, the global model is solved to obtain overall results on the structure,
and finally a post-processing step allows to recover the solution at the small
scale of the details. A similar technique is used in the hierarchical Dirichlet
projection method [1, 2]. Using these strategies encounters several limits. First,
the definition of the homogenization process is not obvious, since the structural
details are not periodic. Therefore, assumptions have to be made on boundary
conditions for the local problems (fine-scale) dealing with structural details.
Second, the results of the global problem with a coarse mesh (coarse-scale) are
used as boundary conditions for the post-processing phase to recover the small-
scale solution. In this way, artificial edge effects may appear that pollute the
local stress computations. In other word, with this approach, the finite element
models for both scales (fine and coarse) are independent of each others, and the
global computation is uncoupled from the local one.

This coupling can be improved using iterative techniques between local to
global problems, see [3, 4, 5]. However, these methods may be not effective for
the analysis of a large-scale problem.

To overcome the underlying difficulties, several features are required: (i)
an accurate incorporation of the details into the global model, (ii) a fast and
efficient global computational procedure, and (iii) a good accuracy on local
stresses. These goals can be achieved with domain decomposition methods
(DDM). Actually, the first step in the solution process is to get a fine-scale
mesh of the various details, from which the entire global model of the ship
is built on (global fine mesh). Concerning the global computation step, the
degrees of freedom of the details are condensed to reduce the size of the problem.
Finally, the last step is concerned with recovering the local solution on each
detail (or subdomain). If the condensation is performed on suited coarse degrees
of freedom, it leads to a numerically homogenized behavior; if the recovering of
the local solution is consistent with this homogenization, it can be interpreted
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Figure 1: Finite element model at coarse-scale: left and middle, and fine scale: right.

at the relocalization phase of the homogenization procedure.
Moreover, domain decomposition methods are both an efficient and flexible

tool in structural analysis for the large systems of equations arising from the
discretization of elasticity problems [6, 7, 8]. As iterative approaches, they
often outperform direct methods when the size of the model increases, and
they allow a parallel treatment of the resolution phase. In this article, we are
not concerned with the parallelization of the resolution, but we focus on the
modularity, especially for adapting this method to structures with geometrical
heterogeneities on the interface.

Here, we consider the FETI-DP algorithm [9, 10] which belongs to the fam-
ily of the FETI (Finite Element Tearing and Interconnecting) methods [11]. In
this method the interface constraints are enforced by using a Lagrange multi-
plier, while some other continuity constraints on primal displacement variable
(‘corner’ degrees of freedom of the interfaces) are prescribed at each iteration.
These last constraints provide a coarse problem and should be selected so that
the iterative method converges rapidly.

When using the FETI-DP method for the analysis of passenger ship struc-
tures, several difficulties arise. In such structures, the presence of different
structural elements, like plates for panels and beams for stiffeners, leads to
strong heterogeneities on the interfaces of subdomains. As a consequence, it
is difficult to obtain a large convergence rate for the iterative solution method.
The choice of a suited preconditioner is an important issue, and in addition, for
the 3D plate assembling, a special treatment of the interface gluing condition is
required.

The objective of this article is to develop an efficient FETI-DP approach for
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heterogeneous structures with the application to passenger ship analysis. For
this purpose, the remainder of this article is organized as follows. In Section
2, the finite element modeling of the passenger ship structure is presented. In
Section 3 the choice of the FETI-DP domain decomposition method is justified,
and the basics of this method are recalled. Section 4 introduces the issues and
difficulties to apply this approach to the case of ship structural analysis, and
more generally to complex stiffened structures made as assemblies of several
structural elements such as plates and beams. It also describes the dedicated
solution method of the interface problem. Section 5 presents the numerical
results. Finally, Section 6 concludes the article and suggests several future
works.

2. Passenger ship structure modeling

A passenger ship is a large and complex structure due to the numerous
design details (porthole, cabin doors . . . ) which are much smaller in size than
the global length of the ship. Another feature lies in the presence of a network
of additional stiffeners, with different sizes, on the whole structure. In practice,
this structure is modeled by an assembling of different structural elements, like
panels and stiffeners. The presence of the details and the association of these
elements lead to several geometrical and mechanical heterogeneities.

The stiffeners are usually classified into two categories: primary and sec-
ondary stiffeners, see Figure 2.

The primary stiffeners are explicitly modeled, due to their large participation
to the overall stiffness of the structure. They are discretized with beam elements
according to Bernoulli theory, and their size is identical to the plate element one,
see Figure 3.

In the design office, due to different specifications, several discretized models
(at different scales and for different design stages) are used, for instance:

• For the global behavior of the structure leading to the global architecture
of the design, and to satisfy the regulation requirements on the basis of
numerical tests, the so-called coarse finite element model is used. This
model derives from the ship architecture whose main structural elements
are explicitly modeled: hull, decks, bulkheads and primary stiffeners. By
contrast, structural details —windows, doors, secondary stiffeners— are
smoothed through the homogenized behavior of coarse elements, computed
from the fine mesh shown in Figure 3, right. Typically, an entire panel
delimited by the nodes of the network of primary stiffeners is modelled
with a single finite element (Figures 1 and 3);

• For the local stresses verification, and to take into account the details
(windows, doors . . . ) a model at a finer scale is required;

• For assessment of local fatigue in very localized areas (such as window
corners) a much refined model is required, usually with 3D elements.
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Figure 2: Primary and secondary stiffeners

Figure 3: A typical half slice of a passenger ship; left: coarse model of primary stiffeners,
middle: coarse model of panels, right: fine complete model
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The ship hull is a curved surface, but due to the small curvature with re-
spect to the size of elements that will be used, and because shell finite elements
are more cumbersome to manage, a discretization with plate finite elements is
classically used. It leads to a small faceting of the surface as an additional
approximation, and to a small overestimation of its stiffness. In this article,
we will use DKT and DKQ (Discrete Kirchhoff Triangle and Discrete Kirchhoff
Quadrilateral) finite elements [12].

In this work, we are mainly interested with the interactions between the
coarse model and the scale needed for local stresses verification. Nevertheless,
the proposed approach could be used to embed more than two scales and/or
models together. Our aim is to use a coarse finite element model which has the
same topology as the one used in the design office. However, this model has to
be strongly coupled with the underlying fine mesh model, which is performed
in this work through the use of a domain decomposition method described in
the next section.

3. A domain decomposition method suited to a passenger ship struc-

ture

Usually with a multilevel domain decomposition method, the reference (and
finely discretized) problem is split into subdomains, with a more or less au-
tomatic process using algorithms and softwares that are often based on graph
theory, see [13, 14] for instance. In the context of a passenger ship design,
as mentioned previously, the structure presents a natural sub-structured archi-
tecture, which relies on intersections between the hull, bulkheads, decks and
primary stiffeners. The classical or industrial method of analysis (global-local
method) in design office is based on this sub-structuring to construct the coarse
finite element model. With this natural decomposition in subdomains, it ap-
pears that a domain decomposition method is well adapted to the ship structural
analysis. Moreover, with their multilevel version, this kind of method allows to
restore the coupling between the different scales along iterations.

3.1. Choice of a domain decomposition method

In ship structure analysis, the coarse problem is already provided, since we
choose to identify it with the coarse scale finite element model, see Figure 3, com-
prising both the coarse discretization of the panels and of the primary stiffeners.
Therefore, each coarse finite element has its corresponding fine scale finite ele-
ment model, with its structural details (window, door, secondary stiffener . . . ).
This last one is then identified as a subdomain. The coarse discretization of
the primary stiffeners is also derived in a consistent manner from a fine mesh,
but we choose to consider herein all the fine scale primary stiffeners in a unique
special subdomain. The corresponding subdomain possesses a large number of
degrees of freedom but has a loose connectivity, and therefore is not a critical
bottleneck for computation point of view, Figure 4.

As a summary, the coarse discretization of the panels (with macro plate
super-elements) and of the primary stiffeners (with macro beam super-elements)
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Figure 4: A typical half slice of a passenger ship (fine discretization); left: subdomain consti-
tuted of primary stiffeners, middle: classical subdomains, right: fine complete model

constitutes the problem at the the macro level. It is also the coarse problem
of the multilevel DDM (with ‘corner’ degrees of freedom). The subdomains
constitute the substructured problem at micro level; they are either:

• The fine discretization of a panel together with its associated structural
details;

• The special subdomain with the fine discretization of all the primary stiff-
eners.

The next step consists in choosing a suited domain decomposition method to
a passenger ship simulation problem. Numerous domain decomposition methods
have been proposed in the literature [15]. To reach numerical scalability, a
domain decomposition method needs for a multilevel feature, mainly to be able
to build a coarse problem that maintains the convergence rate weakly dependent
on the number of substructures. Most recent domain decomposition methods
suited to structural problems are now equipped with such a coarse problem; for
instance, one may refer to FETI-DP [10, 16], CBDD [17], smoothed aggregation
techniques [18, 19], LATIN micro-Macro [20, 21]. Moreover, when this coarse
problem is related to an homogenized model of the same structure, this provides
an efficient tool to deal with heterogeneous structures.

Among all these domain decomposition methods, we choose the FETI-DP
method for the following reasons:

• The subdomains are connected together in a strong manner at the corner
node of the interface and in the a weak manner at other interface nodes.
The corner nodes that are common between the subdomains are called
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coarse nodes. In this way we obtain a coarse mesh corresponding exactly
to the industrial global mesh. Moreover, as detailed in the following, the
coarse finite element model constitutes a structural homogenization of the
detailed subdomains, and the compatibility of coarse displacement field is
ensured automatically with neighboring coarse elements.

• From a numerical point of view, the FETI-DP method is the most im-
proved version of the FETI family of methods. It is therefore robust and
computationally efficient, see [9, 10]. It’s coarse problem size is smaller
than the FETI method. This comes from the fact that in the FETI-DP
method, there are no floating subdomain, because of the corner nodes com-
mon to several subdomains. In addition, at each iteration of the iterative
solver, the FETI method must solve twice the problem coarse, instead of
once in the FETI-DP method.

3.2. Basics of the FETI-DP method

To keep this paper as self-contained as possible, the classical FETI-DP
method [9, 10] is herein briefly recalled by considering the following global sym-
metric positive semi-definite static problem:

Ku = f (1)

where K is stiffness matrix and f is an arbitrary load vector.
Let us consider the domain Ω, for which the discretization of the elastic

structural model leads to the problem (1). By splitting the domain into Ns

non-overlapping subdomains with matching interfaces, Γ(s,q) = ∂Ωs ∩ ∂Ωq, one
obtains the global interface as follows:

Γ =

s=Ns
⋃

s=1,q>s

Γ(s,q) (2)

In this case, Ks, us and fs denote the the stiffness matrix, displacement vector
degrees of freedom and load vector associated to the subdomain Ωs, respectively.

One interesting point of the domain decomposition methods, beside their
simple mechanical interpretation, is that they can easily be explained from a
purely algebraic point of view, i.e. directly from the matrix form of the problem.

In each subdomain, the unknowns are partitioned into global corner degrees
of freedom denoted by subscript ‘c’, and remaining degrees of freedom denoted
by subscript ‘r’. The Ks, us and fs can be partitioned as follows:

Ks =

[

Ks
rr Ks

rc

KsT

rc Ks
cc

]

, us =

[

us
r

us
c

]

, fs =

[

fs
r

fs
c

]

(3)

The remainder degrees of freedom, r, can be partitioned into interior degrees
of freedom, i, and boundary degrees of freedom, b, see Figure 5. Therefore, the
block vector, us

r and fs
r can be written as follows:

us
r =

[

us
i

us
b

]

, fs
r =

[

fs
i

fs
b

]

(4)
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Figure 5: Classification of the subdomain nodes

One can consider uc as the global vector of corner degrees of freedom and
us

c as its restriction to subdomain Ωs. The Boolean and localization matrices,
Bs

r and Ls
c, are introduced to locate degrees of freedom as follows:

Bs
rus

r = ±us
b

Ls
cuc = us

c

(5)

In references [9, 10], it was shown that solving problem (1) is equivalent to
solving the following subdomain based problem:

Ks
rru

s
r + Ks

rcL
s
cuc + Bs

r
T λ = fs

r for s=1, ... Ns (6)

Ns
∑

s=1

Ls
c
T Ks

cru
s
r +

Ns
∑

s=1

Ls
c
T Ks

ccL
s
cuc =

Ns
∑

s=1

Ls
c
T fs

c (7)

Ns
∑

s=1

Bs
rus

r = 0 (8)

where λ is a vector of Lagrange multipliers introduced on Γ to enforced the
continuity equation (8) of the displacement vector u. To guaranty the non-
singularity of the matrix Ks

rr, each subdomain should contain at least three non
colinear corner nodes, [22].

Using the equations (6), (7) and (8) and after some algebraic transforma-
tions, one obtain the following dual-primal problem (using Lagrange multiplier,
λ, and primal displacement, uc, as unknowns):

[

FIrr
FIrc

FT
Irc

−K⋆
cc

] [

λ
uc

]

=

[

dr

−f⋆
c

]

(9)
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where

FIrr
=

Ns
∑

s=1

Bs
rKs

rr
−1Bs

r
T

FIrc
=

Ns
∑

s=1

Bs
rK

s
rr

−1Ks
rcL

s
c

dr =

Ns
∑

s=1

Bs
rKs

rr
−1fs

r

f⋆
c =

Ns
∑

s=1

Ls
c
T (fs

c − Ks
crK

s
rr

−1fs
r )

K⋆
cc =

Ns
∑

s=1

Ls
c
T (Ks

cc − Ks
crK

s
rr

−1Ks
rc)L

s
c

(10)

The matrix K∗

cc is sparse; its pattern is that of a stiffness matrix obtained by
considering only the coarse elements on the whole structure, as super-elements.

By condensing uc on λ in equation (9), we obtain the following symmetric
positive definite dual interface problem:

FIλ = Dr (11)

with:
FI = FIrr

+ FIrc
K⋆

cc
−1FT

Irc

Dr = dr − FIrc
K⋆

cc
−1f⋆

c

(12)

Usually, the different domain decomposition methods use an iterative al-
gorithm to solve the interface problem (11) to avoid the explicit assembly of
the left-hand-side. Concerning FETI-DP, the iterative algorithm is a conjugate
gradient. This iterative algorithm does not require to assemble explicitly the
interface operator (12), but to compute a matrix-vector product FIλ at each
iteration.

From an implementation point of view, the time consuming operations in
the FETI-DP approach [10] are the following ones. First, during initialization:

• The initial factorization of the stiffness matrix of each subdomain Ks
rr;

• The initial local resolutions on each subdomain (as many as local coarse

degrees of freedom) to build explicitly the basis V s
rc = Ks−1

rr Ks
rc;

• The initial assembly and factorization of the coarse matrix K⋆
cc =

∑

s Ls
c
T (Ks

cc−
Ks

crV
s
rc)L

s
c;

and second, during each iteration, the matrix-vector product FIλ which is per-
formed with the following steps:

• With a given multiplier λ, for each subdomain: disassemble it into λs =
Bs

r
T λ, compute fs

c = V s
rc

T λs and solve Ks
rru

s
r = λs;
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• Assemble fc =
∑

s Ls
c
T fs

c , then solve K⋆
ccuc = fc;

• For each subdomain: disassemble it into us
c = Ls

cuc, then compute vs
r =

V s
rcu

s
c;

• Finally, assemble the result into FIλ =
∑

s Bs
r(u

s
r + vs

r).

The success of these methods also lies in the use of a preconditioner suited
to the problem to be solved. It will be discussed in details in Section 4.2.

4. Specific issues for the simulation of passenger ships

The classical FETI-DP method has been presented in the previous section.
Its application to the case of a passenger ship raises mainly two problems which
are discussed in this section. The first one derives from the ship topology, which
leads to interface with can interconnect more than two subdomains. The second
problem comes from the structure heterogeneity, which originates ill-conditioned
interface problem.

4.1. Interface between subdomains

In the case of a passenger ship, some portions of the interface may connect
more than two subdomains, see Figure 3. For matching meshes, exact compat-
ibility is ensured over Γ simply by collocation the nodes as usual. For instance,
using the subscript b for the interface nodes, we can write the following relations
in case of three subdomains on the interface, see Figure 6.

u
(1)
b = u

(2)
b

u
(2)
b = u

(3)
b

u
(3)
b = u

(1)
b

(13)

1

23

Stiffener

(beam model)

Panel 1

(plate model)

Panel 2

(plate model)

Figure 6: Multiplicity on the interface

It is obvious that, one constraint is redundant and may be omitted. We
will see later in this work that, for numerical efficiency, the complete set of
constraints has to be considered in practice. A similar situation occurs when
the interface is the cross point of different structural parts, such as the hull and
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the desk. The first tests on complex assemblings for ship analysis were presented
in [23].

Additionally, in passenger ships design, particular technological components
such as joints can be used in the assembling of sub-structures. They usually pos-
sess a low stiffness to accommodate for manufacturing discrepancies in dimen-
sions of these substructures. Such joints are usually flat enough to be discretized
with ‘joint’ finite elements (eventually several elements in the thickness direc-
tion for multi-layered joints) with the particularity of having null geometrical
thickness, but a particular constitutive relation. These components participate
to heterogeneities on interfaces between subdomains, but with a different na-
ture from the stiffeners. They nevertheless could be managed within the same
domain decomposition framework, as described in Appendix B.

4.2. Structural heterogeneity and preconditioning

For the interface problem (11), the preconditioner must be a good approxi-
mation of the inverse of FI . Since FI is not explicitly assembled, the precondi-
tioner must be independent of the value of the element of the matrix FI .

In this article, we do not develop a new preconditioner for FETI-DP method,
but we use the weighted Dirichlet and Lumped preconditioners that are pre-
sented in [6] as follows:

• Dirichlet preconditioner:

F̄D−1

Irr
=

Ns
∑

s=1

W sBs
r

[

0 0
0 Ss

bb

]

Bs
r

T W s (14)

where Ss
bb is the local Schur complement defined by:

Ss
bb = Ks

bb − KsT

ib Ks−1

ii Ks
ib (15)

• Lumped preconditioner:

F̄L−1

Irr
=

Ns
∑

s=1

W sBs
r

[

0 0
0 Ks

bb

]

BsT

r W s (16)

W s is a subdomain-based diagonal weighting matrix that may accounts for
subdomain heterogeneities [24].

The Dirichlet preconditioner is more computationally expensive than the
lumped preconditioner, because it involves numeric factorization of Ks

ii and

back substitutions solving Ks−1

ii β for each subdomain during each iteration of
the preconditioner conjugate gradient algorithm. However, in general, it re-
duces the number of required iterations and improves the overall computational
efficiency for the fourth-order plate and shell problems, and the lumped precon-
ditioner is mostly used for second-order problems [9]. One can give a mechanical
interpretation of the FETI-DP method and Dirichlet preconditioner as follows.
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At each iteration k a new Lagrange multiplier field λk is computed. Then,
for each subdomain Ωs, a load vector is imposed on its interface boundary and
a subdomain displacement fields, us, is obtained. Except at convergence, the
subdomain solution us

r is not continuous throughout the subdomain interfaces,
and a displacement jump is evaluated as:

rk =

Ns
∑

s=1

Bs
ru

s
r
k (17)

The preconditioning of the residual, rk, by the Dirichlet operator corresponds to
a inverse sequence of local manipulations: The jump of displacement field is eval-
uated on the interfaces and splitted between adjacent subdomains; a Dirichlet
problem is solved in each subdomain to evaluate the traction field correspond-
ing to such jumps. The interpretation of the lumped preconditioner is similar,
except that it assumes that all the stiffness of a subdomain is lumped at its
interface boundary. Equally splitting the residual between the connected sub-
domains leads to a weighting matrix, W , whose entries are the inverse of the
multiplicity of each multiplier λ dof; the multiplicity is the number of subdo-
mains connected by the corresponding multiplier. This method is appropriate
in the cases where interfaces between the subdomains are homogeneous. For the
case where the subdomains are heterogeneous on the interface this choice is not
mechanically sound and leads to a lack of optimality for the preconditioners.
Rixen and Farhat [24] proposed to use the so-called smoothed preconditioner,
that embeds multiplicity-based scaling factors.

The diagonal weighting matrix entries are computed with the diagonal co-
efficients of the stiffness matrices of the connected subdomains [24]. For the
subdomain s to which the multiplier j connects the subdomain t:

W s
j =

Kt
jj

∑

r∈δ(j) Kr
jj

with j ∈ Γ(s,t) (18)

assuming that j represents the same degree of freedom shared by the r subdo-
mains and where δ(j) is the set of subdomain connected on the interface.

It should be noted that, this result is mechanically consistent. The stiffer
subdomains capture less than the displacement jump in compare to the flexible

subdomains. Moreover, it can be seen that in homogeneous case (K
(s)
jj = K

(r)
jj ),

the weighting matrix is found to be diag(1/multiplicity).
For more informations the reader can refer to [11, 24, 10, 16].

5. Numerical examples

Before applying the FETI-DP method to the analysis of a ship structural
model, the approach is tested on simple examples.

To assess the algorithm convergence on the interface problem (11), at each
iteration k, an error ek is computed:

ek =
‖ rk ‖2

‖ Dr ‖2
(19)
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with:
rk = FIλ

k − Dr

where ‖ . ‖2 is the L2-norm of a vector, and rk is the residual of the interface
equation at iteration k. The stopping criterion is ek 6 ǫ, where ǫ is set to 10−6

to assess the convergence.
To assess the convergence properties, in the remainder of this article, the

convergence curves depict the error (in energy norm) with respect to a reference
discretized solution computed with a direct solver.

Pre and post-processing are performed with the finite element code Cast3M
(CEA Saclay, France) and all computations are carried out by developing a finite
element code in MatlabTM.

5.1. Membrane behavior of stiffened plates

The objective of this example is to study the effect of the redundancy on the
Lagrange multipliers when the multiplicity is greater than 2.

Figure 7: Stiffened plate

One considers herein the 2D static response in plane stress analysis of a plate
with stiffeners, see Figure 7. It is related to a rectangular domain, clamped on
the bottom edge and submitted to a uniform traction force on the top.

The classical triangular and rectangular plane stress finite element (with
two degrees of freedom at each node) are used to model the panels, and two-
node Bernoulli beam elements (with three degrees of freedom at each node: two
displacements and one rotation) to model the stiffeners.

The isotropic elastic linear material parameters are: Young’s modulus E =
200 GPa, and Poisson’s ratio ν = 0.3 for plate and beam elements. In addition,
the beam element characteristics are: cross section area S = 0.00295 m2 and
bending moment of inertia I = 1.4471 10−6 m4.

In this example, the stiffeners lie on the interfaces of the decomposition into
subdomains. It is recalled that one subdomain is composed with the stiffeners.
There are therefore three subdomains on each interface (two panels and one
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stiffener). Two computations are performed on the stiffened plate. In the first
one, two Lagrange multipliers are considered (two equations in (13) are taken
into account), while three are involved in the second one, see section 4.1. In
addition, in order to highlight the influence of structural heterogeneity on the
method efficiency, another computation is done for the same plate but without
stiffeners. In both cases, the Dirichlet preconditioner is used, which can be
either multiplicity-based or scaling-based (see (18)), these two approaches being
equivalent in the case of the plate without stiffeners.
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Figure 8: Influence of the connectivity on the convergence rate

The numerical results in term of convergence rate are reported in Figure 8.
For the stiffened plate, it can be seen that considering three Lagrange multipliers
instead of two allows to improve the convergence rate. Moreover, it can be seen
that the use of a scaling-based Dirichlet preconditioner is more efficient than a
multiplicity-based one. However, when two Lagrange multipliers are considered,
the convergence remains slow and appears to be not monotonous. By contrast,
with three Lagrange multipliers, the convergence rate is significantly improved
and has the same order of magnitude as the plate without stiffeners (for this
latter problem the size of the problem is lower than for the stiffened plate).

5.2. Junction between plates on the subdomain interfaces

In a passenger ship model, there are numerous junctions between plate finite
element. It is therefore important to check the performance of the FETI-DP
method for such kind of structures.
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When dealing with the case of an assembling of non-coplanar plates, see
Figure 9, by the previous DDM, we observe that the convergence rate is not
monotone, see Figure 10 (curves number 1 and 2).

X

Z
Y

Figure 9: Folded plate (non coplanar junction)

As it will be explained in the following, this poor convergence rate is related
to the choice of connection conditions between the subdomains.
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Figure 10: Convergence rates, folded plate case

For these two computations, a perfect connection on the interface is pre-
scribed with the continuity constraint of all the global degrees of freedom on
the two sides of the interface.

With the plate finite element of Kirchhoff theory (DKT and DKQ) these
global degrees of freedom are the 3D nodal displacements and rotations, and
they are not independent from each other. Indeed, the formulation of the plate
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is defined in the plane coordinate of the plate. It involves five degrees of free-
dom (three scalar displacements and two rotations) since the rotation along the
normal to the plate is not defined. Moreover, according to the kinematics of
the plate based on Kirchhoff theory, the normal displacement and the in-plane
rotations are linked together [12].

These dependencies are the source of the weak convergence when the in-
terface is the junction line between a 3D assembling of plates. The condition
number of the problem is then artificially high, and the numerical behavior is
not optimal. We therefore propose to use a modified connection condition, by
following the developments in [25, 26, 27]. The main idea is to enforce the
minimal number of degrees of freedom continuity constraints that lead to the
discrete continuity of the finite element kinematic fields.

If we consider two subdomains (Ω1 and Ω2) connected on the interface Γ,
meshed with discrete Kirchhoff elements, we enforce the continuity of the all
displacement degrees of freedom (u, v, w in the global basis) but only the
continuity of the rotation in the direction t given by the interface line Γ:





u1

v1

w1



 =





u2

v2

w2



 (20)

t · θ1 = t · θ2

The justification of this choice is detailed in Appendix A. It is easily im-

plemented with the modification of the localization matrices L
(s)
r , that will now

contain the components of the direction vector of the interface, t, for rotational
degrees of freedom. It must be noted that such an adaptation had already been
done for the problems of contact, where the normal vector of the contact is
used [28]. For additional details on such plate junctions, the reader may refer
to [29, 30, 31, 32, 33] and references herein.

Using this continuity condition successfully significantly improve the con-
vergence rate, see Figure 10, curves 3 and 4. For this homogeneous case, few
differences appear when comparing the use of the simple multiplicity weighting,
or the scaling version. Finally, note that this modified continuity condition does
not change the discrete converged solution.

5.3. Application to a multiple plate assembly

To check the proposed technique on a more complex assembling, with both
in-plane and out-of-plane junctions, and when several connections happen on
the same interface, the problem depicted on Figure 11 is considered.

The structure is subjected to an overall bending and traction loading, with
a linear distribution of forces applied on one end, the other end being clamped.
The material is considered as an isotropic one with the following parameters:
Young’s modulus E = 200 GPa and Poisson’s ratio ν = 0.3. The following
data are used for the geometry: length L = 3.0 m, breadth B = 2.0 m, height
H = 2.0 m, with a uniform thickness t = 0.005 m for the plates. For this study,
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Figure 11: Multiple plate assembly

the structure was divided into 36 subdomains. The reference numerical solution
is still obtained with the finite element code Cast3M. The convergence rate of
the FETI-DP method for two cases (classical interface connection and modified
interface connection) is presented in Figure 12. This test confirms the previous
results.
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Figure 13: Convergence rate in energy norm

6. Conclusions

In this article, the FETI-DP method has been adapted to large-scale struc-
tural analysis, in presence of structural and geometrical heterogeneities on the
interface of the subdomains. This method is well suited for the incorporation
of structural details at the micro scale (the fine mesh of the subdomains).
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Figure 14: Von Mises stress distribution and deformed shape
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This method has been illustrated on the example of a passenger ship struc-
ture. Within this context, the proposed approach reuses the classical coarse
model used in design offices as the so-called coarse space of the multilevel do-
main decomposition method, and build automatically its numerically homoge-
nized behavior.

However, the performance of any type of domain decomposition method is
linked to that of the underlying iterative solver. For a resolution with a conju-
gate gradient, it is useful to develop an efficient preconditioner. In the presence
of structural heterogeneities, the use of a rescaling approach is mandatory to
preserve the optimality of the domain decomposition. We also highlighted the
difficulties inherent to the 3D connection of the plates on the interface that
require a specific gluing condition. Moreover, we have shown that when an
interface interconnects more than two subdomains, the best performance is ob-
tained when all the gluing conditions are considered.

With the simultaneous use of these tools, we were able to exemplify the
effectiveness of the method. A typical validation example was performed, on
a portion of a passenger ship. A two-scale analysis is therefore performed on
a representative ship structure. The coarse (homogenized) model is provided
independently of the fine mesh and is not derived by an automatic domain de-
composition. Moreover, the particular structure of the ship is taken into account
with a special treatment of the primary stiffeners. The developed method has
been validated by comparison of a reference solution, obtained from the direct
finite element solution of the fine model of the whole structure.

This method can be improved by reducing the computation time. This can
be achieved by restricting the use of a fine mesh for the subdomains in the zones
of interest, while the others are replaced by homogenized coarse elements, see
[34]. Future works will also concern an even more localized and refined analysis
(3D analysis of very small details where fatigue leads to a critical area for crack
initiation) with a 3-scale model. A 2-scale vibration analysis is also of interest
to assess customer comfort requirements.

A. Junctions between plate subdomains

When we use a finite element based on Kirchhoff theory (DKT and DKQ
elements), special attention should be paid to the connection between the sub-
domains. Let us consider two plate elements Ωr

e and Ωs
e, belonging to the two

subdomains Ωr and Ωs, connected along a common interface element Γe. We
consider a local coordinate basis in each subdomain, on the common interface,
(tr, nr, zr) and (ts, ns, zs), see Figure 15.

For standard plate models, the perfect connection of the continuum displace-
ment and rotation fields is:

∀p ∈ Γe, us(p) = ur(p) for the displacement

θs(p) = θr(p) for the rotation
(21)
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Figure 15: Interface of two non-coplanar plates

In the local basis,

ur = ur
nnr + ur

t tr + ur
zzr θr = θr

nnr + θr
t tr

us = us
nns + us

t ts + us
zzs θs = θs

nns + θs
t ts

(22)

The rotation along the normal to each plate element (drilling dof), θ · z is not
defined in local coordinates.

Considering DKT or DKQ plate finite elements, the membrane displacement
on the edge is interpolated with linear shape functions, while the transverse
displacement is cubic. Equating displacement nodal degrees of freedoms between
the two connected elements leads to the continuity of the linear part of each
displacement component.

On the other hand, since tr = −ts, the jump of rotation field would be

θr − θs = (θr
t + θs

t )tr + θr
nnr − θs

nns (23)

For the general case of a 3D plate assembling, the vectors nr, tr and ns are
independent, therefore a consistent continuity condition is to nullify the compo-
nent on the tr direction only. In other words, for non co-planar plates, since the
rotation normal to the plate is not defined, the rotation continuity at the plate
junction is restricted to the component corresponding to the direction which is
common to the two plates. Since for DKT and DKQ elements, this rotation
component is linearly interpolated on the element edges, the previous condition
is imposed with the nodal values of the corresponding rotation. Note that for
the special case where the two plates are in the same plane, ns = nt and the
full continuity condition of all degrees of freedom is admissible.

B. Localized compliance between subdomains: the case of a joint

To illustrate the management of joints between subdomains within the frame-
work of FETI-like methods, and in particular FETI-DP approach, let us consider
the case of 2D membrane behavior between two plates for sake of simplicity,
Figure 16. The same procedure is easily applicable to the case of 3D plate
assembling.
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Figure 16: Elastic joint interface between two subdomains

B.1. Joint model

Consider a thin joint γ of physical thickness e between two subdomains, Ωu

and Ωl, and with a normal vector n.
The assumption of linear displacement in the normal direction within the

joint reads:

U =
z

e
V + U l (24)

where z is the coordinate along n, V = Uu − U l, Uu (resp. U l) being the trace
of displacement in subdomain Ωu (resp. Ωl) on the interface γ.

When the thickness e is small with respect to the other dimensions, the
strain within the joint is dominated by the term 1

2e
(V ⊗ n + n ⊗ V ) which is

constant along the thickness. The corresponding null-strain modes are such
that Uu = U l at each point of the interface γ (local rigid body motions, plus
extensions along γ).

Without initial prestress, the joint is loaded with two surfacic force densities
−Fu and −F l. They should not produce any work for null-strain modes, which
reads: Fu + F l = 0 (which is similar to the equilibrium of the interface γ). We
denote in the following λ = Fu = −F l.

In the case of an elastic behavior of the joint, this load is related to the
displacement jump as λ = kV where k is the stiffness of the joint (normal and
tangential components may be different with a matrix form of the stiffness).
Once a finite element discretization is used, the elastic energy of the joint is
1
2 (vγ)T kγvγ where vγ is the column vector of nodal values of V , and kγ is the
associated global stiffness matrix of the joint.

B.2. FETI-DP suited formulation

One could consider, as for the primary stiffeners, to deal with the joint as a
classical subdomain, with a specific stiffness matrix due to the modeling of the
joint. The problem lies in the huge null space of this stiffness matrix. Up to
this point, this could be managed with a mix of the FETI and of the FETI-DP
approaches to deal with it, as in [35, 36] but in any case, the corresponding
coarse space would contain the null-energy modes of the joint and would be
large in size. An adaptation of the genuine FETI-DP approach is therefore
preferable to avoid such a drawback.
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Herein, we choose to consider the joint both as an elastic interface with its
own constitutive relations. Therefore, once the splitting in subdomains is per-
formed, the joint is selected as an interface and corresponding classical mappings
Bs are designed. An additional Boolean matrix Bγ is added to map the addi-
tional unknown interface vector vγ to the jump on interface degrees of freedom;
indeed the modified kinematic gluing constraints now reads:

Ns
∑

s=1

Bsus + Bγvγ = 0 (25)

On classical perfect interfaces, Bγ has null entries, and it corresponds to the
classical null displacement jump; on the joint interface γ, it only names the jump
as vγ . The equilibrium of each subdomain Ωs is unchanged, but the equilibrium
of the joint must be added:

kvγ = BγT λ (26)

With the classical FETI-DP framework, the same partition of degrees of
freedom (dofs) into ‘corner’ dofs (c-dofs) and the remaining ones (r-dofs) is still
used, though displacement continuity is not prescribed on elastic interface γ
since ‘corner’ nodes have to be duplicated on each side of the interface, Fig-
ure 16. Nevertheless, local c-dofs are still localized from the global c-dof vector
uc as: us

c = Ls
cuc for subdomain Ωs, and vγ

c = Lγ
c uc for joint γ. Lγ

c is a
signed localization matrix in order to get the coarse displacement jump vγ

c . The
kinematic constraints on r-dofs is:

Ns
∑

s=1

Bs
ru

s
r + Bγ

r vγ
r = 0 (27)

whose corresponding Lagrange multipliers are λ (the gluing forces on perfect
interfaces, and the normal stress vector on the elastic interface). The balance
equations read:

∀us,⋆
r , vγ,⋆

r , u⋆
c

Ns
∑

s=1

(us,⋆)T Ksus + (vγ,⋆)T kγvγ =

Ns
∑

s=1

(us,⋆)T fs+

+

Ns
∑

s=1

(us,⋆
r )T Bs

r
T λ + (vγ,⋆)T Bγ

r
T λ (28)

Note that we do not consider herein body forces in the joint (such as a prestress)
that would have lead to a generalized force vector fγ . With the splitting into
c-dofs and r-dofs, the local balance equations are:

• The subdomain equilibrium, identical to (6);

• The joint equilibrium:

kγ
rrv

γ
r + kγ

rcL
γ
c uc = Bγ

r
T λ (29)
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• The coarse problem:

Ns
∑

s=1

Ls
c
T Ks

cru
s
r + Lcγ

T kγ
crv

γ
r +

+
(

Ns
∑

s=1

Ls
c
T Ks

ccL
s
c + Lγ

c
T kγ

ccL
γ
c

)

uc =

Ns
∑

s=1

Ls
c
T fs

c (30)

Condensation of (29) is not an issue since kγ
rr is regular due to the use of displace-

ment jump dofs vγ to express the elastic energy. After algebraic manipulations,
one gets a similar FETI-DP problem (11), but with the modified terms:

FIrr
=

Ns
∑

s=1

Bs
r(Ks

rr)
−1Bs

r
T + Bγ

r (kγ
rr)

−1Bγ
r

T

FIrc
=

Ns
∑

s=1

Bs
r(Ks

rr)
−1Ks

rcL
s
c + Bγ

r (kγ
rr)

−1kγ
rcL

γ
c

Kcc =

Ns
∑

s=1

Ls
c
T Ks,⋆

cc Ls
c + Lγ

c
T kγ,⋆

cc Lγ
c with

kγ,⋆
cc = kγ

cc − kγ
cr(k

γ
rr)

−1kγ
rc

(31)

The status of the joint is therefore half between a subdomain (with the
previous contributions to the flexibility matrices), and an interface (especially
with respect to force equilibrium on the elastic interface, that lead to a single
multiplier field).
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