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1. Introduction

Audio diarization (Reynolds and Carrasquillo, 2005) is the process of partitioning an input
audio stream into homogeneous regions according to their specific audio sources. These
sources can include audio type (speech, music, background noise, ect.), speaker identity
and channel characteristics. With the continually increasing number of larges volumes of
spoken documents including broadcasts, voice mails, meetings and telephone conversations,
diarization has received a great deal of interest in recent years which significantly impacts
performances of automatic speech recognition and audio indexing systems. A subtype of
audio diarization, where the speech segments of the signal are broken into different speakers,
is speaker diarization (Anguera et al., 2006, 2007; Tranter and Reynolds, 2006). It generally
answers to the question ”Who spoke when?” and it is divided in two modules: speaker
segmentation and speaker clustering. The goal of speaker segmentation is finding the times
when there is a change of speaker in the audio stream. Speaker clustering consists in merging
speech segments, detected by the speaker segmentation step, related to a same speaker.

Recently, three main domains of application for speaker segmentation have received
special attention (Reynolds and Carrasquillo, 2004):

- Broadcast news : Radio and TV programs with various kinds of programming, usually
containing commercial breaks and music, over a single channel.

- Recorded meetings: meetings or lectures where multiple people interact in the same
room or over the phone. Normally recordings are made with several microphones.

- Phone conversations: single channel recordings of phone conversations between two or
more people.

Segmenting this types of audio stream in terms of speakers is useful in many application.
In Automatic Speech Recognition (ASR) (Moraru et al., 2003), for example, an initial seg-
mentation is required in terms of homogeneous speech and non-speech regions. Having
segmented speech regions, it is also often necessary to segment these further in terms of ho-
mogeneous speaker turns. In addition to improving ASR systems, speaker turn information
can be helpful for speaker adaptation in rich transcription of videos and meetings (Bonas-
tre et al., 2000) and for content based audio classification and retrieval (Hansen et al.,
2005) which have a wide range of applications in the entertainment industry, audio archive
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management, surveillance, etc. Audio segmentation would also be an important tool in sum-
marizing meetings, which has recently gained a lot of interest in the research community.
For example, segmentation of the speech data in terms of speakers could help in efficient
navigation through audio documents like meeting recordings (Dielmann and Renals, 2007;
Jin and Schultz, 2004). Using these segmentation queues, an interested user can directly
access a particular segment of the speech made by a particular speaker.

1.1 Previous works

Recent research on audio segmentation mostly focused on four categories: energy based,
model-based (Kemp et al., 2000), metric-based (Delacourt and Wellekens, 2000), and infor-
mation criterion-based approaches (Cettolo and Federico, 2000; Cettolo and Vescovi, 2003;
Chen and Gopalakrishnan, 1998). Energy audio segmentation only detects change-points
at silence segments, which generally are not directly connected with the acoustic changes
of the audio signals. Model-based segmentation approach requires predefined audio classes
and complete training data. The metric-based approach are not stable and need thresh-
olds generally selected from experiments results. The information criterion-based scheme
are proposed for evaluating models constructed by various estimation procedures when the
specified family of probability distributions does not contain the distribution generating
the data. The so-called Delta Bayesian information criterion (BIC) segmentation algorithm
is widely employed in many studies (Chen and Gopalakrishnan, 1998). The BIC is in-
tended to provide a measure of the weight of evidence favoring one model over another.
According to previous research, the Delta-BIC is threshold-free and suitable for unknown
acoustic conditions. However, this method, extremely computationally expensive, can intro-
duce an estimation error due to insufficient data when the speaker turns are close to each
other (Chen and Gopalakrishnan, 1998; Huang and Hansen, 2004). In order to minimize
these effects, Delacourt and Wellekens (2000) tested different metric criteria to associate
them to the BIC criterion such as the Kullbach-Leibler distance, the similarity measure and
the Generalized Likelihood Ratio measure (GLR). Still, this method encountered problems
in case of short segments and requires also a high computation cost. On another issue, Zhou
and Hansen (2000) recommend the use of the T%—Statistic for metric-based segmentation
in the aim to reduce this computation cost. However its technique, T?—BIC, depends on
many empiric parameters which affect the quality of the detection of speaker turns. In our
previous work (Kadri et al., 2006), we developed a hybrid segmentation algorithm called
DIS_T?_BIC to improve the detection of speaker turns close to each others using a fixed
threshold independent of the type of the audio stream with a low computation cost. Never-
theless all of these techniques suppose that the audio signal don’t contains different acoustic
changes and simultaneous speeches of two or more speakers and then find difficulties in
segmenting streams containing background noise and overlapped speeches.

1.2 Contributions and Chapter organization

The main focus of this chapter is to introduce a new unsupervised speaker segmentation
technique robust to different acoustic conditions. In most commonly used model selection
segmentation techniques like BIC segmentation, the basic problem may be viewed as a two-
class classification where the object is to determine whether N consecutive audio frames
constitute a single homogeneous of frames W or two such windows: W; and W5 with the
boundary frame or change occurring at the i*” frame. In order to detect if a speaker change
occurred within a window of N frames, two models are built. One which represents the
entire window by a Gaussian characterized by p (mean) , ¥ (variance) ; a second which
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represents the window up to the i*" frame, W, with y;,2; and the remaining part, Ws, with
a second Gaussian ps,%o. This representation using a Gaussian process is not totally exact
when the audio stream contains overlapped speeches and very short segments. To solve
this problem, our proposed segmentation technique use the one class SVM and exponential
family model to maximize the generalized likelihood ratio with any probability distribution
of windows (Kadri et al., 2008). Moreover, we use the discrete wavelet coefficients (DWC)
to improve the detection of speaker changes in the presence of background noise. The use
of this coeflicient is suitable since our technique is insensitive to the dimension of acoustic
features.

The remainder of this chapter is organized as follows. Section 2 details previous audio
segmentation techniques based on BIC. Section 3 reviews the support vector machines ap-
proach and the exponential family model. The proposed speaker change detection method is
illustrated in section 4. Experimental results are provided in Section 5. Section 6 concludes
the paper with a summary and discussion.

2. Previous techniques: BIC based segmentation tech-
niques

Model selection based speaker segmentation is proposed by Chen and Gopalakrishnan (Chen
and Gopalakrishnan, 1998). Their method employs the Bayesian information criterion as
model selection criterion, illustrating several desirable properties such as robustness, thresh-
old independence and optimality.

2.1 BIC Segmentation

BIC (Chen and Gopalakrishnan, 1998) is a model selection criterion penalized by the model
complexity (amount of free parameters in the model). For a given acoustic segment X;, the
BIC value of a model M; indicates how well the model fits the data, and is determined by:

BIO(X, M) = log L(X,, My) ~ S #(Ms) - log(Ny) (1)

log L(X;, M;) is the log-likelihood of the data given the considered model, N; is the number of
frames in the considered segment, #(M;) the number of free parameters to estimate in model
M; and ) is a free design parameter dependent on the data being modeled. A determines
the 'weight’ applied to model parameters, theoretically 1, but tunable in practice. Given
several different candidate models to explain a single dataset, the model with the largest
BIC gives the best fit according to this criterion.

The BIC-based segmentation procedure is as follows: A sequence of d-dimensional audio
feature vectors X = x; € R4 : i =1,..., N are modeled as independent draws from either one
or two multivariate Gaussian distributions. The null hypothesis is that the entire sequence
is drawn from a single distribution:

Ho = {z1,...,25} ~ N(uo, Xo)

where N(u,Y) denotes a multivariate Gaussian distribution with mean vector p and full
covariance matrix ¥. The null hypothesis is compared to the hypothesis of having a segment
boundary after sample ¢ i.e. that the first ¢ points are drawn from one distribution and that
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the remaining points come from a different distribution:

Hy:A{xy,...,z} ~ N(pu, %)
{1, oant ~ N(p2,22)

The difference in BIC scores between these two models is a function of the candidate bound-
ary position ¢:

(X\Ho)) B édz + 3d
(\H) 2 2

where L£(X\Hp) is the likelihood of X under hypothesis Hy etc., and (d? + 3d)/2 is the
number of extra parameters in the two-model hypothesis H;. When ABIC(t) > 0, we place
a segment boundary at time ¢, and then begin searching again to the right of this boundary
and the search window size N is reset. If no candidate boundary t meets this criteria, the
search window size is increased, and the search across all possible boundaries ¢ is repeated.
This continues until the end of the signal is reached.

ABIC(t) = log(ﬁ log(N) (2)

2.2 T%-BIC

T2-BIC (Zhou and Hansen, 2000) is a variant of BIC segmentation technique which vali-
dates each speaker change point detected by Hotelling’s T2-statistic using the BIC criterion.
Hotelling’s T?-statistic is a multivariate analogue of the square of the t-distribution (An-
derson, 1985). The T?-statistic is used when we wish to test if the mean of one normal
population is equal to the mean of the other where the covariance matrices are assumed
equal but unknown. In terms of segmentation (Wegmann et al., 1999), the problem can be
viewed as testing the hypothesis Hy : 1 = po against the alternative Hy : py # o where
111, [o are, respectively, the means of two samples of the audio stream, one containing the
frame [1, b] and the second contains [b, N]. The likelihood ratio test is given by the following
T?-statistic: SN — b
PN 0 1y a2 s — ) 3)

where X represent the common covariance matrix. The 72 value defined in (3) can be con-
sidered as a distance measure of two samples. Obviously, the smaller the value of 72, the
more similar the two samples distributions. The T2-BIC algorithm operates by fixing an
analysis frame with L second length from the beginning of the parameterized audio stream
and calculating the T2 value in different points situated on this frame; the point that rep-
resents the highest value of 72 is more probable to be a real speaker turns; then it can be
validated by the BIC criterion. The T2-BIC segmentation presents certainly some advan-
tages. The selection, from the statistical criteria T2, of a candidate speaker change permits
to reduce computational costs. Thus, T2-BIC offers a reduced calculation time compared
to the BIC segmentation. Besides, this technique works with an automatic threshold and
presents a low false alarm. However, T2-BIC is not reliable for the segmentation of audio
documents that contain speaker changes close to each other. In fact, it requires the use of
a time delay 7 (Zhou and Hansen, 2000) between two consecutive speaker turns which can
lead missing some break points.

T? =

2.3 DIS_T?_BIC

Like T2-BIC, DIS_T?_BIC (Kadri et al., 2006) is a speaker segmentation algorithm which
process with a fixed threshold and low computation cost. It is proposed to improve speaker
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turns detection even they are close to each other. DIS_T?_BIC is based in a hybrid concept
which is organized in two steps: the detection of most probable speaker turns and the
validation of changes already detected. Speaker turns are detected by computing the value
of T? between a pair of adjacent windows of the same size shifted by a fixed step along the
whole parameterized speech signal. In the end of this procedure we obtain the curve of the
variation of T2 in time. A speaker change point is characterized by the presence of a high
value peak. To differentiate high peaks from low peaks, a fixed threshold is defined as below:

N -2
s N ) =T (1

N —p-—
where F), n—p—1 is the F-point for p and N —p—1 degrees of freedom with significance level a.
A T? value lower than Tj shows that the two samples are homogeneous and consequently
don’t present a speaker change. So, break points can be detected by searching the local
maxima of the T2 curve that verify the criterion (4). The validation of already detected
break points is made using the BIC criterion. Denote {T7,...,Tn} as the set of speaker
turns found in the first step, a ABIC value is computed for each pair of windows [T;_1, T;]
[T;, T;+1]- When this value is positive, a speaker turn is identified at time 7. Otherwise, the
point 7 is discarded from the candidate set, then the ABIC value is applied again for a larger
pair of windows [T;_1, Ti41][Ti+1, Tit2]- At this stage, when segments are large enough,
BIC criterion gives better validation results since model estimation becomes more accurate.
Detecting speaker changes from the curve of T2 gives to DIST_T?_BIC the advantage to
detect speaker turns close to each others and the use of the T?2-statistic criteria permits to
reduce the computation cost and to have an automatic threshold decision independent of the
type of the audio stream. However, like others BIC based segmentation technique, suppose
that the audio signal don’t contains different acoustic changes and simultaneous speeches
of two or more speakers and then find difficulties to segment audio streams containing
background noise and overlapped speeches.

3. Background information

This section provides a brief review of reproducing kernel Hilbert spaces (Aronszajn, 1950;
Scholkopf and Smola, 2002), One-class Support Vector Machines (Desobry et al., 2005;
Scholkopf et al., 2000) and exponential families (Canu and Smola, 2005).

3.1 Reproducing kernel Hilbert spaces (Aronszajn, 1950)

Let X be a set, and H be a Hilbert space included in the set of all functions on X. The Hilbert
space H is called reproducing kernel Hilbert space (RKHS) if the evaluation functional
ey H > f+— f(z) € R is continuous on H for any =z € X.

A function k£ : X x X — R is a positive kernel if it is symmetric and for any points
x1,...T, in X the matrix (k(x;, x;)); ; is positive semidefinite, i.e., for any sequence of scalar
a1, ...ap the inequality Y 7. ) ciajk(zi, x;) > 0 is verified.

Using Riesz’s theorem, If H is a RKHS on X then there exists a function k(.,z) € H,
called reproducing kernel, such that e, (f) = f(z) = (f(.), k(.,x))%, where (, ) is the inner
product of H. The function k(z,y) is a positive definite kernel, because it is symmetric
from k(y,z) = (k(,2),k(.,y))n = (k(,y),k(,2)) = k(x,y), and positive definite from
> cogk(ai xy) = | X2, aik(., zi)|l3, > 0.

In the other hand, it is known that for a positive definite kernel k£ on X there uniquely
exists a Hilbert space Hj, such that (f(.), k(.,x))s, = f(z) holds for any f € H; and z € X.



312 Signal Processing

This propriety means that H; is a RKHS with a reproduicing kernel k. given a RKHS H
and its reproducing kernel k(.,z), because of the uniqueness of the reproducing kernel, we
can conclude that the Hilbert space Hj constructed by k is identical to H. So there is a
bijection between the set of all possible RKHS and the set of all positive kernels.

3.2 One-Class SVM

The One-class approach was proposed by Scholkopf et al. (2000) and has been successfully
used for abrupt change detection (Davy and Godsill, 2002; Davy et al., 2006; Desobry et al.,
2005). 1-SVM distinguishes one class of data from the rest of the feature space given only
a positive data set. Based on a strong mathematical foundation, 1-SVM draws a nonlinear
boundary of the positive data set in the feature space using a parameter to control the noise
in the training data and another one to control the smoothness of the boundary.

The 1-class SVM is a method that aims at learning a single class, by determining its
contours. To explain 1-class SVM, we can begin by giving a kernel. A kernel k(z,y) is
a positive and symmetric function of two variables lying in a Reproducing Kernel Hilbert
Space with the scalar product:

kool
(f,9n = ZZfz’gik(Inyj)
i=1 j=1

In this framework, the 1-class SVM problem with the sample (z;);=1,....m is the solution
of the following optimization problem under constraints for f € H :

ming , ¢ 5[ fl3 +C 20, & —p
st. flz)>p—& 1=1,....m
and & >0, i=1,...,m

where C' is a scalar that adjusts the smoothness of the decision function, p is a scalar
called bias and ¢ are slack variables. The dual formulation is:

maxXq,crm _71 oTKa
st. aTe=1
and O0<q;<C, i=1,...,m

where K is the kernel matrix K;; = k(z;,x;) and e = [1,...,1]T. The l-class SVM
solution is then given by solving a quadratic optimization problem of dimension m under
box constraints. The decision function is D(z) = sign(f(z) — p). The input points are
considered as part of the current class as long as the decision function is positive.

3.3 Exponential family

The exponential family covers a large number (and well-known classes) of distributions such
as Gaussian, Multinomial and Poisson. A general representation of a exponential family is
given by the following probability density function:

plaln) = h(z) exp{nT(z) — A(n)} ()

where h(z) is called the base density which is always > 0,
7 is the natural parameter,
T'(z) is the sufficient statistic vector
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A(n) is the cumulant generating function or the log normalizer.
The choice of T'(x) and h(z) determines the member of the exponential family. Also we
know that since this is a density function,

[ hia) eon(n" (@) - Al =1

then,
Aln) =1og [ explyT(@)lhla)do
For a Gaussian distribution, p(z|u,0?) = \/%7 exp(Lo — gza? — % — logo). In this

case, h(z) = \/%, n =1z, %] and T(z) = [z, 2%]. Thus, Gaussian distribution is included
in the exponential family.
The density function of a exponential family can be written in the case of presence of an

reproducing kernel Hilbert space H with a reproducing kernel k as :

p(aln) = h(x) exp{(n(), k(z, )y — A()}
with
A(n) = log / exp{(n(), k(z, ))sh(z)dz

4. SVM based speaker segmentation

4.1 Speaker change detection using 1l-class SVM and exponential
family

Novelty change detection using SVM and exponential family is proposed by Canu and Smola
(2005). Let X = {x1,22,...,zy} and Y = {y1,92,...,yn } two adjacent windows of acoustic
feature vectors extracted from the audio signal ,where IV is the number of data points in one
window. Let Z denote the union of the contents of the two windows having 2N data points.
The sequences of random variables X and Y are distributed according respectively to Px and
Py distribution. We want to test if there exist a speaker turn after the sample zy between
the two windows. The problem can be viewed as testing the hypothesis Hy : P, = P,
against the alternative H1 : Pz # Py. Hj is the null hypothesis and represents that the
entire sequence is drawn from a single distribution, thus there not exist a speaker turn.
While H; represents the hypothesis that there is a segment boundary after sample X,,. The
likelihood ratio test of this hypotheses test is the following:

T, Po(zo) TS Py 2) ﬁ P, (z)
1Y Pa(:) L Pz

since both densities are unknown the generalized likelihood ratio (GLR) has to be used :

L(Zl,...,ZQN) =

N 5 (=)
L(Zl,...,ZQ ): Ay : (7)
" z‘:l;lﬂ Pq (2:)

where I@’m and I@’y are the maximum likelihood estimates of the densities.
Assuming that both densities P, and P, are included in the generalized exponential
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family, thus it exists a reproducing kernel Hilbert space H embedded with the dot product
< -, - > with a reproducing kernel k£ such that:

Po(z) = h(z) exp{(na(.), k(2,.))n — A1)}

and
Py, (2) = h(z) exp{(ny(.), k(2,.))s — A(ny)}

Using One class SVM and the exponential family, a robust approximation of the maxi-
mum likelihood estimates of the densities PP, and P, can be written as:

P,(z) = z) exp (Za (2,2 —A(nm)> (8)

2N
@y(z) = h(z) exp ( Z az(y)k(z, z;) — A(ny)> (9)

i=N+1

()

where ;" is computed by solving the one class SVM problem on the first half of the

data (21 to zn), while a(y) is given by solving the one class SVM problem on the second half
of the data (zy41 to 22 N). Using these three hypotheses, the generalized likelihood ratio
test is approximated as follows:

2 exp (XN k(2 2) — Any))
v exp (0N alk(zy,2) — Aln))

L(zl,...,ZQN) = (10)

A speaker change in the frame z,, exist if :

2N 2N N
L(z1,...,2oN) > 8p < Z ( Z (y)k(z], )fZagm)k(zj,zi))>s;

J=N+1 i=N+1 i=1

where s, is a fixed threshold. Moreover, Z N1 oz(y)k(zj7 z;) is very small and can be

neglect in comparison with El 1 a(w)k(zj, 2;). Then a speaker turn is detected when :

Z Zoz (2j,2i)) > s (11)

j=N+1 i=1

4.2 Proposed speaker segmentation technique

In section 4.1, we show that a speaker changes exist if the condition defined by the equa-
tion (11) is verified. This speaker change detection approach can be interpreted like this:
to decide if a speaker change exit between the two windows X and Y, we built an SVM
using the data X as learning data, then Y data is used for testing if the two windows are
homogeneous or not.

On the other hand, since Hy represent the hypothesis of P, = P, the likelihood ratio
test of the hypotheses test described in section 4.1 can be written like this:

I o (o) TN P NPz
e RS

(12)

L(217~-~aZ2N) =
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Figure 1: Segmentation results of an audio stream extracted from NIST RT-02 broadcast
news data using criteria defined by eq. (11) (subplot b), eq. (13) (subplot ¢) and eq. (14)
(subplot d).

Using the same gait, a speaker change has occurred if:

N 2N

Z(— Z agy)k(zj,zi)) > s, (13)

j=1 i=N+1

Experimental tests show that in some case is more appropriate when we use Y data for
learning and X data for testing. Figure 1 presents the segmentation of an audio stream
which presents four speaker changes. This audio stream is a sample of broadcast news
extracted from NIST RT-02 data. Figures (b) and (c) represent the result of segmentation
using respectively (11) and (13). Using the criteria (11), we can detect only changes number
1 and 3 and using the criteria (13), we can detect only changes number 2 and 4. For these
reason it is more appropriate to use the criterion described as follow:

2N N N 2N
STl k) Y (= D ol k(z,2)) > S (14)
j=N+1 =1 j=1 i=N+1

In this case and as illustrated in figure 1, we can detect easily all speaker changes.

4.2 Our segmentation method

Our technique detects speaker turns by computing the distance detailed in equation (14)
between a pair of adjacent windows of the same size shifted by a fixed step along the whole
parameterized speech signal. In the end of this procedure we obtain the curve of the variation
of the distance in time. The analysis of this curve shows that a speaker change point is
characterized by the presence of a ”"significant” peak. A peak is regarded as ”significant”
when it presents a high value. So, break points can be detected easily by searching the local
maxima of the distance curve that presents a value higher than a fixed threshold.

Algorithm 1: Speaker change detection algorithm

Step 0: Initialization
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e initialize the interval [a,b], a = 0,b = SIZE_WINDOW

Step 1: Computing detection criterion

e Compute the distance measure d1 according to equation (11) with [a,b/2] testing data and
[b/2 + 1, b] training data.

e Compute the distance measure d2 according to equation (13) with [b/2 + 1,b] testing data and
[a,b/2] training data

e Compute the decision criterion d = d1 + d2
e a=a + pas and b = b+ pas; go to step 1

Step 2: speaker turns detection

e detecting peaks of d-curve, p = p;

e decision:
— if d(pi) > s a speaker change is detected,
— if d(p;) < s no speaker change is detected,

5. Experiments

5.1 Data set

In order to evaluate 1-SVM-based segmentation method, experiments are based essentially
on the segmentation of IDIAP meetings Corpus. This database contains two separate test
sets sampled at 16 kHz. The first test set contains only single speaker segments without
overlapping. However the second one contains a short overlap segment included at each
speaker change. Further, to generalize our experiments, we used also other types of audio
streams like broadcast news and telephone conversations. These audio streams are extracted
from the Rich Transcription-04 MDE Training Data Speech corpus created by Linguistic
Data Consortium (LDC). Description of the used datasets is presented below:

1. IDIAP meetings (Moore, 2002):

e Test set 1: contains only single speaker segments without overlap segments. This
test set groups nine files, each of them contains 10 speaker turns constructed in a
random manner with segments duration varying from 5 to 20 seconds. The total
test set duration was 20 minutes.

e Test set 2: contains a short overlap segment included at each speaker change.
The test set is formed by six files, each containing 10 single speaker segments
(of between 5-17 seconds duration), interleaved with 9 segments of dual-speaker
overlap (of between 1.5-5 seconds duration).

2. Broadcast news data: is composed of three approximately 10-minute excerpts from
three different broadcasts. The broadcasts were selected from programs from NBC,
CNN and ABC, all collected in 1998.

3. Telephone conversation: is composed of a 10-minute excerpt from a conversation be-
tween two switchboard operators.
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5.2 Evaluation criteria

For evaluating the performance of the segmentation task, we use Type-I errors: precision
(PRC) and Type-II errors: recall (RCL) was widely used in previous research (Ajmera et al.,
2004). Type-I errors occur if a true change is not spotted (missed alarm) within a certain
window. Type-II errors occur when a detected change does not correspond to a true change
in the reference (false alarm). Precision (PRC) and recall (RCL) are defined as below:

number of correctly found changes
PRC = 15
Total number of changes found (15)

RCL — number of correctly found changes (16)
Total number of correct changes

In order to compare the performance of different systems, the F-measure is often used and

is defined as
~ 2.0 x PRC x RCL

PRC + RCL

The F-measure varies from 0 to 1, with a higher F-measure indicating better performance.

(17)

5.3 Audio features components

In the experiments, two kinds of feature vectors are proposed: MFCCs and DWCs. Mel
frequency cepstral coefficients (MFCCs) are a short-time spectral decomposition of audio
that convey the general frequency characteristics important to human hearing. We calculate
MFCCs by using overlapping frames of 30 ms. The Discrete Wavelet Coefficients (DWCs)
are computed by applying the Discrete Wavelet Transform (DWT) which provides a time-
frequency representation of the signal. It was developed to overcome the short coming of the
Short Time Fourier Transform (STFT), which can also be used to analyze non-stationary
signals. While STFT gives a constant resolution at all frequencies, the Wavelet Transform
uses multi-resolution technique by which different frequencies are analyzed with different
resolutions. The DWT is computed by successive low-pass and high-pass filtering of the
discrete time-domain signal. This is called the Mallat algorithm or Mallat-tree decomposi-
tion (Mallat, 1998).

5.3.1 Mel frequency cepstral coefficient

MFCCs are a short-time spectral decomposition of audio that convey the general frequency
characteristics important to human hearing. While originally developed to decouple vocal
excitation from vocal tract shape for automatic speech recognition. In order to calculate
MFCCs, the signal is first broken into overlapping frames, each approximately 25 ms long, a
time scale at which the signal is assumed to be stationary. The log-magnitude of the discrete
Fourier transform of each window is warped to the Mel frequency scale, imitating human
frequency and amplitude sensitivity. The inverse discrete cosine transform decorrelates these
”auditory spectra” and the so called "high time” portion of the signal, corresponding to fine
spectral detail, is discarded, leaving only the general spectral shape

5.3.2 Discrete Wavelet transform

The Wavelet Transform provides a time-frequency representation of the signal. It was de-
veloped to overcome the short coming of the Short Time Fourier Transform (STFT), which
can also be used to analyze non-stationary signals. While STFT gives a constant resolution
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at all frequencies, the Wavelet Transform uses multi-resolution technique by which different
frequencies are analyzed with different resolutions. The DWT is computed by successive
low-pass and high-pass filtering of the discrete time-domain signal. This is called the Mallat
algorithm or Mallat-tree decomposition (Mallat, 1998). Its significance is in the manner it
connects the continuous-time mutiresolution to discrete-time filters.

5.4 Results

Table 1 illustrates speaker segmentation experiments conducted on the various audio docu-
ments previously described and their corresponding results using 1-SVMs and DIS_T?_BIC
approaches. Segmentation using 1-SVMs outperforms DIS_T?_BIC based segmentation
technique for all the tested audio documents. The segmentation of the IDIAP meetings
test set 1 using the two methods presents the highest value of precision and recall. In fact,
opposite to other types of audio streams, this corpus contains long speech segments allowing
good estimation of data. As presented in the table 1, the PRC and RCL values obtained
with IDIAP meetings(1) increases respectively from 0.69 to 0.8 and from 0.68 to 0.79.

Table 1: Segmentation results using the proposed 1-SVM and DIS_T?_BIC methods.
Audio 1-SVM method DIS_T?_BIC method
Streams Features RCL PRC F Features RCL PRC F

M. IDIAP1 || 39MFCC+DWCs 0.8 0.79 0.79 || 13MFCC 0.69 0.68 0.68
M. IDIAP2 || 39MFCC+DWCs 0.68 0.67 0.67 || 13MFCC 0.58 0.56 0.57

B. News 3OMFCC+DWC¢  0.75 0.75 0.75 || 39MFCC 0.63 0.66 0.64
Tel. Conv 39MFCC+DWCs 0.72 0.71 0.71 || 13MFCC 0.56 0.58 0.57

The proposed method based on 1-SVMs allows the improvement of speaker change detec-
tion in audio streams which contain overlapping speeches. The improvement in the PRC and
RCL values using IDIAP meetings test set 2 is more than 10% with respect to DIS_T?_BIC
method. Generally, BIC based segmentation techniques detect a speaker change between
two adjacent analysis windows. Each window is modeled by a Gaussian distribution. This
supposition is not true when the window contains overlapped speeches. In this case, it is
more suitable to suppose that each window can be modeled by an exponential family.

Broadcast news segmentation results are enhanced by adding discrete wavelet coefficients
to cepstral coefficients. The use of this kind of parametrization makes speaker changes
detection possible in the presence of background noise. Further, deploying 1-SVMs permits
to better put in evidence this characteristic since it is insensitive to the dimension of acoustic
features. Also, the proposed method is more appropriate to detect speaker changes close each
others. The F value obtained with the segmentation results of the telephone conversation is
raised from 0.56 with DIS_T?_BIC method to 0.71 with 1-SVMS method.

6. Conclusion

In this chapter, we have proposed a new unsupervised detection algorithm based on 1-SVMs.
This algorithm outperforms model-selection based detection methods. Using the exponen-
tial family model, we obtain a good estimation of the generalized Likelihood ratio applied
on the known hypothesis test generally used in change detection tasks. By adding to cep-
stral coefficients the discrete wavelet coefficients. The use of this kind of parametrization
permitted to detect speaker changes even in real-world conditions in which the environment
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and context are so complex that the segmentation results are often affected. The use of sup-
port vector machines permit to deal practically with this high dimensional acoustic features
vector. Experimental results present higher precision and recall values than those obtained
with DIS_T?_BIC technique, the increase of PRC and RCL values obtained with various
kinds of audio streams is roughly over 10%.
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