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Abstract

Let X1, . . . , Xn be some i.i.d. observations from a heavy tailed distribution
F , i.e. such that the common distribution of the excesses over a high threshold
un can be approximated by a Generalized Pareto Distribution Gγ,σn with γ > 0.
This paper deals with the problem of finding confidence regions for the couple
(γ, σn) : combining the empirical likelihood methodology with estimation equa-
tions (close but not identical to the likelihood equations) introduced by J. Zhang
(2007), asymptotically valid confidence regions for (γ, σn) are obtained and proved
to perform better than Wald-type confidence regions (especially those derived from
the asymptotic normality of the maximum likelihood estimators). By profiling out
the scale parameter, confidence intervals for the tail index are also derived.

1. Introduction

In statistical extreme value theory, one is often interested by the estimation of the so-
called tail index γ = γ(F ) of the underlying model F of some i.i.d. sample (X1, . . . , Xn),
which is the shape parameter of the Generalized Pareto Distribution (GPD) with distri-
bution function (d.f.)

Gγ,σ(x) =







1−
(

1 + γx
σ

)− 1
γ

, for γ 6= 0

1 − exp
(

− x
σ

)

, for γ = 0.
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The GPD appears as the limiting d.f. of excesses over a high threshold u defined for
x ≥ 0 by

Fu(x) := P(X − u ≤ x |X > u), where X has d.f. F .

It was established in J. Pickands (1975) and A. Balkema and L. de Haan (1974) that
F is in the domain of attraction of an extreme value distribution with shape parameter
γ if and only if

lim
u→s+(F )

sup
0<x<s+(F )−u

∣

∣

∣Fu(x) − Gγ,σ(u)(x)
∣

∣

∣ = 0 (1)

for some positive scaling function σ(·), where s+(F ) = sup{x : F (x) < 1}. This suggests
to model the d.f. of excesses over a high threshold by a GPD. This is the P.O.T method.

Some estimation methods for the couple (γ, σ) in the GPD parametrization have been
proposed. We can cite the maximum likelihood (ML) estimators of R. L. Smith (1987)
or the probability weighted moments (PWM) estimators of J. Hosking and J. Wallis
(1987). In J. Zhang (2007), the author proposed new estimators based on estimating
equations close to the likelihood equations. Using the reparametrization b = −γ/σ and
considering X1, . . . , Xn i.i.d. variables with distribution Gγ,σ with σ a fixed value (which
is an important restriction if the aim is to prove asymptotic results), he based his method
on one of the likelihood equations

γ = − 1

n

n
∑

i=1

log(1 − bXi) (2)

and on the empirical version of the moment equation E((1 − bX1)
r) = 1

1−rγ , i.e.

1

n

n
∑

i=1

(1 − bXi)
r − 1

1 − rγ
= 0

or
1

n

n
∑

i=1

(1 − bXi)
r/γ − 1

1 − r
= 0, (3)

for some parameter r < 1. (2) and (3) yield the estimation equation for b

1

n

n
∑

i=1

(1 − bXi)
nr(

P

n
i=1

log(1−bXi))
−1 − 1

1 − r
= 0, provided b < X−1

(n) and r < 1. (4)

An estimation of γ is then deduced from (2) and σ is estimated using b = −γ/σ .

Zhang proved in J. Zhang (2007) (Theorem 2.2) that for a GPD(γ, σ) sample with
γ > −1/2, the estimators he proposed for γ and σ are jointly asymptotically normally
distributed and that they share none of the following drawbacks of the ML and PWM
methods : theoretical invalidity of large sample results for the PWM estimators with
large positive γ, and computational problems for the ML estimator.

In this paper, we consider the classical P.O.T. framework, where an i.i.d. sample
X1, . . . , Xn with distribution F is observed and, according to (1), a GPD Gγ,σ(un) is
fitted to the sample of the excesses over a large threshold un. Noting σn = σ(un), our
goal is to build confidence regions for the couple (γ, σn) (as well as confidence intervals
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for the tail index γ) for heavy-tailed distributions (γ > 0 case), starting from Zhang’s
estimating equations; therefore the excesses will be approximately GPD distributed and
the parameter σ = σn will be varying with n. To the best of our knowledge, little
attention has been paid to the subject of joint confidence regions (and their coverage
probabilities) for the couple (γ, σn), especially outside the exact GPD framework.

An obvious approach to obtain confidence regions is to use the gaussian approximation.
In this work, we consider an alternative method, namely the empirical likelihood method.
This method was developped by Owen in A.B. Owen (1988) and A.B. Owen (1990),
for the mean vector of i.i.d. observations and has been extended to a wide range of
applications, particularly for generalized estimating equations (Y. S. Qin and J. Lawless
(1994)) .

In J.C. Lu and L. Peng (2002), this method was applied to construct confidence inter-
vals for the tail index of a heavy-tailed distribution (empirical likelihood estimator of the
tail index being equal to the Hill estimator). It turned out that the empirical likelihood
method performs better than the normal approximation method in terms of coverage
probabilities especially if the calibration method proposed in L. Peng and Y. Qi (2006)
is adopted. We will see that it is even more the case for confidence regions.

In Section 2, we explain the empirical likelihood methodology based on Zhang’s equa-
tions (2) and (4) , and present some asymptotic results. A simulation study is conducted
in Section 3, which compares different methods for constructing confidence regions for
the couple (γ, σn), as well as confidence intervals for γ alone, in terms of coverage prob-
abilities. Proofs are given in Section 4 and some details left in the Appendix. Technical
difficulties are mainly due to the fact that one of the parameters and the distribution of
the excesses are depending on n.

2. Methodology and statement of the results

2.1. Notations and Assumptions

In this work, the tail index γ is supposed to be positive and F twice differentiable
with well defined inverse F−1. Let V and A be the two functions defined by

U(t) = F̄−1(1/t) and A(t) = t
U ′′(t)

U ′(t)
+ 1 − γ,

where F̄ = 1 − F .
We suppose the following first and second order conditions hold (RVρ below stands for
the set of regularly varying functions with coefficient of variation ρ) :

limt→+∞ A(t) = 0 (5)

A is of constant sign at ∞ and there exists ρ ≤ 0 such that |A| ∈ RVρ. (6)

A proof of the following lemma can be found in L. de Haan (1984).

Lemma 1. Under (5) and (6) we have, for all x > 0,
(

U(tx) − U(t)

tU ′(t)
− xγ − 1

γ

)

/

A(t) −→ Kγ,ρ(x), as t → +∞, (7)
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where Kγ,ρ(x) :=
∫ x

1 uγ−1
∫ u

1 sρ−1dsdu, and the following well-known Potter-type bounds
hold:

∀ǫ > 0, ∃t0, ∀t ≥ t0, ∀x ≥ 1,

(1−ǫ) exp−ǫ log(x) Kγ,ρ(x) ≤
(

U(tx) − U(t)

tU ′(t)
− xγ − 1

γ

)

/

A(t) ≤ (1+ǫ) expǫ log(x) Kγ,ρ(x).

(8)

2.2. Confidence regions for the couple (γ, σn)

For some r < 1 and positive y, γ, σ, let

g(y, γ, σ) :=

(

log(1 + γy/σ) − γ

(1 + γy/σ)r/γ − 1
1−r

)

.

Note that, if Z1, . . . , Zn are i.i.d. GPD(γ, σ), then 1
n

∑n
i=1 g(Zi, γ, σ) = 0 summarizes

equations (2) and (3) of J. Zhang (2007).

Let X1, . . . , Xn be i.i.d. random variables with common d.f. F (satisfying the assump-
tions stated in the previous paragraph), and γ0 and σ0(·) be the true parameters such that
relation (1) is satisfied. For a fixed high threshold un, consider the Nn excesses Y1 . . . , YNn

over un. Conditionally on Nn = kn, Y1 . . . , Ykn
are i.i.d. with common distribution func-

tion Fun
which , according to (1), is approximately Gγ0,σ0n

, where σ0n := σ0(un). The
objective is to estimate γ0 and σ0n.

Let Sn denote the set of all probability vectors p = (p1, . . . , pkn
) such that

∑kn

i=1 pi = 1
and pi ≥ 0. The empirical likelihood for (γ, σ) is defined by

L(γ, σ) := sup

{

kn
∏

i=1

pi

/

p ∈ Sn and

kn
∑

i=1

pig(Yi, γ, σ) = 0

}

and the empirical log likelihood ratio is then defined as

l(γ, σ) := −2(logL(γ, σ) − log L(γ̂n, σ̂n))

where (γ̂n, σ̂n) are maximising L(γ, σ), and are called the maximum empirical likelihood
estimates (MELE) of the true parameters γ0 and σ0n.

Since Theorem 2.1 of J. Zhang (2007) implies that, for r < 1/2, there exists a unique
and easily computable solution (γ̃n, σ̃n) to the equations

1

kn

kn
∑

i=1

log (1 + γYi/σ) − γ = 0 and
1

kn

kn
∑

i=1

(1 + γYi/σ)
r/γ − 1

1 − r
= 0

i.e. such that k−1
n

∑kn

i=1 g(Yi, γ̃n, σ̃n) = 0, it thus comes that L(γ̃n, σ̃n) = k−kn
n which is

equal to maxγ,σ L(γ, σ) : the MELE estimators (γ̂n, σ̂n) therefore coincides with Zhang’s
estimators.

Note however that Zhang worked in the purely GPD framework and that the application
of his results for constructing confidence regions, based on the asymptotic normality
of (γ̂n, σ̂n), necessarily involves some additional covariance estimation. Our aim is to
construct confidence regions for (γ, σn) directly, relying on the asymptotic distribution
of the empirical likelihood ratio l(γ0, σ0n) stated in the following theorem. Classical
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advantages of proceeding so are well known : a first one is the avoidance of information
matrix estimation, a second one is the guarantee of having the confidence region included
in the parameter space (as a matter of fact, in our case, the parameter σ is positive but
nothing guarantees that the confidence region for (γ, σ), based on the CLT for (γ̂n, σ̂n)
will not contain negative values of σ) . Note in addition that our result is proved in
the general framework (i.e. when the excess distribution function is supposed to be only
approximately GPD) and that simulation results show some improvements in terms of
coverage probability (see next Section).

Note that the empirical log-likelihood ratio l(γ, σ) = −2 log(kkn
n L(γ, σ)) has a more

explicit expression : following A.B. Owen (1990), the Lagrange multipliers method
yields

pi =
1

kn(1+ < λ(γ, σ), g(Yi, γ, σ) >)
and l(γ, σ) = 2

kn
∑

i=1

log (1+ < λ(γ, σ), g(Yi, γ, σ) >) ,

where λ(γ, σ) is determined as the solution of the system

1

kn

kn
∑

i=1

(1+ < λ(γ, σ), g(Yi, γ, σ) >)
−1

g(Yi, γ, σ) = 0. (9)

Let an := A
(

1/F̄ (un)
)

.

Theorem 1. Under conditions (5) and (6), with γ > 0, conditionally on Nn = kn, if we
suppose that kn tends to +∞ such that

√
knan goes to 0 as n → +∞, then for r < 1/2

l(γ0, σ0n)
L→ χ2(2), as n → +∞.

This result is the basis for the construction of a confidence region, of asymptotic level
1 − α, for the couple (γ0, σ0n) which consists in all (γ, σ) values such that l(γ, σ) ≤ cα,
where cα is the 1 − α quantile of the χ2(2) distribution.

Note that
√

knan → 0 was also assumed in J.C. Lu and L. Peng (2002).

2.3. Confidence interval for γ

For a fixed parameter γ, we note σ̂γ the value of σ that minimizes l(γ, σ). Then,
l(γ, σ̂γ) is called the profile empirical log likelihood ratio. The following asymptotical
result is the basis for constructing the confidence intervals for the true parameter γ0 of
the model.

Theorem 2. Under the same conditions as Theorem 1, if r < 1/3 then, conditionnally
on Nn = kn,

l(γ0, σ̂γ0
)

L→ χ2(1), as n → +∞.

This result yields as a confidence interval with asymptotic level 1 − α for the tail index
γ0, the set of all γ values such that l(γ, σ̂γ) ≤ cα, where cα is the 1 − α quantile of the
χ2(1) distribution.

Remark 1. Note that the restriction r < 1/3 could be reduced to r < 1/2, but this
would unnecessarily complicate the proof since most of the time r should be chosen
negative (see J. Zhang (2007) for a discussion).

5



3. Simulations

3.1. Simulations for the couple (γ, σ)

In this subsection, we present a small simulation study in order to investigate the
performance of our proposed method for constructing confidence regions for the couple
(γ0, σ0n) based on empirical likelihood techniques (Theorem 1). We compare empiri-
cal coverage probabilities of the confidence regions (with nominal level 0.95) produced
by our empirical likelihood method (EL(0.95)), the normal approximation for the Maxi-
mum Likelihood estimators (ML(0.95)) and the normal approximation for the estimators
proposed in J. Zhang (2007) (Zhang(0.95)).

Before giving more details on the simulation study, let us make the following remarks.

Remark 2. The CLT for the GPD parameters stated in J. Zhang (2007) has been
proved when the underlying distribution is a pure GPD : using Theorem 2.1 in J. Zhang
(2007) (which asserts the existence and unicity of the estimator), and following the same
methodology that led to Proposition 2 in Section 4.1, the consistency of the sequence
(γ̂, σ̂n) can be obtained (details are omitted here) and accordingly, by classical meth-
ods, the asymptotic normality follows in the general case of the underlying distribution
belonging to the Fréchet maximum domain of attraction (assuming that

√
knan → 0).

We will therefore use the convergence in distribution of
√

kn( γ̂ − γ0 , σ̂n/σ0n − 1 ) to
N2(0, Σ(γ0, r)), where

Σ(γ, r) :=

(

(1 − r)(1 + (2γ2 + 2γ + r)/(1 − 2r) −1 − (r2 + γ2 + γ)/(1 − 2r)
−1 − (r2 + γ2 + γ)/(1 − 2r) 2 + ((r − γ)2 + 2γ)/(1 − 2r)

)

and consider the corresponding Wald-type confidence region, based on approximating
the distribution of the statistic ‖√kn(Σ(γ̂, r))−1/2( γ̂ − γ0 , σ̂n/σ0n − 1 )‖2 by χ2(2). The
same methodology is applied for constructing confidence regions based on the Maximum
Likelihood estimators (see R. L. Smith (1987)).

Remark 3. The tuning parameter r in (4) is chosen equal to −1/2 (as suggested in
J. Zhang (2007), without any prior information). The empirical likelihood confidence
region is based on a Fisher calibration rather than a χ2 calibration, as suggested in A.B.
Owen (1990) : concretely, this means that our confidence region consists in the set of
all (γ, σ) such that l(γ, σ) ≤ f where P( (2(kn − 1)/(kn − 2))F (2, kn − 2) ≤ f ) = 0.95.
Indeed, it has been empirically observed that it (uniformly in kn) produces slightly better
results in terms of coverage probability.

The simulations below are based on 2000 random samples of size n = 1000, generated
from the following two distributions: the Fréchet distribution with parameter γ > 0
given by F (x) = exp(−x−1/γ) (the results for γ = 1 and 1/4 are presented) and the
Burr distribution with positive parameters λ and τ given by F (x) = (1 + xτ )−1/λ (the
results for (λ, τ) = (1, 1) and (2, 2) are presented). Note that the tail index for the Burr
distribution is γ = (λτ)−1.

Coverage probabilities EL(0.95), ML(0.95) and Zhang(0.95) are plotted against different
values of kn, the number of excesses used. Figure 1 seems to indicate that our method
performs better in terms of coverage probability, and additional models not presented
here almost always led to the same ordering : EL better than the bivariate CLT of
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Zhang’s estimator, itself better than the CLT for the MLE. However, we have observed
that the overall results are not very satisfactory when the tail index γ is small.

(a) Coverage Probability for Burr(1, 1) model,
n = 1000

(b) Coverage Probability for Burr(2, 2) model,
n = 1000

(c) Coverage Probability for Frechet(1) model,
n = 1000

(d) Coverage Probability for Frechet(1/4)
model, n = 1000

Figure 1: Coverage Probability for Burr(1, 1), Burr(2, 2), Frechet(1), Frechet(1/4) as a function of the
number of excesses kn. The dashed line is for ML, the thin solid line for Zhang, and the thick solid line
for EL.

One can wonder if the improvement in coverage probabilities is due to the fact that our
confidence regions are wider than in the ML and Zhang cases. In practice, it seems in
fact that the three confidence regions have comparable sizes (our confidence region being
even a bit smaller). Figure 2 shows these three regions for a simulated Burr(1, 1) random
sample with n = 1000 et kn = 200.

Remark 4. it should be noted that some computational problems occurred when trying
7



Figure 2: Confidence regions for a sample of Burr(1, 1). The thinner line is for ML, the thicker one is
for EL and the other for Zhang.

to calculate the maximum likelihood estimators. This explains why in some of the figures
above, a piece of the curve is lacking for the smaller values of kn (the computation was
performed by using the function fpot of the evd package of R).

3.2. Simulations for γ

In this subsection, we present another small simulation study which is now concerned
by the performance of our method for constructing confidence intervals for the tail index
γ based on profile empirical likelihood techniques (Theorem 2). We compare empiri-
cal coverage probabilities of the confidence intervals for our empirical profile likelihood
method (ELW(0.95)), the empirical likelihood method proposed in J.C. Lu and L. Peng
(2002) and based on the Hill estimator (ELP(0.95)) and finally the normal approxima-
tion for the estimator of γ proposed in J. Zhang (2007) (Zhang(0.95)). Note that for
ELP(0.95), we used the exponential calibration in order to calculate the critical value, as
prescribed in L. Peng and Y. Qi (2006). As before, the Fisher calibration was preferred
to the χ2 one in order to compute the critical value in our case. We worked with the
same two distributions as in the couple case : the results are presented for γ = 1 and
1/4 in the Fréchet case and (λ, τ) = (1, 1) and (2, 2) in the Burr one.

Empirical coverage probabilities are plotted against different values of kn. Contrary to the
couple framework, Figure 3 shows no significant improvement with respect to Zhang’s
CLT based confidence intervals, which itself shows some problems of undercoverage.
The EL-based confidence intervals of Lu, Peng and Qi, show quite satisfactory coverage
probabilities, but on a range of values of kn which is sometimes very narrow (which is a
common phenomenon in POT methodology) : this drawback is much less present for the
confidence intervals based on Zhang’s equations, which show a better stability against
the choice of kn. Moreover, simulations (not presented here) showed that the widths of
the ELP interval and the ELW interval are comparable, and smaller than the width of
the interval based on Zhang’s CLT.
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(a) Coverage Probability for Burr(1, 1) model,
n = 1000

(b) Coverage Probability for Burr(2, 2) model,
n = 1000

(c) Coverage Probability for Frechet(1) model,
n = 1000

(d) Coverage Probability for Frechet(1/4)
model, n = 1000

Figure 3: Coverage Probability for Burr(1, 1), Burr(2, 2), Frechet(1), Frechet(1/4) as a function of the
number of excesses kn. The dashed line is for ELP , the thin solid line for Zhang, and the thick solid
line for ELW .
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Remark 5. the computation of the profile empirical likelihood l(γ0, σ̂γ0
) was performed

using a classical descent algorithm, taking profit of some convexity properties of the
profile empirical likelihood function. Computational details and files can be obtained
from the authors (some of them are downloadable on the first author’s webpage).

4. Proofs

Note that we will prove Theorem 2 before Theorem 1 because its proof is more
involved and largely includes what is needed to prove Theorem 1.

4.1. Proof of Theorem 2

From now on we work conditionally on {Nn = kn} for some given sequence (kn)
satisfying

√
knan → 0 as n→ ∞.

Let U1, . . . , Ukn
denote independent uniform random variables on [0, 1]. Noticing that

(Y1, . . . , Ykn
) has the same joint distribution as (Ỹ1, . . . , Ỹkn

) defined by

Ỹi := F̄−1
un

(Ui) = U(1/(UiF̄ (un))) − U(1/F̄ (un))

we see that it suffices to prove Theorem 2 with Ỹi replacing Yi in the definition of the
empirical likelihood. For simplicity we will write Yi instead of Ỹi in the sequel (note that
these random variables are i.i.d. but their common distribution varies with n).

Now, defining Zi,n := Yi/σ0n, λ0(θ) := λ(γ0, σ0nθ) and g0(z, t) := g(z, γ0, t), we see that
g0(Zi,n, θ) = g(Yi, γ0, σ0nθ), hence

l0(θ) := l(γ0, σ0nθ) = 2
∑kn

i=1 log (1+ < λ(γ0, σ0nθ), g(Yi, γ0, σ0nθ) >)

= 2
∑kn

i=1 log (1+ < λ0(θ), g0(Zi,n, θ) >) .

With these preliminaries in mind, we thus need to prove that there exists some local
minimizer θ̂ of l0(·) in a neighborhood of θ0 = 1 such that l0(θ̂) → χ2(1) in distribution,

because l0(θ̂) = l(γ0, σ̂γ0
) with θ̂ = σ̂γ0

/σ0n.

We now state in the following proposition some important results, which will be proved
in Section 4.2 and will enable us to proceed with the proof of Theorem 2 following a
plan very similar to that found in Y. S. Qin and J. Lawless (1994) (note that here the
parameter is one-dimensional whereas the estimating function g0 is R

2-valued). We first
introduce some important notations :

Gn(θ) := 1
kn

∑kn

i=1 g0(Zi,n, θ)

Bn(θ) := 1
kn

∑kn

i=1 g0(Zi,n, θ)(g0(Zi,n, θ))t

An(θ) := 1
kn

∑kn

i=1
∂g0

∂θ (Zi,n, θ)

Mn(θ) := maxi≤kn
‖g0(Zi,n, θ)‖

Note that, although the new parameter θ is scalar, we will write below ‖θ‖ instead of
|θ| in order to emphasize the fact that the arguments described below can be applied
to more general frameworks. The same is true about the fact that we use below the
notation θ0 instead of simply the number 1.
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Proposition 1. Suppose the assumptions of Theorem 2 are valid, and Z is some random

variable distributed as Gγ0,1. If Bn := { θ ∈ R ; ‖θ − θ0‖ ≤ k
−1/3
n }, then we have,

conditionally to {Nn = kn} and as n→ ∞,

Gn(θ0) = O
(

k−1/2
n (log log kn)1/2

)

a.s. (10)

√

knGn(θ0)
d−→ N (0, B) (11)

Mn(θ0) = o(
√

kn) a.s. (12)

Mn(θ) = o(k1/3
n ) a.s. uniformly on Bn (13)

An(θ) = A + o(1) a.s. uniformly on Bn, (14)

Bn(θ) = B + o(1) a.s. uniformly on Bn (15)

Gn(θ) = Gn(θ0) + (A + o(1))(θ − θ0) = O(k−1/3
n ) a.s. unif. on Bn (16)

where

B := E
[

g0(Z, θ0)(g0(Z, θ0))
t
]

=

(

γ2 γr
(1−r)2

γr
(1−r)2

r2

(1−2r)(1−r)2

)

and

A := E

[

∂g0

∂θ
(Z, θ0)

]

=

(

− γ
γ+1

− r
(1−r+γ)(1−r)

)

Recall that λ0(θ) is defined as the solution of the equation

1

kn

kn
∑

i=1

(1+ < λ, g0(Zi,n, θ) >)
−1

g0(Zi,n, θ) = 0.

Therefore, for θ ∈ Bn, if u = λ0(θ)/‖λ0(θ)‖, usual calculations (see A.B. Owen (1990)
for instance) lead to

‖λ0(θ)‖
(

utBn(θ)u − Mn(θ)‖Gn(θ)‖
)

≤ ‖Gn(θ)‖ (17)

for any n. Statements (11), (12), (15) and (13), (15), (16) thus respectively yield

‖λ0(θ0)‖ = O(k−1/2
n ) a.s. and ‖λ0(θ)‖ = O(k−1/3

n ) a.s. uniformly on Bn. (18)

Consequently, if we note γi,n(θ) := < λ0(θ), g0(Zi,n, θ) >, we have

max
i≤n

|γi,n(θ)| ≤ ‖λ0(θ)‖Mn(θ) = o(1) a.s. and uniformly on Bn (19)

and, using (1 + x)−1 = 1 − x + x2(1 + x)−1 and the identity 0 = k−1
n

∑kn

i=1(1 +
γi,n(θ))−1g0(Zi,n, θ), we readily have

λ0(θ) = (Bn(θ))−1Gn(θ) + (Bn(θ))−1Rn(θ)

where Rn(θ) = k−1
n

∑kn

i=1(1 + γi,n(θ))−1(γi,n(θ))2g0(Zi,n, θ). Since for n sufficiently

large we have ‖Rn(θ)‖ ≤ 2k−1
n

∑kn

i=1 ‖λ0(θ)‖2‖g0(Zi,n, θ)‖3 ≤ 2‖λ0(θ)‖2Mn(θ) tr(Bn(θ)),
relations (12), (13), (15) and (18) imply the following crucial relations (the second one
holding uniformly in θ ∈ Bn)

λ0(θ0) = (Bn(θ0))
−1Gn(θ0)+o(k−1/2

n ) a.s. and λ0(θ) = (Bn(θ))−1Gn(θ)+o(k−1/3
n ) a.s..

(20)
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Using the Taylor expansion log(1 + x) = x − 1
2x2 + 1

3x3(1 + ξ)−3 (for some ξ between 0
and x) and statement (19), we can proceed as above and obtain

l0(θ) = 2

kn
∑

i=1

log(1 + γi,n(θ)) = 2

kn
∑

i=1

γi,n(θ) −
kn
∑

i=1

(γi,n(θ))2 + R′
n(θ)

where, for n sufficiently large, ‖R′
n(θ)‖ ≤ 16

3

∑kn

i=1 |γi,n(θ)|3 = o(1)
∑kn

i=1(γi,n(θ))2. Using

relation (20) as well as (15) and (16), we have for ‖θ − θ0‖ ≤ k
−1/3
n ,

kn
∑

i=1

γi,n(θ) = knλ0(θ)
tGn(θ) = kn(Gn(θ) + o(k−1/3

n ))t (Bn(θ))−1 Gn(θ)

= kn(Gn(θ))t B−1 Gn(θ) + o(k1/3
n )

and similarly,
∑kn

i=1(γi,n(θ))2 = kn(Gn(θ))t B−1 Gn(θ) + o(k
1/3
n ). Therefore, if θ =

θ0 + uk
−1/3
n with ‖u‖ = 1, using (16) and the almost sure bound (10) for Gn(θ0), we

obtain

l0(θ) = kn(Gn(θ))t B−1 Gn(θ) + o(k1/3
n )

= k1/3
n [k1/3

n Gn(θ0) + (A + o(1))u]t B−1[k1/3
n Gn(θ0) + (A + o(1))u] + o(k1/3

n )

= k1/3
n utAtB−1Au + o(k1/3

n ).

Consequently, if a > 0 denotes the smallest eigenvalue of AtB−1A and ǫ ∈]0, a[, we have
for n sufficiently large

l0(θ) ≥ (a − ǫ)k1/3
n almost surely and uniformly for θ ∈ cl(Bn).

On the other hand, we obtain in a similar manner

l0(θ0) = (
√

knGn(θ0))
tB−1(

√

knGn(θ0)) + o(1) (a.s.)

which converges in distribution to χ2(2) in view of (11), and is also o(log log kn) almost
surely, thanks to (10).

We have thus proved the following

Proposition 2. Under the conditions of Theorem 2, and as n→ ∞ with probability one,
the empirical log-likelihood ratio l0(·) admits a local minimizer θ̂ in the interior of the

ball Bn = { θ ∈ R ; ‖θ − θ0‖ ≤ k
−1/3
n }. This means that almost surely, for n large, there

exists a local minimizer σ̂γ0
of the profile empirical log-likelihood σ 7→ l(γ0, σ) such that

σ̂γ0
/σ0n is close to 1 with rate k

−1/3
n .

Now that we have identified some empirical likelihood estimator θ̂ and proved it
consistently estimates θ0, we want to identify its asymptotic distribution, which will
enable us to obtain the convergence in distribution of l0(θ̂) towards χ2(1).

As it is done in Y. S. Qin and J. Lawless (1994), we introduce the functions defined on

12



R × R
2

Q1,n(θ, λ) =
1

kn

kn
∑

i=1

(1+ < λ, g0(Zi,n, θ) >)−1g0(Zi,n, θ)

Q2,n(θ, λ) =
1

kn

kn
∑

i=1

(1+ < λ, g0(Zi,n, θ) >)−1

(

∂g0

∂θ
(Zi,n, θ)

)t

λ

and see that (∀θ) Q1,n(θ, λ0(θ)) = 0 (by definition of λ0(θ)), Q1,n(θ, 0) = Gn(θ), and

Q2,n(θ, λ0(θ)) = (∂l0/∂θ)(θ), which is null at θ = θ̂.

A Taylor expansion of Q1,n and Q2,n between (θ0, 0) and (θ̂, λ0(θ̂)) shows that there

exists some (θ∗n, λ∗
n) satisfying ‖θ∗n−θ0‖ ≤ ‖θ̂−θ0‖ ≤ k

−1/3
n , ‖λ∗

n‖ ≤ ‖λ0(θ̂)‖ = O(k
−1/3
n )

(thanks to Proposition 2 and (18)), and such that
(

0
0

)

=

(

Q1,n(θ̂, λ0(θ̂))

Q2,n(θ̂, λ0(θ̂))

)

=

(

Q1,n(θ0, 0)
Q2,n(θ0, 0)

)

− Sn(θ∗n, λ∗
n)

(

θ̂ − θ0

λ0(θ̂)

)

where

Sn(θ, λ) :=

(

−∂Q1,n/∂θ −∂Q1,n/∂λ
−∂Q2,n/∂θ −∂Q2,n/∂λ

)∣

∣

∣

∣

(θ,λ)

Differential calculus leads to

Sn(θ0, 0) =





− 1
kn

∑kn

i=1
∂g
∂θ (Zi,n, θ0)

1
kn

∑kn

i=1 g(Zi,n, θ0)(g(Zi,n, θ0))
t

0 − 1
kn

∑kn

i=1

(

∂g
∂θ (Zi,n, θ0)

)t





thus, defining V := (AtB−1A)−1, relations (15) and (14) imply that Sn(θ0, 0) converges
to the matrix

S =

(

−A B
0 −At

)

which is invertible with

S−1 =

(

C D
E F

)

:=

(

−V AtB−1 −V
B−1(I − AV AtB−1) −B−1AV

)

After tedious calculations and use of many of the statements previously derived from
Proposition 1, it can be proved that ‖Sn(θ∗n, λ∗

n) − Sn(θ0, 0)‖ = oP(1) as n→ ∞. Conse-
quently, we obtain, for n sufficiently large
( √

kn(θ̂ − θ0)√
knλ0(θ̂)

)

= S−1

( √
knGn(θ0) + oP(

√
knδn)

oP(
√

knδn)

)

where δn := ‖θ̂−θ0‖+‖λ0(θ̂)‖

(21)

We already know that δn = O(k
−1/3
n ), but now (21) implies that δn = O(k

−1/2
n ) and

therefore we have proved that
√

kn(θ̂ − θ0) = C
√

knGn(θ0) + oP(1)
d→ N (0, CBCt) = N (0, (AtB−1A)−1) (22)

√

knλ0(θ̂) = E
√

knGn(θ0) + oP(1)
d→ N (0, EBEt) = N (0, E) (23)

where we have used the fact that the matrix E is symmetric and such that EBE =
E, because I − AV AtB−1 is idempotent (note that the rank of E is 2 minus that of
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AV AtB−1, i.e. rank(E) = 1).

Applying relation (16) to θ = θ̂, relation (22) yields
√

knGn(θ̂) =
√

knGn(θ0) + A
√

kn(θ̂ − θ0) + oP(1) = (I + AC)
√

knGn(θ0) + oP(1)

= BE(
√

knGn(θ0) + oP(1))

and this leads to the following appropriate development for l0(θ̂), using (23) and (15) :

l0(θ̂) = 2kn(λ0(θ̂))
tGn(θ̂) − kn(λ0(θ̂))tBn(θ̂)λ0(θ̂) + R′

n(θ̂)

= (
√

knGn(θ0) + oP(1))t(EBE)(
√

knGn(θ0) + oP(1)) + oP(1) + R′
n(θ̂)

= (
√

knGn(θ0))
tE(
√

knGn(θ0)) + oP(1) + R′
n(θ̂)

where |R′
n(θ̂)| ≤ oP(1)

∑kn

i=1(γi,n(θ̂))2 = oP(1)
(

(
√

knGn(θ0))
tE(

√
knGn(θ0)) + oP(1)

)

.

According to proposition (viii) p.524 of S.S. Rao (1984), since
√

knGn(θ0) converges
in distribution to N (0, B), and EBE = E with rank(EB) = 1, the quadratic form
(
√

knGn(θ0))
tE(

√
knGn(θ0)) converges in distribution to χ2(2−1) = χ2(1), and Theorem

2 is proved.

4.2. Proof of Proposition 1

Note that throughout the whole proof, we will write γ instead of γ0 for convenience.

4.2.1. Proof of (10) and (11)

Let us define

Zi =
U−γ

i − 1

γ
and ∆i(θ) = g0(Zi,n, θ) − g0(Zi, θ),

so that (Zi)1≤i≤kn
is an i.i.d. sequence with common distribution GPD(γ, 1) and

Gn(θ0) =
1

kn

kn
∑

i=1

g0(Zi, θ0) +
1

kn

kn
∑

i=1

∆i(θ0). (24)

If r < 1
2 , B is well defined as the covariance matrix of g0(Z1, θ0) (a straightforward

calculation gives the expression of B), and consequently the LIL and CLT imply that

1

kn

kn
∑

i=1

g0(Zi, θ0) = O
(

k−1/2
n (log log kn)1/2

)

a.s. and
1√
kn

kn
∑

i=1

g0(Zi, θ0)
d−→ N (0, B) .

Therefore, according to (24) and to the assumption
√

knan → 0 (as n → +∞), in order
to prove (10) and (11) it remains to establish that

1

kn

kn
∑

i=1

∆i(θ0) = O(an) a.s. (25)

Since we can take σ0n := σ0(un) = 1
F̄ (un)

U ′
(

1/F̄ (un)
)

, and recalling that we consider

Yi = U(1/(UiF̄ (un))) − U(1/F̄ (un)), the application of the Potter-type bounds (8) to
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t = 1/F̄ (un) and x = 1/Ui yields, for all ǫ > 0 and n sufficiently large,

(1 − ǫ)U ǫ
i Kγ,ρ(1/Ui) ≤

Zi,n − Zi

an
≤ (1 + ǫ)U−ǫ

i Kγ,ρ(1/Ui) a.s. (26)

In the sequel, we will consider an > 0 for large n (the case an < 0 being similar) and
note Ki = Kγ,ρ(1/Ui), as well as ∆1

i (θ) and ∆2
i (θ) the two components of ∆i(θ).

(i) Control of ∆1
i (θ0)

∆1
i (θ0) = ln(1 + γZi,n) − ln(1 + γZi) = ln (1 + γUγ

i (Zi,n − Zi)) .

Use of (26) leads to the following bounds (for all ǫ > 0 and n sufficiently large),

1

an
ln
(

1 + anγ(1 − ǫ)Uγ+ǫ
i Ki

)

≤ ∆1
i (θ0)

an
≤ 1

an
ln
(

1 + anγ(1 + ǫ)Uγ−ǫ
i Ki

)

a.s.

(27)
If we set B+

i := γ(1+ǫ)Uγ−ǫ
i Ki and B−

i := γ(1−ǫ)Uγ+ǫ
i Ki, Lemmas 3 and 5 (stated

and proved in the Appendix) imply that B+
i and B−

i are both square integrable
and therefore maxi≤kn

anB+
i and maxi≤kn

anB−
i are both, almost surely, o(

√
knan),

which is o(1) according to our assumption on (kn).

Consequently, the inequality 2
3x ≤ ln(1+x) ≤ x (∀x ∈ [0, 1/2]) yields the following

bounds, for all ǫ > 0 and n sufficiently large,

2

3

1

kn

kn
∑

i=1

B−
i ≤ 1

kn

kn
∑

i=1

∆1
i (θ0)

an
≤ 1

kn

kn
∑

i=1

B+
i a.s. (28)

and therefore, for every ǫ > 0,

2

3
γ(1 − ǫ)E(Uγ+ǫ

1 K1) ≤ lim inf 1
kn

∑kn

i=1
∆1

i (θ0)
an

≤ lim sup 1
kn

∑kn

i=1
∆1

i (θ0)
an

≤ γ(1 + ǫ)E(Uγ−ǫ
1 K1).

Letting ǫ go to 0 gives a−1
n k−1

n

∑kn

i=1 ∆1
i (θ0) = O(1) a.s.

(ii) Control of ∆2
i (θ0)

∆2
i (θ0) = (1 + γZi,n)r/γ − (1 + γZi)

r/γ = U−r
i

(

(1 + γUγ
i (Zi,n − Zi))

r/γ − 1
)

.

In the case r < 0 (the case r > 0 is similar), use of (26) yields the following bounds
for all ǫ > 0 and n large

U−r
i

an

(

(

1 + (1 + ǫ)γanUγ−ǫ
i Ki

)r/γ − 1
)

≤ ∆2
i (θ0)

an
≤ U−r

i

an

(

(

1 + (1 − ǫ)γanUγ+ǫ
i Ki

)r/γ − 1
)

(29)

The inequality αx ≤ (1 + x)α − 1 ≤ αcx (∀x ∈ [0, 1/2], where c = (3
2 )α−1 > 0 and

α = r/γ < 0) yields, for all ǫ > 0 and n sufficiently large,

r(1− ǫ)
1

kn

kn
∑

i=1

Uγ−r+ǫ
i Ki ≤

1

kn

kn
∑

i=1

∆2
i (θ0)

an
≤ rc(1+ ǫ)

1

kn

kn
∑

i=1

Uγ−r−ǫ
i Ki a.s. (30)
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Once again, Lemma 3 ensures that E(Uγ−r±ǫ
i Ki) and E((Uγ−r±ǫ

i Ki)
2) are finite

(because r < 1/2), hence for sufficiently small ǫ > 0

r(1 − ǫ)E(Uγ−r+ǫ
1 K1) ≤ lim inf

1

kn

kn
∑

i=1

∆2
i

an

≤ lim sup
1

kn

kn
∑

i=1

∆2
i (θ0)

an
≤ rc(1 + ǫ)E(Uγ−r−ǫ

1 K1) a.s.

Letting ǫ go to 0 yields a−1
n k−1

n

∑kn

i=1 ∆2
i (θ0) = O(1) a.s. and therefore (25) is

proved.

4.2.2. Proof of (12) and (13)

With ∆i(θ) and Zi being defined as previously, we have

Mn(θ) = max
i≤kn

||g0(Zi,n, θ)|| ≤ max
i≤kn

||g0(Zi, θ)|| + max
i≤kn

||∆i(θ)||.

Since the variables g0(Zi, θ0) are square integrable, it comes (Lemma 5)

max
i≤kn

||g0(Zi, θ0)|| = o(
√

kn) a.s.

On the other hand, part 1 of Lemma 2 implies that for θ in Bn, ||g0(z, θ)||3 ≤ G1(z), for
every z ≥ 0 and n sufficiently large. Since the variables G1(Zi) are i.i.d. and integrable
(part 4 of Lemma 2), using Lemma 5 we thus have

max
i≤kn

||g0(Zi, θ)|| = o(k1/3
n ) a.s.

We can now conclude the proof of (12) and (13) by showing that, uniformly for θ in Bn,
maxi≤kn

|∆j
i (θ)| tends to 0 almost surely for j = 1 or 2. Reminding that γZi = U−γ

i − 1,
we can show that

∆1
i (θ) = ln

(

1 + γ
Zi,n

θ

)

−ln

(

1 + γ
Zi

θ

)

= ln
{

1 + γUγ
i (1 + (θ − 1)Uγ

i )
−1

(Zi,n − Zi)
}

.

Let δ > 0 and θ ∈]1 − δ, 1 + δ[. Using (26), we have the following bounds (for all ǫ > 0
and n sufficiently large),

1

an
ln

(

1 + anγ

(

1 − ǫ

1 + δ

)

Uγ+ǫ
i Ki

)

≤ ∆1
i (θ)

an
≤ 1

an
ln

(

1 + anγ

(

1 + ǫ

1 − δ

)

Uγ−ǫ
i Ki

)

a.s.

(31)
where we supposed that an > 0 (the other case is very similar). Proceeding as for the
handling of ∆1

i (θ0), and using 2
3x ≤ ln(1 + x) ≤ x for x ∈ [0, 1/2], we obtain : for all

δ > 0, θ ∈]1 − δ, 1 + δ[, ǫ > 0 and n sufficiently large,

2

3

(

1 − ǫ

1 + δ

)

γUγ+ǫ
i Ki ≤

∆1
i (θ)

an
≤
(

1 + ǫ

1 − δ

)

γUγ−ǫ
i Ki a.s. (32)

Since (32) ensures that
∆1

i (θ)
an

is of constant sign, for n large enough we have

sup
θ∈Bn

max
i≤kn

|∆1
i (θ)| ≤

√

knanγ

(

1 + ǫ

1 − δ

)

maxi≤kn
Uγ−ǫ

i Ki√
kn

a.s.
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We conclude using Lemmas 3 and 5 and assumption
√

knan → 0. The proof for ∆2
i (θ)

is very similar.

4.2.3. Proof of (14) and (16)

Recall that An(θ) = 1
kn

∑kn

i=1
∂g0

∂θ (Zi,n, θ) and let A∗
n(θ) := 1

kn

∑kn

i=1
∂g0

∂θ (Zi, θ), where
the Zi were introduced previously. We write

An(θ) − A = (An(θ) − A∗
n(θ)) + (A∗

n(θ) − A∗
n(θ0)) + (A∗

n(θ0) − A) (33)

and we will handle separately the three terms on the right hand side above. The third
term goes to 0 a.s. according to the strong law of large numbers (SLLN for short) and
by definition of the Zi and A. The same is true (uniformly in θ) for the second term,
since part 3 of Lemma 2 implies

sup
θ∈Bn

‖A∗
n(θ) − A∗

n(θ0)‖ ≤
(

sup
θ∈Bn

||θ − θ0||
)

1

kn

kn
∑

i=1

G3(Zi).

and the SLLN applies, thanks to part 4 of Lemma 2. It remains to study the first term
of (33) uniformly in θ in order to prove (14). We have

An(θ) − A∗
n(θ) =

1

kn

kn
∑

i=1

∆̃i(θ),

where the two components of ∆̃i(θ) are

∆̃1
i (θ) = −θ−2γZi,n(1 + γZi,n/θ)−1 + θ−2γZi(1 + γZi/θ)−1

∆̃2
i (θ) = −rθ−2Zi,n(1 + γZi,n/θ)r/γ−1 + rθ−2Zi(1 + γZi/θ)r/γ−1.

We shall give details for ∆̃1
i (θ) and the case an > 0 (the case an < 0 and the treatment

of ∆̃2
i (θ) can be handled very similarly). Let δ > 0, θ ∈]1 − δ, 1 + δ[, and Vi denote

(1 + γZi/θ)−1. Use of the Potter-type bounds (26) leads to the following bounds (for all
ǫ > 0 and n sufficiently large),

Vi

(

1 + anθ−1(1 + ǫ)γU−ǫ
i KiVi

)−1 ≤ (1 + γZi,n/θ)
−1 ≤ Vi

(

1 + anθ−1(1 − ǫ)γU ǫ
i KiVi

)−1
a.s.

After multiplication by −θ−2γZi,n and another use of (26), we obtain

−θ−2γZiVi

{

(1 + anB−
i )−1 − 1

}

− anθ−2(1 + ǫ)γU−ǫ
i KiVi(1 + anB−

i )−1

≤ ∆̃1
i (θ) ≤ −θ−2γZiVi

{

(1 + anB+
i )−1 − 1

}

− anθ−2(1 − ǫ)γU ǫ
i KiVi(1 + anB+

i )−1

where B−
i = θ−1(1−ǫ)γU ǫ

i KiVi and B+
i = θ−1(1+ǫ)γU−ǫ

i KiVi. Let us handle the upper
bound first. We find easily that (1 − δ)Uγ

i ≤ Vi ≤ (1 + δ)Uγ
i , and therefore, by Lemmas

3 and 5, and assumption
√

knan → 0,

0 ≤ sup
|θ−1|≤δ

max
i≤kn

(

anB+
i

)

≤ (1 + ǫ)(1 + δ)(1− δ)−1γan max
i≤kn

Uγ−ǫ
i Ki = o(1) a.s. (34)

Consequently, using (1 + x)−1 − 1 = −x(1 + x)−1, for n sufficiently large and uniformly
in θ ∈]1 − δ, 1 + δ[, we find (almost surely)

1
kn

∑kn

i=1
∆̃1

i (θ)
an

≤ (1+ǫ)(1+δ)2

(1−δ)3
1

kn

∑kn

i=1

(

(1 − Uγ
i )Uγ−ǫ

i Ki

)

− (1−ǫ)(1−δ)
2(1+δ)2 γ 1

kn

∑kn

i=1

(

Uγ+ǫ
i Ki

)

= O(1)
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The lower bound can be handled in the same way. Note that (16) is an immediate
consequence of (14).

4.2.4. Proof of (15)

Recall that Bn(θ) = k−1
n

∑kn

i=1 g0(Zi,n, θ)g0(Zi,n, θ)t and let

B∗
n(θ) := k−1

n

kn
∑

i=1

g0(Zi, θ)g0(Zi, θ)
t,

where the Zi were introduced previously. We write

Bn(θ) − B = (Bn(θ) − B∗
n(θ)) + (B∗

n(θ) − B∗
n(θ0)) + (B∗

n(θ0) − B) (35)

The third term in the relation above goes to 0 a.s. according to the SLLN and by
definition of the Zi and B. Let us deal with the second term. For θ ∈ Bn, there exists
some θ∗n between θ0 and θ such that (using parts 1 and 2 of Lemma 2)

‖B∗
n(θ) − B∗

n(θ0)‖ ≤ ‖θ − θ0‖.
2

kn

kn
∑

i=1

∥

∥

∥

∥

∂g0

∂θ
(Zi, θ

∗
n)

∥

∥

∥

∥

‖g0(Zi, θ
∗
n)‖

≤ k−1/3
n max

i≤kn

(G1(Zi))
1/3 2

kn

kn
∑

i=1

G2(Zi).

Therefore, combining part 4 of Lemma 2, Lemma 5, and the SLLN, we see that ‖B∗
n(θ)−

B∗
n(θ0)‖ almost surely goes to 0 as n→ ∞, uniformly in θ ∈ Bn.

It remains to study the first term of (35) uniformly in θ in order to prove (15). We have

Bn(θ) − B∗
n(θ) =

1

kn

kn
∑

i=1

∆t
i(θ)g0(Zi, θ) +

1

kn

kn
∑

i=1

∆i(θ)(g0(Zi, θ))
t +

1

kn

kn
∑

i=1

∆i(θ)(∆i(θ))
t

= Γt
1,n(θ) + Γ1,n(θ) + Γ2,n(θ)

with

∆i(θ)(g0(Zi, θ))
t =

(

∆1
i (θ)(ln(1 + γ Zi

θ ) − γ) ∆1
i (θ)((1 + γ Zi

θ )r/γ − 1
1−r )

∆2
i (θ)(ln(1 + γ Zi

θ ) − γ) ∆2
i (θ)((1 + γ Zi

θ )r/γ − 1
1−r )

)

and

∆i(θ)(∆i(θ))
t =

(

(∆1
i (θ))

2 ∆1
i (θ) ∆2

i (θ)

∆1
i (θ) ∆2

i (θ) (∆2
i (θ))

2

)

.

Considering the first element of the matrix Γ1,n(θ), we have

a−1
n

∣

∣

∣

1
kn

∑kn

i=1 ∆1
i (θ)

(

ln
(

1 + γ Zi

θ

)

− γ
)

∣

∣

∣ ≤
√

1
kn

∑kn

i=1

(

∆1
i
(θ)

an

)2 √
1

kn

∑kn

i=1

(

ln
(

1 + γ Zi

θ

)

− γ
)2

and, applying the Cauchy-Schwarz inequality too for dealing with the other elements of
Γ1,n(θ) and Γ2,n(θ), the convergence Bn(θ) − B∗

n(θ) → 0 (uniformly for θ ∈ Bn) will
be proved as soon as we show that the means over i = 1 to kn of each of the following
quantities are almost surely bounded uniformly for θ ∈ Bn :

(

ln
(

1 + γ Zi

θ

)

− γ
)2

,
(

(

1 + γ Zi

θ

)r/γ − 1
1−r

)2

,
(

∆1
i (θ)
an

)2

,
(

∆2
i (θ)
an

)2

,
∆1

i (θ)∆2
i (θ)

(an)2 .
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Using Lemma 2, we see that the first two elements of this list are both uniformly bounded
by 1

kn

∑kn

i=1(G1(Zi))
2/3 which converges almost surely. On the other hand, according to

relation (32) and since E(U2γ−2ǫ
1 K2

1 ) is finite (by Lemma 3), k−1
n

∑kn

i=1(∆
1
i (θ)/an)2 is

uniformly almost surely bounded. Similarly the same is true for k−1
n

∑kn

i=1(∆
2
i (θ)/an)2,

as well as for k−1
n

∑kn

i=1 ∆1
i (θ)∆

2
i (θ)/a2

n, and the proof of (15) is over.

4.3. Proof of Theorem 1

We proceed as in the start of the proof of Theorem 2, and consider that the variables
Yi are the variables F̄−1

un
(Ui) where (Ui)i≥1 is an i.i.d. sequence of standard uniform

variables. Recall that

l(γ, σ) = 2

kn
∑

i=1

log (1+ < λ(γ, σ), g(Yi, γ, σ) >) .

Defining Zi,n = Yi/σ0n, θ0 = (γ0, 1), θ = (γ, s), and

l̃(θ) = 2

kn
∑

i=1

log
(

1+ < λ̃(θ), g(Zi,n, θ) >
)

where λ̃(θ) is such that

1

kn

kn
∑

i=1

(

1+ < λ̃(θ), g(Zi,n, θ) >
)−1

g(Zi,n, θ) = 0,

it comes that l(γ0, σ0n) = l̃(θ0) since g(Zi,n, γ, s) = g(Yi, γ, σ0ns). We thus need to

prove that l̃(θ0) converges in distribution to χ2(2). Following a very classical outline
in empirical likelihood theory, it is easy to prove that this convergence is guaranteed as
soon as we have the following statements (as n→ ∞)

1

kn

kn
∑

i=1

g(Zi,n, θ0)
P−→ 0,

1

kn

kn
∑

i=1

g(Zi,n, θ0)(g(Zi,n, θ0))
t P−→ B,

1√
kn

kn
∑

i=1

g(Zi,n, θ0)
d−→ N (0, B), max

i≤kn

‖g(Zi,n, θ0)‖ = oP(
√

kn)

However, these statements are included in Proposition 1 and therefore Theorem 1 is
proved.

Note : Proposition 1 was stated under the assumption that r < 1/3, but in fact r <
1/2 is sufficient in order to prove all the results concerning θ0 only and not for θ in a
neighborhood of it (and the covariance matrix B is well defined and invertible as soon
as r < 1/2).

5. Conclusion

This work deals with the problem of finding confidence regions for the parameters of
the approximating GPD distribution in the classical POT framework, for general heavy
tailed distributions (γ > 0). It is shown that the application of the empirical likelihood
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(EL) method to the estimating equations of J. Zhang (2007) yields confidence regions
with improved coverage accuracy in comparison to the Wald-type confidence regions
issued from the CLT for some estimators of the couple (γ, σ) (including the maximum
likelihood estimator). It is also observed that coverage accuracy is not always as good as
one would expect, which means that this subject (and the related one of EL calibration)
would need to be further investigated.

A profile EL based confidence interval for the tail index is also obtained, and its
performance in terms of coverage probability has been compared to that of the confidence
interval (CI) described in J.C. Lu and L. Peng (2002) and L. Peng and Y. Qi (2006)
(which is known to perform better than the Wald-type CI based on the CLT for the
Hill estimator). In some simulations, the interval of Lu, Peng and Qi shows better
performance, but in others this performance is limited to a very short range of number
kn of excesses : this instability with respect to kn is much less present for the CI based
on Zhang’s equations.

We shall finish this conclusion with two remarks. The first is that some of the method-
ology of the proof of the profile EL result (inspired by Y. S. Qin and J. Lawless (1994))
could prove useful in other settings (Proposition 1 lists properties which yield conver-
gence in distribution of empirical likelihood ratio when the observations form a triangular
array). The second remark is that plug-in calibration could be an interesting subject to
investigate for obtaining CI for γ, in particular in order to shorten computation time.

6. Appendix

Lemma 2. Let γ > 0, r < 1/3 and, for θ > 0,

g0(z, θ) :=

(

g1
0(z, θ)

g2
0(z, θ)

)

=

(

ln(1 + γz/θ)− γ

(1 + γz/θ)r/γ − (1 − r)−1

)

.

If we consider, for some positive constants c1, c′1, c2, c3 depending on r and γ,

G1(z) = c1

(

ln(1 + γz) + (1 + γz)r/γ + c′1
)3

G2(z) = c2

(

z(1 + γz)−1 + z(1 + γz)r/γ−1
)

G3(z) = c3

(

z(1 + γz)−1 + z(1 + γz)r/γ−1 + z2(1 + γz)−2 + z2(1 + γz)r/γ−2
)

.

then there exists a neighborhood of θ0 = 1 such that for all θ in this neighborhood and
∀z ≥ 0,

1. ||g0(z, θ)||3 ≤ G1(z)

2. ||∂g0

∂θ (z, θ)|| ≤ G2(z)

3. ||∂2g0

∂2θ (z, θ)|| ≤ G3(z)

4. If Z has distribution GPD(γ, 1), then E(Gj(Z)) is finite for each j ∈ {1, 2, 3}.

Proof of Lemma 2 : we shall first give details for part 1, since parts 2 and 3 can be
treated similarly.

We shall bound from above |g1
0(z, θ)| and |g2

0(z, θ)| in the neighborhood of θ0 = 1. For
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δ > 0 and θ ∈ [1 − δ, 1 + δ], we have,

ln

(

1 +
γz

1 + δ

)

− γ ≤ g1
0(z, θ) ≤ ln

(

1 +
γz

1 − δ

)

− γ

and if r < 0 (the case r > 0 is similar)
(

1 +
γz

1 − δ

)r/γ

− 1

1 − r
≤ g2

0(z, θ) ≤
(

1 +
γz

1 + δ

)r/γ

− 1

1 − r
.

According to Lemma 4, if we take δ < 1
3 , we thus have (for some positive constant c)

|g1
0(z, θ)| ≤ ln(1 + γz) + γ + ln(3/2), and |g2

0(z, θ)| ≤ c(1 + γz)r/γ +
1

1 − r
.

This concludes the proof of part 1.

If U is uniformly distributed on [0, 1], then it is easy to check that the expectations
E [ (ln(1 + γZ))a(1 + γZ)rb/γ ] = γa

E [ (− lnU)aU−rb ] are finite for every a and b in
{0, 1, 2, 3} because we assumed that r < 1/3. Therefore E(G1(Z)) is finite. Similar
simple integral calculus leads to the same conclusion for E(G2(Z)) and E(G3(Z)).

Lemma 3. Let γ > 0, α ∈ R, β ≥ 0 and U a uniform [0, 1] random variable .

(i) If 1 − α − γ > 0, then E(U−αKγ,ρ(
1
U )(− lnU)β) is finite.

(ii) If 1 − α − 2γ > 0, then E(U−αK2
γ,ρ(

1
U )(− lnU)β) is finite.

Proof of Lemma 3 : we have

Kγ,ρ(x) = 1
ρ

(

xγ+ρ

γ+ρ − xγ

γ

)

+ 1
γ+ρ if γ + ρ 6= 0 and ρ 6= 0

= − 1
γ

(

lnx − xγ−1
γ

)

if γ + ρ = 0 and ρ 6= 0

= 1
γ2 (xγ(γ ln x − 1) + 1) if ρ = 0.

We consider statement (i) and provide details only for the case γ + ρ 6= 0 and ρ 6= 0 (all
the other cases being handled the same way). A simple change in variables readily gives

E(U−αKγ,ρ(
1
U )(− lnU)β) = 1

ρ(γ+ρ)

∫ +∞

0
exp ((α + γ + ρ − 1)y) yβ dy

− 1
ργ

∫ +∞

0
exp ((α + γ − 1)y) yβ dy

+ 1
γ(γ+ρ)

∫ +∞

0
exp ((α − 1)y) yβ dy.

But
∫ +∞

0 euy yβ dy being finite if and only if u < 0, this concludes the proof of (i) since
γ is positive and ρ is negative, in this case. The proof of statement (ii) involves the same
arguments and is thus omitted.

Lemma 4. Let γ > 0, z > 0 and δ ∈ [0, 1/3]. Then,

1

2
<

1 + γz
1±δ

1 + γz
<

3

2
and

∣

∣

∣

∣

ln

(

1 +
γz

1 ± δ

)

− ln(1 + γz)

∣

∣

∣

∣

< ln(3/2)

Proof of Lemma 4 : since

1 + γz
1+δ

1 + γz
= 1 − δ

1 + δ

γz

1 + γz
and

1 + γz
1−δ

1 + γz
= 1 +

δ

1 − δ

γz

1 + γz
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it is clear that the first ratio is between 1
2 and 1 and the second one between 1 and 3

2 .
The second statement comes from

ln

(

1 +
γz

1 + d

)

− ln(1 + γz) = ln

(

1

1 + d

(

1 +
d

1 + γz

))

which absolute value is bounded by ln(4/3) for d = δ and by ln(3/2) for d = −δ, since δ
is assumed to be in [0, 1/3].

Lemma 5. Let (kn) be an integer sequence such that kn → +∞. If (Zi)i≥1 is an i.i.d.
sequence of non-negative random variables such that E(|Z1|p) for some p > 0, then

max
i≤kn

|Zi| = o(k1/p
n ) almost surely, as n→ ∞.

Proof of Lemma 5 : mimicking the proof of Lemma 11.2 in A.B. Owen (2001), we find
that maxi≤n |Zi| = o(n1/p) almost surely and thus it is also true on the subsequence
(kn), so the lemma is proved.
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