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We study nucleon transfer in the 16O+208Pb reaction below the fusion barrier with the time-
dependent Hartree-Fock (TDHF) mean-field theory. A particle-number projection technique is used
to calculate the proton and neutron distributions of the fragments after the collision. The agreement
with experimental data for the sum of the proton-transfer channels is good, considering that TDHF
has no parameter adjusted on reaction mechanism. Some perspectives for extensions beyond TDHF
to include cluster-transfers are discussed.

Binary collisions of many-body systems are of funda-
mental interest to test dynamical approaches of the quan-
tum many-body problem. During the collision, the sys-
tems may retain their entities [(in)elastic scattering] or
new ones may be produced, for instance, if they fuse or
transfer some of their constituents. Examples of trans-
fer reactions include electron transfer in ion or cluster
collisions [1], and nucleon transfer in collisions of atomic
nuclei [2]. The prediction of the outcome of such reac-
tions is one of the main challenges of modern quantum
many-body dynamics theories. In particular, the trans-
fer products may be in a coherent superposition of frag-
ments with different constituent numbers, and quantities
such as transfer probabilities should be computed to al-
low comparison with experiments.
The coupled channel framework, where the relative

motion of the collision partners is coupled to their in-
ternal degrees of freedom, is surely amongst the most
popular approaches to study transfer reactions [3, 4]. It
usually allows a detailed reproduction of experimental
data, providing the fact that the structure of the collision
partners (ground and excited states) as well as their inter-
action potential are well known. For numerical tractabil-
ity, however, only few states are usually included in the
one hand, and, in the other hand, all information on the
structure of the reactants is not always available, as, e.g.,
for exotic nuclei. It is then important to develop other
approaches with less parameters, to enhance their pre-
dictive power. In this spirit, recent works have pushed
the envelope of describing binary collisions of many-body
systems both quantum mechanically and microscopically,
with no parameter adjusted on reaction mechanisms. For
instance, the dynamics of the valence electrons in col-
lisions of atoms, molecules, or atomic clusters, is usu-
ally given by the time-dependent density functional the-
ory (TDDFT) (see, e.g., [5] and references therein). In
nuclear physics, these approaches usually consider inde-
pendent particles evolving in a mean-field as a starting
point, as in the time-dependent Hartree-Fock (TDHF)
theory [6, 7]. Although they have been mostly applied
to fusion reactions, several recent attempts of describ-

ing nucleon transfer in heavy ion collisions within TDHF
have been made [8–13].

Here, a step forward in TDHF studies of nucleon trans-
fer in heavy-ion collisions is made by computing the prob-
abilities for different transfer products in the exit chan-
nel. This is done using a particle number projection tech-
nique applied on the fragments of the total independent
particle state. This technique is standard in beyond-
mean-field models for nuclear structure when the number
of particles is only given in average [14]. Note that this
technique could be generalized to determine the particle
number distribution in fragments of any many-body sys-
tem, for instance, following electron transfer or ionization
in atomic clusters, nuclear fission...

As a first application, we investigate sequential trans-
fer of nucleons in 16O+208Pb collisions. In such a colli-
sion, nucleon transfer may occur when the projectile has
enough energy to overcome the Coulomb repulsion and
reach the vicinity of its collision partner, that is, at ener-
gies around and above the so-called fusion barrier. Here,
we focus on sub-barrier central collisions and compare our
calculations with experimental data. Transfer probabil-
ities are expected to be sensitive to nucleon clusters. In
particular, pair-transfers are interesting as they may be
used to populate giant pairing vibrations and to study
the Josephson effect in nuclei [3]. Various perspectives
of this work in terms of beyond-TDHF improvements to
treat properly correlations responsible for transfer of nu-
cleon clusters are then discussed.

The time-dependent Hartree-Fock (TDHF) theory has
been introduced by Dirac [18]. In nuclear physics, it is
usually used with a Skyrme energy density functional
(EDF) [19] to generate the nuclear mean-field [9, 20, 21].
The EDF is the only phenomenological ingredient which
is adjusted only on few nuclear structure properties [22].
The same EDF is used to compute the initial Hartree-
Fock ground state of the nuclei and the time evolution.

In TDHF, the state of the N particles is constrained
to be an anti-symmetrized independent particle state
(Slater determinant) at any time. The state vector reads
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FIG. 1: (color online) Density evolution for the central colli-
sion of a 16O (initially on the right side) with a 208Pb (left)
at Ec.m. = 74.44 MeV. The snapshots run from t = 7.5 to
37.5 zs by steps of 7.5 zs.

|φ〉 =
∏N

i=1 â
†
i |−〉 where â†i creates a particle in the state

|i〉 when applied on the particle vacuum |−〉. The one-
body density matrix of such a state reads ρ(rsq, r′s′q′) =
∑

i=1 niϕ
sq
i (r)ϕs′q′

i

∗
(r′), where ϕsq

i (r) = 〈rsq|i〉 is a
single-particle wave function, r, s and q denote the nu-
cleon position, spin, and isospin, respectively, and ni = 1
for occupied states and 0 otherwise. It evolves accord-
ing to the TDHF equation ih̄ ∂

∂t
ρ = [h[ρ], ρ]. The sin-

gle particle Hamiltonian h[ρ] is related to the Skyrme
EDF, noted E[ρ], which depends on local densities [23]

by h[ρ](rsq, r′s′q′) = δE[ρ]
δρ(r′s′q′,rsq) .

Realistic TDHF calculations in 3 dimensions are now
possible with modern Skyrme functionals including spin-
orbit term [6, 7, 24, 25]. Here, the TDHF equation is
solved iteratively in time using the tdhf3d code with
the SLy4d parameterization of the Skyrme EDF [6]. A
time step ∆t = 1.5 × 10−24 s is used. The spatial grid
has Nx ×Ny ×Nz/2 = 84× 28× 14 points with a plane
of symmetry (the collision plane z = 0) and a lattice
spacing ∆x = 0.8 fm. The initial distance between the
nuclei is 44.8 fm.
The density evolution of the 16O+208Pb central col-

lision at a center of mass energy Ec.m. = 74.44 MeV
(just below the fusion barrier) plotted in Fig. 1 shows
that the two nuclei form a di-nuclear system with a
neck and then re-separate. There is a priori no rea-
son that these two fragments conserve the same average
neutron and proton numbers as in the entrance chan-
nel [11] (except for symmetric reactions). Indeed, be-
tween the touching and re-separation, nucleons can be ex-
changed. In TDHF calculations, this exchange is treated
through the time-dependent distortion of single-particle
wave-functions which can eventually be partially trans-
fered from one partner to the other.
The following operator written in r-space counts the

number of particles with isospin q in the right side of the

separation plane (defined arbitrarily as x > 0):

N̂ q
R =

∑

s

∫

dr â†(rsq) â(rsq) H(x) (1)

where H(x) = 1 if x > 0 and 0 elsewhere, and â(rsq) =
∑

i ϕ
sq
i (r)âi. Let us write

〈i|j〉qR =
∑

s

∫

dr ϕsq
i

∗
(r) ϕsq

j (r) H(x) (2)

the overlap in the x > 0 region between two single-
particle states with isospin q. Using 〈â†i âj〉 = niδij , we
obtain the average number of particles in the x > 0 region
as 〈N̂ q

R〉 =
∑

i 〈i|i〉
q
R ni. Applied to the average proton

and neutron numbers of the small fragment after a cen-
tral collision at Ec.m. = 74.44 MeV (see Fig. 1), we get
∼ 6.1 protons and ∼ 8.1 neutrons, respectively. This in-
dicates that the proton transfer probability from the light
to the heavy fragment is so high at the barrier that two
ptrotons, in average, have been sequentially transfered.
Decreasing the energy induces a rapid convergence of the
average proton and neutron numbers towards the 16O
ones. Indeed, 〈N̂p

R〉 ≃ 〈N̂n
R〉 ≃ 8.0 at Ec.m. = 70 MeV,

i.e., 6% below the barrier.
Well below the barrier, where transfer is prohib-

ited, the variance of N̂R is strictly zero: σR =
√

〈N̂2
R〉 − 〈N̂R〉2 = 0. (Here and in the following, we

omit the isospin q for simplicity.) This property is lost at
higher energies where transfer occurs. Then, the system
in the exit channel is not an eigenstate of N̂R, and each
fragment is not described by an eigenstate of the par-
ticle number operator (e.g., a Slater determinant) any-
more. Note that the upper limit of the variance obeys

σ2
R ≤ 〈N̂R〉

(

1− 〈N̂R〉
Nt

)

for a Slater determinant [26],

whereNt is the total number of protons or neutrons. This
is an intrinsic limitation of independent particle systems.
In case of violent collisions such as deep-inelastic reac-
tions, experimental variances may exceed this limit [26],
and inclusion of correlations is then needed. However,
for less violent collisions such as sub-barrier transfer re-
actions studied here, smaller experimental variances are
expected, and a mean-field approach like TDHF might
give reasonable estimates of the variances.
Let us calculate the variance σR after the reac-

tion. Using anti-commutation relations for fermions and
〈â†i â

†
jâkâl〉 = ninj(δilδjk−δikδjl) for a Slater determinant,

we get [26] σ2
R =

∑N
i=1 〈i|i〉R −

∑N
i,j=1 |〈i|j〉R|

2
. Apply-

ing this formula to the small fragment in the exit channel
of the reaction at Ec.m. = 74.44 MeV shown in Fig. 1,
we get σp

R ≃ 0.5 for protons and σn
R ≃ 0.3 for neutrons.

At Ec.m. = 70 MeV, we get σp
R ≃ σn

R ≃ 0.2, showing
that transfer occurs at this energy, although it does not
change the average number of protons and neutrons as
discussed before. These finite variances clearly indicate
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that the many-body systems on each side of the sepa-
ration plane are not eigenstates of the particle number
operator anymore.
To get a deeper insight into these TDHF predictions of

transfer, we go one step further by computing the transfer
probabilities. It is possible to extract the component of
the wave function associated to a specific transfer chan-
nel using a particle number projector onto N protons or
neutrons in the x > 0 region. Such a projector is writ-

ten P̂R(N) = 1
2π

∫ 2π

0 dθ eiθ(N̂R−N) [14]. It can be used to
compute the probability to find N nucleons in x > 0 in
the state |φ〉,

∣

∣

∣
P̂R(N)|φ〉

∣

∣

∣

2

=
1

2π

∫ 2π

0

dθ e−iθN 〈φ|φR(θ)〉, (3)

where |φR(θ)〉 = eiθN̂R |φ〉. Note that |φR(θ)〉 is an inde-
pendent particle state. The last term in Eq. (3) is then
the determinant of the matrix of the single particle over-
laps: 〈φ|φR(θ)〉 = det(F ) with

Fij =
∑

s

∫

dr ϕs
i
∗(r)ϕs

j(r)e
iθH(x) = δij + 〈i|j〉R(e

iθ − 1).

The integral in Eq. (3) is discretized using θn = 2πn/M
with the integer n = 1 · · ·M . Choosing M = 300 ensures
convergence. The resulting probabilities are shown in
Fig. 2 for central collisions at Ec.m. = 74.44 MeV and
65 MeV (∼ 13% below the barrier). At the barrier, the
most probable channel is a two-proton transfer leading to
a 14C nucleus in the exit channel. At the lower energy, the
transfer probabilities are typically one or several orders of
magnitude lower than at the barrier and the (in)elastic
channels are by far the dominant ones. Note that the
probability for proton stripping (transfer from the light
to the heavy nucleus) is higher than for proton pickup
(transfer from the heavy to the light nucleus), while neu-
tron pickup is more probable than neutron stripping.
In transfer experiments, one usually measures angu-

lar differential cross-sections for multi-nucleon transfer
channels. It is numerically heavy and time consuming
to compute such cross-sections. A standard alternative
is to translate the experimental angular cross-sections at
sub-barrier energies into transfer probabilities as a func-
tion of the distance of closest approach Rmin between the
collision partners assuming a Rutherford trajectory [28]:
Rmin = Z1Z2e

2[1 + cosec(α/2)]/2Ec.m. where α is the
center of mass scattering angle, and Z1,2 the proton num-
bers of the colliding nuclei. Experimental transfer prob-
abilities can then be calculated from the ratio of sub-
barrier transfer to Rutherford cross-sections [28] for a
given distance of closest approach.
The evolutions of the main proton-transfer channels

with the distance of closest approach predicted by TDHF
are shown in Fig. 3 in solid, dashed and dotted lines
for zero, one and two-proton stripping, respectively. In
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FIG. 2: Neutron (circles) and proton (squares) number prob-
ability distributions of the lightest fragment in exit channel of
a head-on 16O+208Pb collision at Ec.m. = 74.44 MeV (solid
lines) and 65 MeV (dotted lines).

fact, the TDHF probability for two-proton transfer be-
haves roughly as the square of the one-proton trans-
fer probability (if the latter is small compared to one),
which is a signature for sequential transfer [2]. The two-
proton transfer in TDHF is, then, much smaller than the
one-proton one (except at the barrier, corresponding to
Rmin ≃ 12.7 fm, not shown in Fig. 3 but in Fig. 2).

Multi-proton transfer has been measured for
16O+208Pb at Ec.m. = 74.3 MeV by Videbæk et al. [27].
One and two-proton stripping has been observed at this
energy, and no proton-pickup, in qualitative agreement
with TDHF calculations. However, it is well known
that the two-proton stripping in this reaction occurs
mainly as a cluster transfer, i.e., as a pair or alpha-
transfer [27, 29]. The treatment of such nucleon-clusters
involves correlations beyond TDHF. As a consequence,
TDHF is not expected to reproduce the ratio between
the one and two-proton transfer probabilities, but only
their sums which should be less affected by such cluster
structures. The experimental sum of the one and
two-proton transfer probabilities are shown in Fig. 3
(squares). They can be compared with the one-proton
transfer in TDHF, as the two-proton sequential transfer
is negligible in this energy range. The overall agree-
ment is good, considering the fact that TDHF has no
parameter adjusted on reaction mechanism.

To investigate the transfer of particle-cluster, one
should consider theories beyond the standard indepen-
dent particle approximation. Pair transfer could be in-
vestigated with the TDHF-Bogolyubov theory which ac-
counts for pairing [30, 31], or with the time-dependent
density-matrix theory which treats explicitly two-body
correlations [32]. Stochastic techniques can also be used
to account for zero point motion [13]. The Balian-
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FIG. 3: Proton number probability distribution as function of
the distance of closest approach obtained with TDHF (lines).
Experimental data (squares) are adapted from Ref. [27] using
Ec.m. = 74.3 MeV data and show the sum of the one and
two-proton transfer channels.

Vénéroni variational approach also contains fluctuations
beyond TDHF [35]. One limitation of TDHF is that all
exit channels follow the same trajectory. Several TDHF
trajectories with different external potentials ”forcing”
transfer could be used to build a more general state using
the time-dependent Generator Coordinate Method [36].
Finally, investigations of the excitation energies of the
transfer products should be studied with, e.g., the
density-constrained TDHF approach [37].

The calculations have been performed on the Centre
de Calcul Recherche et Technologie of the Commissariat
à l’Énergie Atomique, France. The author is thankful
to D. Lacroix and B. Avez for their collaboration on the
subject. M. Dasgupta, M. Evers and D. J. Hinde are
thanked for stimulating discussions and their continuous
support during this work, and a careful reading of the pa-
per. In particular, the author is grateful to M. Evers for
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probabilities.
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