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Abstract

Interval methods have shown their ability to locate and prove the existence of a
global optima in a safe and rigorous way. Unfortunately, these methods are rather
slow. Efficient solvers for optimization problems are based on linear relaxations.
However, the latter are unsafe, and thus may overestimate, or worst, underestimate
the very global minima. This paper introduces QuadOpt, an efficient and safe frame-
work to rigorously bound the global optima as well as its location. QuadOpt uses
consistency techniques to speed up the initial convergence of the interval narrow-
ing algorithms. A lower bound is computed on a linear relaxation of the constraint
system and the objective function. All these computations are based on a safe and
rigorous implementation of linear programming techniques. First experimental re-
sults are very promising.

Key words: Global Optimization, Safe Linear Relaxations, Constraint
Programming.

1 Introduction

We consider here the global optimization problem P to minimize an objective
function under nonlinear equalities and inequalities,
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minimize f(x)

subject to gi(x) = 0, i = 1..k

gj(x) ≤ 0, j = k + 1..m

(1)

with x ∈ x, f : IRn → IR and gj : IRn → IR; Functions f and gj are
continuously differentiable on some vector x of intervals of IR.

Among the many approaches developed to solve optimization problems, two
main trends could be distinguished.
The first one, and undoubtedly the most successful one, aims at solving P in
the most efficient fashion. Linear relaxations and local methods are used to
speed up the convergence to a global optima. The most famous implementa-
tion of this approach is the global optimizer of Sahinidis called Baron [14].
However, while fast and complete (We use here the classification system pro-
posed by Neumaier in [11]), these methods are not rigorous. That is to say,
when run on a computer, the result of these algorithms could be an overesti-
mation or, worst, an underestimation of the very global optima.
The second trend mainly relies on interval computation to rigorously bound
the global optima. The use of outward rounding allows a safe bounding of the
global optima by means of a computer. Nevertheless, rigorous systems based
on interval computations like the Kearfott’s system Globsol described in [8]
are rather slow.
So, the challenge is to combine the advantages of both approaches in an effi-
cient and rigorous global optimization framework. That is why we propose here
to embed safe linear relaxations in an interval and constraint based framework.

Before going into details, let us show on a small example a flaw due to a lack
of rigour. Consider the following optimization problem:

minimize x

subject to y − x2 ≥ 0

y − x2(x− 2) + 10−5 ≤ 0

x, y ∈ [−10,+10]

(2)

As shown in figure 1, the solution of problem 2 lies in the neighbourhood of
point x ≈ 3, y ≈ 9. This point is the unique intersection of curve y = x2 and
curve y = x2(x − 2) − 10−5. However, at point x = 0, y = 0, the two curves
are only separated by a small distance of 10−5. Baron (6.0 and 7.2) quickly
find 0 as the global minimum even if the precision is enforced up to 10−12.
Such a flaw is particularly annoying: as pointed out by Neumaier in [11], there
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Fig. 1. Geometrical representation of problem 2

are many situations, like safety verification problems or chemistry, where the
knowledge of the very global optima is critical.

The rest of this paper is organized as follows. The next section contains the
notations. Section 3 gives an overview of the use of safe linear relaxations
while section 4 details our global optimization framework. Section 5 describes
first experimental results.

2 Notations

An interval [x, x] is the set of real numbers x such that x ≤ x ≤ x. x,y denote
indifferently intervals and vectors of intervals, also called boxes. If necessary,
the text will clearly state whether x is an interval or a box. The width w(x)
of an interval x is the quantity x−x. f ∗ and f

∗
respectively denote lower and

upper bounds of f ∗, the optimal value of the objective function f . IR denotes
the set of reals while IF denotes a set of floating point numbers.

3 Safe use of linear relaxations

QuadOpt, the new optimization framework we introduce in this paper is based
on the techniques developed by Lebbah et al. in [10] for QuadSolver, a new
branch and prune algorithm for handling numerical constraints.

3.1 QuadSolver

QuadSolver uses safe linear relaxations to reduce the domains of the variables.
Linear relaxations are combined with local consistencies (2B consistency and
Box consistency which are more detailed and compared by Collavizza et al. in
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[3]) as well as interval methods (e.g. interval Newton) to provide an efficient
and safe framework to search the solutions of nonlinear problems.

QuadSolver handles in a global way the constraints by means of the Simplex.
Roughly speaking, the approach is based on two steps:

(1) a reformulation step which captures the linear part of the problem: it
replaces each nonlinear term by a new variable (e.g. x2 by yi).

(2) a linearisation/relaxation step which introduces redundant linear con-
straints to provide tight linear approximations of the nonlinear terms.

Then, the Simplex algorithm is used to compute xi = minxi in LP and xi =
maxxi in LP , where LP stands for the linear relaxation of the nonlinear
problem. More details on QuadSolver could be found in [10].

The point is that most implementations of the simplex algorithm are based on
floating point numbers, and thus are unsafe. To get rigorous upper bound of
the objective function, QuadSolver implements a simple and cheap procedure
which has been introduced by Neumaier and Shcherbina in [12].
The coefficient of the generated linear relaxations are computed with float-
ing point numbers and thus, the linearisations may become incorrect due to
rounding errors. To overcome this problem QuadSolver, uses a safe procedure
when computing the coefficient of the linear relaxations.

In the next section, we give an overview of the rounding process we use to
ensure that the linear relaxations are safe.

3.2 Safe linear relaxations

The safe rounding of the linear relaxation coefficients is handled in two comple-
mentary ways. The most common and most simple linear relaxations (e.g. x2)
use dedicated procedures to insure the correct rounding of their coefficients.
A general procedure to correct any n-ary linearisations is used to handle other
linear relaxations.

For example, the nonlinear term x2 with x ≤ x ≤ x is approximated by:

L1(y, α) ≡ y − 2αx+ α2 ≥ 0 where α ∈ [x, x] (3)

L2(y) ≡ (x+ x)x− y − x ∗ x ≥ 0 (4)

where L1(y, α) generates the tangent to y = x2 at x = α. L1(y, α) underesti-
mates y whereas L2(y) overestimates y. QuadSolver only computes L1(y, x)
and L1(y, x) which provide a good ratio between the number of linear re-
laxations and the tightness of the approximation. A rounding error in the
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computation of the coefficients of L1(y, α) or L2(y) could exclude some of the
solutions. To avoid the loss of solutions, a safe rounding procedure is applied
to the computation of the coefficient of L1. The following property gives the
right rounding direction for the computation of L1 coefficients:

Let α ∈ IF and L
1IF (y, α) ≡




y − inf(2α)x+ sup(α2) ≥ 0 iff α ≥ 0

y − sup(2α)x+ sup(α2) ≥ 0 iff α < 0

Then for all x ∈ x, and for all y ∈ [0,max{x2, x2}], if L1(y, α) holds, then
L

1IF (y, α) holds too. Correct rounding for the computation of L2, as well as
the linear relaxation of xy, are detailed in [10].

Some complex linear relaxations like the linearisations generated by the sand-
wich algorithm –detailed by Rote in [13]– are more conveniently handled by a
more general approach. Next property sets the right rounding direction for a
general n-ary linearisation: Let

∑n
i=1 aixi + b ≥ 0 then ∀xi ∈ xi.

n∑

i=1

aixi + sup(b+
n∑

i=1

sup(sup(aixi)− aixi)) ≥
n∑

i=1

aixi + b ≥ 0

Note that this generalization is usually less tight than specialized corrections.
Borradaile and Van Hentenryck in [2] have recently introduced other correc-
tions of n-ary linearisations and Hongthong and Kearfott in [6] have recently
introduced corrections of other nonlinear terms.

4 From Quad to global optimization

QuadSolver offers the safe and rigorous tools to build a safe and efficient global
optimization framework. That is to say, the rigorous use of linear relaxations
from QuadSolver can be combined with other classical safe techniques coming
from interval methods and constraint programming to prune the feasible space
and to compute a safe lower bound.

Our branch and bound algorithm QuadOpt combines interval analysis and
constraint programming techniques within the well known branch and bound
schema described by Horst and Huy in [7]. Interval analysis techniques en-
ables to introduce safeguards that ensure rigorous and safe computations
whereas constraint programming techniques improve the reduction of the fea-
sible space.

QuadOpt (see algorithm 1) computes enclosers for minimizers and safe bounds
of the global minimum value within an initial box x. The algorithm maintains
two lists : a list L of boxes to be processed and a list S of proven feasible boxes.
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Algorithm 1 The QuadOpt algorithm

Function QuadOpt(IN x, ε; OUT S, [f ∗, f
∗
])

% S: set of proved feasible points
% fx denotes the set of possible values for f in x

L←{x}; S←∅; (f∗, f
∗
)←(−∞,+∞);

while w([f∗, f
∗
]) > ε do

x′←x′′ such that fx′′ = min{fx′′ : x′′ ∈ L}; L←L\x′;
fx′←min(fx′ , f

∗
);

x′←Prune(x′);
fx′←LowerBound(x′);
(fx′ ,xp, P roved)←UpperBox(x′);
if Proved then S←S ∪ {xp}; endif
if x′ 6= ∅ then (x′1,x

′
2)←Split(x′); L←L ∪ {x′1,x′2}; endif

if L = ∅ then

(f∗, f
∗
)←(+∞,−∞);

else

(f∗, f
∗
)←(min{fx′′ : x′′ ∈ L},min{fx′′ : x′′ ∈ S});

endif
endwhile

It provides a rigorous encloser [f ∗, f
∗
] of the global optimum with respect to

a given tolerance ε.

The algorithm selects the box with the lowest lower bound of the objective
function. The Prune function applies QuadSolver’s techniques to reduce the
size of the box x′. Then, LowerBound(x′) computes a rigorous lower bound
of the objective within the box x′ using QuadOpt on a linear programming re-
laxation of the initial problem. UpperBox(x) computes a feasible box. A local
search method helps to quickly find an approximate feasible point. Interval
techniques are used to check the feasibility of the provided box (We rely on
the techniques introduces by Hansen in [4] to handle under-determined sys-
tems). If UpperBox succeeds to prove feasibility then the box xp that contains
this proven feasible point is added to the list S. At this stage, if the box x′ is
empty then, either it does not contain any feasible point or its lower bound
fx′ is greater than the current upper bound f

∗
. In both cases, we say that the

box is fathomed. If x′ is not empty, the box is split along one of the problem
variables 1 . At each box selection and processing, the algorithm maintains the
lowest lower bound f ∗ of the remaining boxes L and the lowest upper bound

f
∗

of proven feasible boxes. The algorithm terminates when the space between
f
∗

and f ∗ becomes smaller than the given tolerance ε. Of course a proven op-
timum cannot always be found, and thus, algorithm 1 has to be stopped in
some cases to get the feasible boxes which may have been found.

1 Various are heuristics are used to select the variable the domain of which has to
be split.
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QuadOpt Globsol Baron

Name (n,m) Safe T (s) Splits Safe T (s) Splits Safe T (s) Splits

TP16 (2,2) ∗ 0.02 0 ∗ 0.03 − ? 0.02 −
TP220 (2,1) ∗ 0.01 0 ∗ 0.06 − ? 0.00 −
TP265 (4,2) ∗ 0.09 2 − 8.51 − ? 0.02 −
TP33 (3,2) ∗ 0.07 0 ∗ 0.08 4 ? 0.03 −
TP55 (6,6) ∗ 0.07 0 − 1.64 − ? 0.02 −
Audet140a (5,4) ∗ 0.15 1 ∗ 4.50 974 ? 0.06 −
Audet140b (4,2) ∗ 0.07 0 ∗ 0.17 − ? 0.04 −
Audet141 (6,4) ∗ 0.31 1 ∗ 2.52 57 ? 0.12 −
Audet145 (7,8) ∗ 0.26 0 ∗ 48.57 427 ? 0.10 −
Audet146 (10,12) ∗ 0.80 0 − 3635.73 ? ? 0.46 −
Audet147 (16,19) ∗ 0.54 0 ∗ ∞ ? ? 0.16 −
Audet149 (10,24) ∗ 546.12 363 − ∞ ? ? 3.66 −

Fig. 2. Running QuadOpt, Globsol and Baron on some benches

5 Experimentations

This section compares the results obtained on some well known benches with
QuadOpt, Globsol and Baron. The TPs problems come from the benches pro-
posed by Hock in [5], while Audet’s problems come from his thesis [1]. All the
tests have been ran on a laptop with a Pentium III at 1.2Ghz. QuadOpt uses
Ilog Cplex to solve linear problems and IpOpt to search for a local optima.

Table 2 presents the results of our experimentations. In this table, n is the
number of variables and m is the number of constraints; T (s) is the time in
second required to solve the problem and Splits is the number of splits.
These benches show that QuadOpt is almost always faster than Globsol and
compares well with Baron. In [9], Kearfott describes a new version of Globsol
which tries to take advantage of safe linear relaxations. QuadOpt outperforms
this version: QuadOpt requires only 59.55s to solve ex5.2.4, 109.04s to solve
ex8.1.7, 0.27s to solve ex9.2.4 and 2.58s to solve ex9.2.5 whereas Globsol

needs more than one hour to solve each of these benches on a faster computer.

6 Conclusion and future works

In this paper, we have introduced a new safe and efficient framework to com-
pute the global optima of a nonlinear problem. Though the first results are
promising, some observations have shown that we still have room for improve-
ment; especially for the computation of the lower bound.
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