
HAL Id: hal-00510303
https://hal.science/hal-00510303v1

Submitted on 17 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CPBPV: a constraint-programming framework for
bounded program verification

Hélène Collavizza, Michel Rueher, Pascal van Hentenryck

To cite this version:
Hélène Collavizza, Michel Rueher, Pascal van Hentenryck. CPBPV: a constraint-programming frame-
work for bounded program verification. Constraints, 2010, 15 (2), pp.238-264. �10.1007/s10601-009-
9089-9�. �hal-00510303�

https://hal.science/hal-00510303v1
https://hal.archives-ouvertes.fr

CPBPV: A Constraint-Programming Framework

for Bounded Program Verification⋆

Hélène Collavizza1, Michel Rueher1, Pascal Van Hentenryck2

1 University of Nice–Sophia Antipolis, I3S/CNRS, BP 145, 06903 Sophia Antipolis
Cedex, France (helen@polytech.unice.fr, michel.rueher@gmail.com)

2 Brown University, Box 1910, Providence, RI 02912 (pvh@cs.brown.edu)

Abstract. This paper studies how to verify the conformity of a pro-
gram with its specification and proposes a novel constraint-programming
framework for bounded program verification (CPBPV). The CPBPV
framework uses constraint stores to represent both the specification and
the program and explores execution paths of bounded length nonde-
terministically. The CPBPV framework detects non-conformities and
provides counter examples when a path of bounded length that refutes
some properties exists. The input program is partially correct under the
boundness restrictions, if each constraint store so produced implies the
post-condition. CPBPV does not explore spurious execution paths, as it
incrementally prunes execution paths early by detecting that the con-
straint store is not consistent. CPBPV uses the rich language of con-
straint programming to express the constraint store. Finally, CPBPV is
parameterized with a list of solvers which are tried in sequence, start-
ing with the least expensive and less general. Experimental results often
produce orders of magnitude improvements over earlier approaches, run-
ning times being often independent of the size of the variable domains.
Moreover, CPBPV was able to detect subtle errors in some programs for
which other frameworks based on bounded model checking have failed.

1 Introduction

This paper is concerned with software correctness, a critical issue in software en-
gineering. It proposes a novel constraint-programming framework for bounded
program verification (CPBPV). The goal is to verify the conformity of a pro-
gram with its specification, that is, to demonstrate that the specification is a
consequence of the program under the boundness restrictions. The key idea in
CPBPV is to use constraint stores to represent both the specification and the
program, and to non-deterministically explore execution paths of bounded length
over these constraint stores. Non-determinism occurs when executing conditional
or iterative instructions. The non-deterministic constraint-based symbolic exe-
cution incrementally refines the constraint store, which initially consists of the

⋆ This work has been partially supported by the “CAVERN” ANR-07-SESUR-003
project and by the “TESTEC” ANR-07-TLOG 022-05 project.

2 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

precondition, by adding constraints coming from conditions and from assign-
ments. CPBPV is a CP framework for bounded program verification, i.e., it
assumes a bound on the program inputs (e.g., the array lengths and the vari-
able values) and on the number of iterations for loops.3 Boundedness guarantees
that CPBPV terminates but it may induces incompleteness: Indeed, the CPBPV
verifier is inconclusive if executable paths with a length greater than the speci-
fied bound exist. The input program is correct if each constraint store produced
by the symbolic execution implies the post-condition and the loop unwinding
assertion (terminating a loop early) does not fail. In particular, CPBPV can
prove correctness of programs with a runtime bound, which is highly desirable
for embedded applications.

It is important to emphasize that verifying the conformity between a program
and its specification requires to check (explicitly or implicitly) all executables
paths. This is not the case in some model-checking tools designed to detect
violations of some specific property, e.g., safety or liveness properties. Relations
between our CPBPV approach, model checking and bounded model checking
are discussed in section 6.2.

The CPBPV framework has a number of fundamental benefits. First, con-
trary to earlier work using model checking or constraint programming [2, 16,
17], CPBPV does not use predicate abstraction or abstraction refinement tech-
niques. As a consequence, it does not explore spurious execution paths, i.e.,
paths that do not correspond to actual executions over inputs satisfying the
pre-condition. CPBPV incrementally prunes execution paths early by detecting
that the constraint store is not consistent. Second, CPBPV uses the rich language
of constraint programming to express the constraint store, including arbitrary
logical and threshold combinations of constraints, the element constraint, and
global/combinatorial constraints that express complex relationships on a set of
variables. Finally, CPBPV is parametrized with a list of solvers which are tried
in sequence, starting with the least expensive and least general.

The CPBPV framework has been evaluated experimentally on a series of
benchmarks from program verification. Experimental results of our prototype
often produce orders of magnitude improvements over earlier approaches, and
indicate that the running times are often independent of the variable domains.
Moreover, CPBPV is able to find subtle errors that some other verification frame-
works could not detect.

The rest of the paper is organized as follows. Section 2 illustrates how CPBPV
handles constraint stores on a motivating example. Section 3 formalizes the
CPBPV framework for a small imperative programming language and Section 4
discusses the implementation issues. Section 5 presents experimental results on
a number of verification problems, comparing our approach with state-of-the-
art verification frameworks. Section 6 discusses related work in test generation,
bounded program verification and software model checking. Section 7 summa-
rizes the contributions and presents future research directions.

3 For some benchmarks, we also add a bound on the size of the integers but this
restriction is just required for efficiency reasons.

A Constraint-Programming Framework for Bounded Program Verification 3

/*@ requires (\forall int i; i>=0 && i<t.length-1;t[i]<=t[i+1])

@ ensures

@ (\result != -1 ==> t[\result] == v) &&

@ (\result == -1 ==> \forall int k; 0 <= k < t.length ; t[k] != v) @*/

1 static int binary_search(int[] t, int v) {

2 int l = 0;

3 int u = t.length-1;

4 while (l <= u) {

5 int m = (l + u) / 2;

6 if (t[m]==v)

7 return m;

8 if (t[m] > v)

9 u = m - 1;

10 else

11 l = m + 1; // ERROR u = m - 1;

12 }

13 return -1;

14 }

Fig. 1. The Binary Search Program.

2 The Constraint-Programming Framework at Work

This section illustrates the CPBPV verifier on a motivating example, the bi-
nary search program. CPBPV uses java-like syntax and JML specifications4 for
pre- and post-conditions, appropriately enhanced to support the expressivity of
constraint programming. Figure 1 depicts a binary search program to determine
whether a value v is present in a sorted array t. (Note that \result in JML
corresponds to the value returned by the program). To verify this program, our
prototype implementation requires a bound on the length of array t, on its el-
ements, and on v. We will verify its correctness for specific lengths and simply
assume that the values are signed integers using a number of bits. We can also
specify that the main loop is unwinded at most log(n) + 1 times, which is the
worst case complexity of the binary search algorithm for an array of length n,
although this bound is not used by CPBPV to handle this example.

The initial constraint store of the CPBPV verifier, assuming an input array
of length 8, is the precondition5 cpre ≡ ∀0 ≤ i < 7 : t0[i] ≤ t0[i + 1] where t0 is
an array of constraint variables capturing the values stored in the input array
t. The constraint variables are annotated with a version number as CPBPV
performs an SSA-like6 renamings [15] on the fly, since each assignment generates
constraints possibly linking the old and the new values of the assigned variable.
The assignments in lines 2–3 add the constraints l0 = 0 ∧ u0 = 7. CPBPV
then considers the loop instruction. Since l0 ≤ u0, the execution enters the
loop body, adds the constraint m0 = (l0 + u0)/2, which simplifies to m0 = 3

4 See http://www.cs.ucf.edu/~leavens/JML/
5 We omit the domain constraints on the variables for simplicity.
6 SSA : Single State Assignment

4 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

(3.5 is rounded down to the integer 3, since / is the division on integers), and
considers the conditional statement on lines 6–7. The execution of the statement
is nondeterministic: Indeed, both t0[3] = v0 and t0[3] 6= v0 are consistent with the
constraint store, and thus the two alternatives, which give rise to two execution
paths, must be explored. Note that these two alternatives correspond to actual
execution paths in which t[3] in the input is equal to, or different from, input v.
The first alternative adds the constraint t0[3] = v0 to the store and executes line
7, which adds the constraint result = m0. CPBPV has thus obtained a complete
execution path p whose final constraint store cp is:

cpre ∧ l0 = 0 ∧ u0 = 7 ∧ m0 = (l0 + u0)/2 ∧ t0[m0] = v0 ∧ result = m0

CPBPV then checks whether this store cp implies the post-condition cpost by
searching for a solution to cp ∧ ¬cpost. This test fails, indicating that the ex-
ecution path p, which captures the set of actual executions in which t[3] = v,
satisfies the specification. CPBPV then explores the other alternatives to the
conditional statement in line 6. It adds the constraint t0[m0] 6= v0 and executes
the conditional statement in line 8. Once again, this statement is nondetermin-
istic. Its first alternative assumes that the test holds, generating the constraint
t0[m0] > v0 and executing the instruction in line 9. Since u is (re-)assigned,
CPBPV creates a new variable u1 and posts the constraint u1 = m0 − 1 = 2.
The execution returns to line 4, where the test now reads l0 ≤ u1, since CPBPV
always uses the most recent version for each variable. Since the constraint store
entails l0 ≤ u1, the only extension to the current path consists in executing line
5, adding the constraint m1 = (l0 + u1)/2, which actually simplifies to m1 = 1.
Another complete execution path is then obtained by executing lines 6 and 7.

Consider now a version of the program in which line 11 is replaced by u =

m-1. To illustrate the CPBPV verifier, we specify partial execution paths by in-
dicating which alternative is selected for each nondeterministic instruction. For
instance, 〈T4, F6, T8, T4, T6〉 denotes the last execution path discussed above in
which the true alternative is selected for the first execution of the instruction
in line 4, the false alternative for the first execution of instruction 6, the true
alternative for the first execution of instruction 8, the true alternative of the sec-
ond execution of instruction 4, and the true alternative of the second execution
of instruction 6. Consider the partial path 〈T4, F6, F8〉 and let us study how it
can be extended. The partial path 〈T4, F6, F8, T4, T6〉 is not explored, since it
produces a constraint store containing

cpre ∧ t0[3] 6= v0 ∧ t0[3] ≤ v0 ∧ t0[1] = v0

which is clearly inconsistent. Similarly, the path 〈T4, F6, F8, T4, F6, T8〉 cannot
be extended. The output of CPBPV on this incorrect program when executed
on an array of length 8 (with integers coded with 8-bits to make it readable)
produces, in 0.025 seconds, the counterexample:
v0 = −126 ∧ t0 = [−128,−127,−126,−125,−124,−123,−122,−121] ∧ result = −1.

This example highlights a few interesting benefits of CPBPV.

A Constraint-Programming Framework for Bounded Program Verification 5

1. The verifier only considers paths that correspond to collections of actual
inputs (abstracted by constraint stores) which satisfy the precondition. The
resulting execution paths must all be explored since our goal is to prove the
partial correctness of the program.

2. The performance of the verifier is independent of the integer representation
on this application: it only requires a bound on the length of the array.

3. If an execution path is found which violates the specification, the verifier
returns a counter-example for debugging the program.

Note that CBMC, a state-of-the-art bounded model checker, fails to verify this
example on arrays of lengths greater than 32, whereas CPBPV is able to verify
instances of length 256. ESC/Java2, a state-of-the-art static analysis tool, fails
to verify this example unless loop invariants are provided (see the discussion in
Section 5).

3 Formalization of the Framework

In this section, we first formalize the CPBPV verifier on a small abstract lan-
guage using a small-step structural operational semantics. This semantics pri-
marily specifies the execution paths over constraint stores explored by the ver-
ifier. Then we give the operational description of the verifier by presenting in
more depth the verification algorithm that manages constraint stores.

3.1 Structural Operational Semantics

Syntax Figure 2 depicts the syntax of the programs and the constraints gener-
ated by the verifier. In the following, we use s, possibly subscripted, to denote
elements of a syntactic entity S.

Renamings CPBPV creates variables and arrays of variables “on-the-fly” when
they are needed. This process resembles a SSA7 normalization but, does not
introduce the join nodes, since the results of different execution paths are not
merged. Similar renamings are used in model checking. The renaming uses map-
pings of type V ∪A→ N which maps variables and arrays into natural numbers
denoting their current “version numbers”. In the semantics, the version number
is incremented each time a variable or an array element is assigned. We use σ⊥ to
denote the uniform mapping to zero (i.e., ∀x ∈ V ∪A : σ⊥(x) = 0) and σ[x/i] the
mapping σ where x is now mapped to i, i.e., σ[x/i](y) = if y = x then i else σ(y).
These mappings are used by a polymorphic renaming function ρ to transform
program expressions into constraints. For example, ρ σ b1 ⊕ b2 = (ρ σ b1) ⊕
(ρ σ b2)(where ⊕ ∈ {∧,∨,⇒}) is the rule used to transform a logical expression.

7 SSA (static single assignment) form is an intermediate representation used in com-
piler dessign, in which every variable is assigned exactly once

6 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

L : list of instructions; I : instructions; B : Boolean expressions

E : integer expressions; A : arrays; V : variables

L ::= I; L | ǫ
I ::= A[E]← E | V ← E | if B I | while B I | assert(B) | enforce(B) | return E | {L}
B ::= true | false | E > E | E ≥ E | E = E | E 6= E | E ≤ E | E < E
B ::= ¬B | B ∧B | B ∨B | B ⇒ B
E ::= V | A[E] | E + E | E − E | E × E | E/E |

C : constraints E+ : solver expressions

V + = {vi | v ∈ V & i ∈ N} : solver variables

A+ = {ai | a ∈ A & i ∈ N} : solver arrays

C ::= true | false | E+ > E+ | E+ ≥ E+ | E+ = E+ | E+ 6= E+ | E+ ≤ E+ | E+ < E+

C ::= ¬C | C ∧ C | C ∨ C | C ⇒ C
E+ ::= V | A[E+] | E+ + E+ | E+ − E+ | E+ × E+ | E+/E+ |

Fig. 2. The Syntax of Programs and Constraints.

Configurations The CPBCV semantics mostly uses configurations of the type
〈l, σ, c〉, where l is the list of instructions to execute, σ is a version mapping,
and c is the set of constraints generated so far. It also uses configurations of the
form 〈⊤, σ, c〉 to denote final states and configurations of the form 〈⊥, σ, c〉 to
denote the violation of an assertion. The semantics is specified by rules of the

form conditions
γ1 7−→γ2

stating that configuration γ1 can be rewritten into γ2 when the
conditions hold.

[S1] Conditional Instructions The conditional instruction if b i considers
two cases. If the constraint cb associated with b is consistent with the constraint
store, then the store is augmented with cb and the body is executed. If the
negation ¬cb is consistent with the store, then the constraint store is augmented
with ¬cb. Both rules may apply, since the store may represent some memory
states satisfying the condition and some violating it.

c ∧ (ρ σ b) is satisfiable

〈if b i ; l, σ, c〉 7−→ 〈i ; l, σ, c ∧ (ρ σ b)〉

c ∧ ¬(ρ σ b) is satisfiable

〈if b i ; l, σ, c〉 7−→ 〈l, σ, c ∧ ¬(ρ σ b)〉

[S2] Iterative Instructions The while instruction while b i also considers two
cases. If the constraint cb associated with b is consistent with the constraint
store, then the constraint store is augmented with cb, the body is executed, and
the while instruction is reconsidered. If the negation ¬cb is consistent with the
constraint store, then the constraint store is augmented with ¬cb.

c ∧ (ρ σ b) is satisfiable

〈while b i ; l, σ, c〉 7−→ 〈i;while b i ; l, σ, c ∧ (ρ σ b)〉

c ∧ ¬(ρ σ b) is satisfiable

〈while b i ; l, σ, c〉 7−→ 〈l, σ, c ∧ ¬(ρ σ b)〉

A Constraint-Programming Framework for Bounded Program Verification 7

[S3] Scalar Assignments Scalar assignments create a new constraint variable
for the program variable to be assigned and add a constraint specifying that the
variable is equal to the right-hand side. A new renaming mapping is produced.

σ2 = σ1[v/σ1(v) + 1] & c2 ≡ (ρ σ2 v) = (ρ σ1 e)

〈v ← e ; l, σ1, c1〉 7−→ 〈l, σ2, c1 ∧ c2〉

[S4] Assignments of Array Elements The assignment of an array element
creates a new constraint array, add a constraint for the index being indexed and
posts constraints specifying that all the new constraint variables in the array are
equal to their earlier version, except for the element being indexed. Note that
the index is an expression that may contain variables as well, giving rise to the
well-known element constraint in constraint programming [35] in c2.

σ2 = σ1[a/σ1(a) + 1]
c2 ≡ (ρ σ2 a)[ρ σ1 e1] = (ρ σ1 e2)
c3 ≡ ∀i ∈ 0..a.length : (ρ σ1 e1) 6= i ⇒ (ρ σ2 a)[i] = (ρ σ1 a)[i]

〈a[e1]← e2 ; l, σ1 , c1〉 7−→ 〈l, σ2, c1 ∧ c2 ∧ c3〉

The CPBCV semantics also features assert and enforce constructs which
are necessary for modular composition.

[S5] Assert Statements An assert statement checks whether the assertion is
implied by the control store in which case it proceeds normally. Otherwise, it
terminates the execution with an error.

c⇒ (ρ σ b)

〈assert b ; l, σ, c〉 7−→ 〈l, σ, c〉

c ∧ ¬(ρ σ b) is satisfiable

〈assert b ; l, σ, c〉 7−→ 〈⊥, σ, c〉

[S6] Enforce Statements An enforce statement adds a constraint to the con-
straint store if it is satisfiable.

c ∧ (ρ σ b) is satisfiable

〈enforce b ; l, σ, c〉 7−→ 〈l, σ, c ∧ (ρ σ b)〉

[S7] Block Statements Block statements simply remove the braces.

〈{l1} ; l2, σ, c〉 7−→ 〈l1 : l2, σ, c〉

[S8] Return Statements A return statement simply constrains the result
variable.

c2 ≡ (ρ σ1 result) = (ρ σ1 e)

〈return e ; l, σ1, c1〉 7−→ 〈σ1, c1 ∧ c2〉

[S9] Termination Termination also occurs when no instruction remains (empty
list of instruction is denoted by ǫ).

〈ǫ, σ, c〉 7−→ 〈⊤, σ, c〉

8 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

The CPBPV Semantics Let P be the program bpre l bpost in which bpre

denotes the precondition, l is a list of instructions, and bpost the post-condition.

Let
∗
7−→ be the transitive closure of 7−→. The final states are specified by the set

SFN (P) = { 〈f, σ, c〉|〈l, σ⊥, ρ σ⊥ bpre〉
∗
7−→ 〈f, σ, c〉 ∧ f ∈ {⊥,⊤} }.

The program violates an assertion if the set

SFAE (P) = {〈⊥, σ, c〉|〈⊥, σ, c〉 ∈ SFN (P)}

is not empty. It violates its specification if the set

SFE (P) = {〈⊤, σ, c〉 ∈ SFN (P) | c ∧ (ρ σ ¬bpost) is satisfiable}

is not empty. It is partially correct otherwise.

3.2 The Bounded Semantics

We now specialize the operational semantics to ensure termination. The only
change is to limit the number of loop unfoldings to a bound B and to capture
the fact that the verifier may be inconclusive (this is denoted by a configuration
of the type 〈?, σ, c〉). The semantic rules for iterative instructions now become:

[S2b] Iterative Instructions The while instruction while b i i first transformed
into its bounded version bwhile(B) b i, where B is a limit on the number of loop
unfoldings provided by the verifier:

〈while b i ; l, σ, c〉 7−→ 〈bwhile(B) b i ; l, σ, c〉

The bounded while instruction considers three cases. If the negation of the con-
straint cb associated with b is consistent with the constraint store, then the
constraint store is augmented with ¬cb. If cb is consistent with the constraint
store and the maximal number of unfoldings is not reached, then the constraint
store is augmented with cb, the body is executed, and the bounded while instruc-
tion is reconsidered with one fewer possible unfolfings. Otherwise, if the maximal
number of unfoldings is reached, the computation is inconclusive.

c ∧ ¬(ρ σ b) is satisfiable

〈bwhile(n) b i ; l, σ, c〉 7−→ 〈l, σ, c ∧ ¬(ρ σ b)〉

c ∧ (ρ σ b) is satisfiable and n > 0

〈bwhile(n) b i ; l, σ, c〉 7−→ 〈i; bwhile(n− 1) b i ; l, σ, c ∧ (ρ σ b)〉

n = 0

〈bwhile(n) b i ; l, σ, c〉 7−→ 〈?, σ, c〉

A Constraint-Programming Framework for Bounded Program Verification 9

The CPBPV Bounded Semantics We now define the CPBPV bounded se-
mantics. Let P be the program bpre l bpost in which bpre denotes the precondition,

l is a list of instructions, and bpost the post-condition. Let
∗
7−→ be the transitive

closure of 7−→. The final states are specified by the set

SFN (bpre,P) = { 〈f, σ, c〉|〈l, σ⊥, ρ σ⊥ bpre〉
∗
7−→ 〈f, σ, c〉 ∧ f ∈ {⊥,⊤, ?} }.

The program violates an assertion if the set

SFAE (bpre,P, bpost) = {〈⊥, σ, c〉|〈⊥, σ, c〉 ∈ SFN (bpre,P)}

is not empty. It violates its specification if the set

SFE (bpre,P, bpost) = {〈⊤, σ, c〉 ∈ SFN (bpre,P) | c ∧ (ρ σ ¬bpost) is satisfiable}

is not empty. It is inconclusive if the set

SFI (bpre,P, bpost) = {〈?, σ, c〉|〈?, σ, c〉 ∈ SFN (bpre,P)}

is not empty. It is totally correct otherwise8.

3.3 The Verification Algorithm

For completeness, Figure 3 presents the implementation of the CPBPV ver-
ifier using concepts directly derived from the bounded semantics. The veri-
fier receives as inputs the initial configuration 〈l, σ⊥, ρ σ⊥ bpre〉 and the post-
condition bpost. It returns success if the program is totally correct; otherwise,
it returns assertion(s), error(s), or inconclusive(s) for some configuration s in
SFAE (bpre,P, bpost), SFE (bpre,P, bpost), or SFI (bpre,P, bpost) respectively. The
algorithm is recursive using configurations 〈l, σ, c〉 reached from the initial con-
figuration in recursive calls.

The basic cases of the recursion considers the inconclusive result (lines 1–2),
the assertion error (lines 3–4), and the end of an execution path (lines 5–9). In
this last case, either the post-condition is violated (lines 6–7) resulting in an er-
ror or the execution path is successful (lines 8–9). Lines 11–16 depicts the main
body of the verifier. Line 11 computes the set S of all configurations that can
be reached in one step from the current configuration. These configurations are
explored recursively and the verifier only succeeds if everyone of these configu-
rations is verified successfully.

8 In that case, total correctness comes from boundness of input data

10 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

function CPBPVerify(〈l, σ, c〉, bpost) =
1. if l =? then

2. return inconclusive(〈l, σ, c〉);
3. else if l = ⊥ then

4. return assertion(〈l, σ, c〉);
5. else if l = ⊤ then

6. if c ∧ (ρ σ ¬bpost) is satisfiable then

7. return error(〈l, σ, c〉);
8. else

9. return success;
10. else

11. S = {s | 〈l, σ, c〉 7−→ s};
12. forall(s ∈ S)
13. r = CPBPVerify(s, bpost);
14. if r 6= success then

15. return r;
16. return success;
end

Fig. 3. The CPBPV Bounded Verification Algorithm.

4 Implementation issues

The CPBPV framework is parametrized by a list of solvers (S1, . . . , Sk) which
are tried in sequence, starting with the least expensive and least general. When
checking satisfiability, the verifier never tries solver Si+1, . . . , Sk if solver Si is
a decision procedure9 for the constraint store. If solver Si is not a decision
procedure, it uses an abstraction α of the constraint store c satisfying c ⇒ α
and can still detect failed execution paths quickly. The last solver in the sequence
is a constraint-programming solver (CP solver) over finite domains which iterates
pruning and searching to find solutions or prove infeasibility. When the CP solver
makes a choice, the earlier solvers in the sequence are called once again to prune
the search space or find solutions if they have become decision procedures.

Our prototype implementation uses a sequence (MIP, CP), where MIP is
the mixed integer-programming tool ILOG CPLEX10 and CP is the constraint-
programming tool ILOG JSOLVER. Our Java implementation11 uses the eclipse

9 A solver S is a decision procedure for a constraint store C if and only if it can decide
whether a solution of the constraints in C exists. For instance, a solver based on
the simplex algorithm is a decision procedure for a set of linear inequalities defined
over the rational numbers but not for a set of linear inequalities defined over a finite
subset of the integers. However a simplex-based solver may detect that a set of linear
inequalities defined over a finite subset of the integers is inconsistent.

10 See http://www.ilog.com/products.
11 Because ILOG CPLEX and JSOLVER are commercial tools, there is for the moment

no public distribution available for CPBPV.

A Constraint-Programming Framework for Bounded Program Verification 11

Java Development Tools JDT12 for parsing the input program, and the API
provided on the JML home page13 for parsing JML specifications. This Java
implementation performs some trivial simplifications such as constant propaga-
tion but is otherwise not optimized in its use of the solvers and in its renaming
process whose speed and memory usage could be improved substantially. Prac-
tically, simplifications are performed on the fly and the MIP solver is called at
each node of the execution paths. The CP solver is only called at the end of the
executable paths when the complete post condition is considered.

More precisely, in the algorithm of Figure 3, we use different heuristics for
determining the satisfiability of a constraint store. When testing the correctness
of an execution path (line 6), it is necessary to use a complete decision procedure
to guarantee correctness. As a result, the CPBPV verifier first calls the MIP
solver on the linear subset of the constraint store. If this subset is not consistent,
then c is not consistent either. Otherwise, the CP solver is called on the entire
constraint store. In contrast, for the transition steps in line 11, it is not strictly
necessary to call a complete solver. The CP verifier only calls the MIP solver.
If it fails, then no transition takes place. Otherwise, the condition is compatible
with the linear subpart of c, but it may be inconsistent with the non-linear part
of c. However, the CPBPV verifier does not call the CP solver and continue
the exploration of the path although it may be unfeasible. The point is that,
since the CP solver may be computationally very demanding, it is usually more
efficient to collect more information and to try to reject the path with the MIP
solver than to call the CP solver.

The current implementation uses a depth-first strategy for the CP solver,
but modern CP languages now offer high-level abstractions to implement other
exploration strategies. In practice, when CPBPV is used for model checking as
discussed below, it is probably advisable to use a depth-first iterative deepening
implementation.

5 Experimental results

In this section, we report some experimental results for a set of classical bench-
marks for program verification. We first describe the tools with which we com-
pared CPBPV. We then describe the benchmarks and present the comparative
results.

5.1 Existing Tools

CPBPV was compared to five different tools which share the following charac-
teristics:

– They are able to handle the verification of the considered imperative lan-
guage (see Figure 2), using pre- and post-conditions, even if they are de-

12 See http://www.eclipse.org/jdt/
13 See http://www.cs.ucf.edu/~leavens/JML/

12 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

signed to handle more specific programs (e.g., some of the tools can handle
CTL/LTL logic formula);

– They perform automatic static analysis;
– A free distribution is available, which we could evaluate on the selected set

of benchmarks.

The tools14 we consider are:

– CBMC: a bounded model checker for ANSI-C and C++ programs. It allows
the verification of array bounds (buffer overflows), pointer safety, exceptions,
and user-specified assertions. See http://www.cprover.org/cbmc.

– EUREKA: a bounded model checker for ANSI-C which uses an SMT solver
instead of an SAT solver. See http://www.ai-lab.it/eureka.

– BLAST: the Berkeley Lazy Abstraction Software Verification Tool, a soft-
ware model checker for C programs. See http://mtc.epfl.ch/software-tools/

blast.
– ESC/Java: an Extended Static Checker for Java to find common run-time

errors in JML-annotated Java programs by static analysis of the code and its
annotations. See http://kind.ucd.ie/products/opensource/ESCJava2.

– Why: a software verification platform which integrates many existing provers
(proof assistants such as Coq, PVS, HOL 4,...) and decision procedures such
as Simplify, Yices, ...). See http://why.lri.fr.

All of these tools perform automatic static analysis of software to detect pro-
gramming errors or prove their absence, but they use different techniques15:

– CBMC and EUREKA are based on bounded model checking. These tools
have some similarities with CPBPV in the sense that they explore the paths
reachable within a given number of steps. However, many differences exist,
as detailed in Section 6.

– BLAST is based on model-checking and implements an abstraction-refinement
process. The main characteristic of BLAST is that it uses lazzy abstraction:
The refinement step only triggers the relevant parts of the original pro-
gram [8].

– ESC/JAVA [6, 7] is a static analyzer and requires that the user provides
annotations like loop invariants.

– Why is quite different from the previous frameworks in the sense that it
aims to perform complete formal verification (it was originally designed to
perform fully formal proofs using the Coq theorem prover).

14 We selected these tools as the most representative but many other tools with similar
features exist (e.g, Forge (http://sdg.csail.mit.edu/forge/ a program analysis
framework for checking procedure in a conventional object oriented language, which
is based on SAT solver and which is similar to ESC/Java; The KeY System (http:
//www.key-project.org/) a theorem prover for the first-order Dynamic Logic for
Java).

15 See [18] for a recent survey and classification of algorithms and tools to perform
automatic static analysis of software.

A Constraint-Programming Framework for Bounded Program Verification 13

Despite using (sometimes fundamentally) different techniques, these tools are
interesting to evaluate and contrast the capabilities of CPBPV in terms of effi-
ciency, user intervention, and feedback when an error is found.

5.2 Benchmark Programs and Experimental Results

For each benchmark program, we describe the data entries and the verification
parameters. More precisely, we give the initial Java program with its JML spec-
ification and, when a tool does not accept a similar input because of a lack of
expressiveness, we also give the particular input file used within that tool. In the
comparative tables, “UNABLE” means that the corresponding tool is unable to
validate the program because a lack of expressiveness, "TIME_OUT” because
of time or memory limitations, “NOT_FOUND” that it does not detect an er-
ror, and “FALSE_ERROR” that it reports an error in a correct program. All
experiments were performed on the same computer, an Intel(R) Pentium(R) M
processor 1.86GHz with 1.5G of memory, using the version of the verifiers that
was downloadable in June 2008 from their web sites (except for EUREKA for
which the execution times given in [2, 4] are reported.) More details on these
experiments can be found in [21].

Binary search We start with the binary search program presented in Figure 1.
ESC/Java, and CBMC require a limit on the number of loop unfoldings, which
is set to log(n) + 1, the worst case complexity of the binary search algorithm
for an array of length n. ESC/Java was applied on the program described in
Figure 1. Since CBMC does not support first-order expressions such as the JML
\forall statement, we generated a C program for each instance of the problem
(i.e., for each array length). For example, the C program for an array of length
8 is given in Figure 4.

The version of BLAST we used was unable to verify the binary search pro-
gram because it does not handle nonlinear expressions like the one used to com-
pute the middle index (i.e., mid = (left + right)/ 2). For the Why framework,
we used the binary search version given in the Why distribution. This program
uses an assert statement to specify a loop invariant and a loop variant as shown
in Figure 5.

Note that CPBPV does not require any invariant or a limit on loop unfoldings
and thus formally proves correctness with respect to its specification for a given
array length. During execution, it selects a path by nondeterministically applying
the semantic rules for conditional and loop expressions.

Table 1 reports the experimental results. Execution times for CPBPV are
reported as a function of the array length for integers coded with 31 bits.16 Our
implementation is neither optimized for time or space at this stage and times
are only given to demonstrate the feasibility of the CPBPV verifier.

The Why framework [24] was unable to verify the correctness without the
loop invariant; 60% of the proof obligations remained unknown. CBMC was

16 The commercial MIP solver fails with 32-bit domains because of scaling issues.

14 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

int binsearch(int x) {

int a[8];

// PRECONDITION

__CPROVER_assume(a[0]<=a[1]&&a[1]<=a[2]&&a[2]<=a[3]&&a[3]<=a[4]

&&a[4]<=a[5]&&a[5]<=a[6]&&a[6]<=a[7]);

signed low=0, high=7;

int result=-1;

while(result==-1&&low<=high) {

signed middle=(high+low)/2;

if(a[middle]>x)

high=middle-1;

else if(a[middle]<x)

low=middle+1;

else // a[middle]=x

result= middle;

}

// POSTCONDITION

assert((result!=-1 && a[result]==x)||(result==-1

&& (a[0]!=x&&a[1]!=x&&a[2]!=x

&& a[3]!=x&&a[4]!=x&&a[5]!=x&&a[6]!=x&&a[7]!=x)));

return result;

}

Fig. 4. Input of CBMC used to Verify an Instance of the Binary Search Program for
an Array of Length 8.

not able to do the verification for an instance of length 32 (it was interrupted
after 6691.87s). ESC/Java was unable to verify the correctness of this program
unless complete loop invariants (both on array and index values) are provided.
Figure 6 shows a version with loop invariants that has been written by David
Cok, a developper of ESC/Java, after we contacted him. This version is verified
in 7.36s for 4 unrollings (i.e., an array of length 16).

An Incorrect Binary search Table 2 reports experimental results for an
incorrect binary search program where a “copy-paste” error has been inserted
(see Figure 1, line 11). Again we use CPBPV, ESC/Java using invariant (see
Figure 6), CBMC, and Why using an invariant (see Figure 5) . The error trace
found with CPBPV has been described in Section 2. The error traces provided
by CBMC and ESC/Java only show the decisions taken along the faulty path
(i.e., values of left and right indexes). For example, the error trace provided by
CBMC is shown in Appendix 1. In contrast to CPBPV, they do not provide
any value for the array nor the searched data. Observe that CPBPV provides
orders of magnitude improvements in efficiency over CBMC and also outperforms
ESC/Java by almost a factor 8 of the largest instance.

The Tritype Program The tritype program is a standard benchmark in test
case generation and program verification since it contains numerous non-feasible

A Constraint-Programming Framework for Bounded Program Verification 15

/*@ requires

@ n >= 0 && \valid_range(t,0,n-1) &&

@ \forall int k1, int k2; 0 <= k1 <= k2 <= n-1 => t[k1] <= t[k2]

@ ensures

@ (\result >= 0 && t[\result] == v) ||

@ (\result == -1 && \forall int k; 0 <= k < n => t[k] != v)

@*/

int binary_search(int* t, int n, int v) {

int l = 0, u = n-1;

/*@ invariant

@ 0 <= l && u <= n-1 &&

@ \forall int k; 0 <= k < n => t[k] == v => l <= k <= u

@ variant u-l

@*/

while (l <= u) {

int m = (l + u) / 2;

if (t[m] < v) l = m + 1;

else if (t[m] > v) u = m - 1;

else return m;

}

return -1;

}

Fig. 5. The Binary Search Program with an Invariant from the Why Distribution.

paths: only 10 paths correspond to actual inputs because of complex conditional
statements in the program. The program takes three positive integers as inputs
(the triangle sides) and returns 2 if the inputs correspond to an isosceles triangle,
3 if they correspond to an equilateral triangle, 1 if they correspond to some other
triangle, and 4 otherwise. The tritype program and its specification is shwon in
Appendix 2. Note the role of local variable “trityp”: It determines how many
sides are equal and which are the equal sides.

Table 3 depicts the experimental results for CPBPV, ESC/Java, CBMC, BLAST
and Why. Note that, in the data entry for CBMC tool, we replaced each im-
plication a ⇒ b by the equivalent disjunction ¬a ∨ b because implication is not
possible in the assertions. BLAST was unable to validate this example because
the version we used does not handle linear arithmetic such as i+k<=j. However,
it was able to verify an easier version where several cases of the postcondition
have been inserted as assertions inside the code at the end of the corresponding
paths (see Appendix 3).

Observe the excellent performance of CPBPV, which should be contrasted to
our previous approach using constraint programming and Boolean abstraction to
abstract the conditions. This earlier approach validated this benchmark in 8.52
seconds when integers were coded with 16 bits [17] and explored 92 spurious
paths. This can be easily explained because the tritype program contains many
conditionals on input variables that are abstracted as Boolean variables in our
previous approach. In particular, there are three successive conditionals whose

16 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

CPBPV
array length 8 16 32 64 128 256
time 1.08s 1.69s 4.04s 17.01s 136.80s 1731.69s

CBMC
array length 8 16 32 64 128 256
time 1.37s 1.43s TIME_OUT (>2h) TIME_OUT TIME_OUT TIME_OUT

Why
with invariant 11.18s
without invariant UNABLE

ESC/Java FALSE_ERROR

BLAST UNABLE

Table 1. Comparison Table for Binary Search.

CPBPV
ESC/Java

CBMC
WHY

with invariant with invariant

length 8 0.027s 1.644s 1.38s NOT_FOUND

length 16 0.037s 2.375s 1.69s NOT_FOUND

length 32 0.064s 2.559s 7.62s NOT_FOUND

length 64 0.115s 3.067s 27.05s NOT_FOUND

length 128 0.241s 4.741s 189.20s NOT_FOUND

Table 2. Experimental Results for an Incorrect Binary Search.

conditions are i = j, i = k and j = k. When solving the abstract system where
i = j (resp. i = k and j = k) has been abstracted as the Boolean variable b0

(resp. b1 and b2), the spurious solution b0 = 1, b1 = 1, b2 = 0 is found while the
integer expressions they represent are inconsistent. On the opposite, if CPBPV
takes decision i = j and then decision i = k, the consistency test fails for the
negation of condition j = k and no spurious path is explored.

An Incorrect Tritype Program Consider now an incorrect version of Tritype
program in which the test if((trityp == 2)&&(i + k > j)) in line 22 (see
Appendix 2) is replaced by if((trityp == 1)&&(i + k > j)). Since the local
variable trityp is equal to 2 when i==k, the condition (i + k) > j implies that
(i,j,k) are the sides of an isosceles triangle (the two other triangular inequalities
are trivial because j>0). But, when trityp=1, i==j holds and this incorrect
version may answer that the triangle is isosceles while it may not be a triangle
at all. For example, it will return 2 when (i,j,k)=(1,1,2).

Table 4 depicts the experimental results. Execution times correspond to the
time required to find the first error. The error trace provided by CPBPV is
shown in Appendix 4 and corresponds to input values (i, j, k) = (1, 1, 2) men-
tioned earlier and thus corresponds to the case where the triangle is isosceles.
Other tools (e.g., ESC/JAVA and BLAST) only provide information on the
faulty path (see the trace provided by ESC/JAVA in Appendix 4). Once again,
observe the excellent behavior of CPBPV compared to the remaining tools. For
CBMC, we have contacted D. Kroening who has recommended to use the op-

A Constraint-Programming Framework for Bounded Program Verification 17

/*@ requires tab != null;

@ requires (\forall int i,j; (i >= 0 && i < tab.length) &&

j >= i && j < tab.length; tab[i] <= tab[j]);

@ ensures ((\result == -1) ==> (\forall int i; (i >= 0 &&

i < tab.length); tab[i] != x));

@ ensures ((\result != -1) ==> (tab[\result] == x));

@*/

int binarySearch (int[] tab, int x) {

int result = -1;

int mid = 0;

int left = 0;

int right = tab.length -1;

//@ maintaining (\forall int i; i>=0 && i < left; tab[i]!=x);

//@ maintaining (\forall int i; i>right && i < tab.length; tab[i]!=x);

//@ maintaining result!=-1 ==> tab[result]==x;

//@ maintaining left>=0;

//@ maintaining right <= tab.length-1;

//@ decreases right-left-result;

while (result == -1 && left <= right) {

mid = (left + right) / 2;

if (tab[mid] == x) {

result = mid;

} else {

if (tab[mid] > x) {

right = mid - 1;

} else {

left = mid + 1;

}

}

}

return result;

}

Fig. 6. The Binary Search Program with Loop Invariants for ESC/Java.

tion CPROVER_assert. Using this option, CBMC is able to find the error in the
faulty version of tritype. However, if we use the same option for the correct tri-
type program, we must also add the assumption CPROV ER_assume(i+j >=
0&&i + k >= 0&&j + k >= 0) to ensure that there is no overflow in the sum.

Bubble Sort with initial conditions This benchmark (see Figure 7) is taken
from [2] and performs a bubble sort of an array t which contains integers from
0 to t.length− 1 given in decreasing order. This order corresponds to the worst
case complexity of this sort algorithm. However, t contains constant values which
makes the problem easier to handle because only one path is possible. Table 5
shows the comparative results for this benchmark. CPBPV was limited on this
benchmark because its recursive implementation uses up all the JAVA stack
space. This problem should be remedied by removing recursion in CPBPV.

18 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

CPBPV ESC/Java CBMC Why BLAST
BLAST

simplified version

time 0.287s 1.828s 0.82s 8.85s UNABLE 0.716s

Table 3. Experimental Results on the Tritype Program.

CPBPV ESC/Java CBMC Why BLAST
BLAST

simplified version

time 0.056s s 1.853s NOT_FOUND NOT_FOUND UNABLE 0.452s

Table 4. Experimental Results for the Incorrect Tritype Program.

Selection Sort We now present a benchmark to highlight both modular veri-
fication and the element constraint of constraint programming to index arrays
with arbitrary expressions. The benchmark is described in Figure 8.

Assume that function findMin has been verified for arbitrary integers. When
encountering a call to findMin, CPBPV first checks if its precondition is entailed
by the constraint store, which requires a consistency check of the constraint
store with respect to the negation of the precondition. Then CPBPV replaces
the call by the post-condition where the formal parameters are replaced by the
actual variables. In particular, for the first iteration of the loop and an array
length of 40, CPBPV generates the conjunction 0 ≤ k0 < 40 ∧ t0[k0] ≤
t0[0] ∧ . . . ∧ t0[k0] ≤ t0[39] which features the element constraint [35].
Indeed, k0 is a variable and a constraint like t0[k0] ≤ t0[0] indexes the array t0

of variables using k0.
The modular verification of the selection sort explores only a single path, is

independent of the integer representation, and takes less than 0.01s for arrays
of size 40. The bottleneck in verifying selection sort is the validation of function
findMin, which requires the exploration of many paths. However, the complete
validation of selection sort takes less than 4 seconds for an array of length 6. Once
again, this should be contrasted with the bounded model-checking approach of
EUREKA [2] and CBMC: On a version of selection sort where all variables are
assigned specific values (contrary to our verification which makes no assumptions
on the inputs), EUREKA takes 104 seconds on a faster machine. Reference [2]
also reports that CBMC takes 432.6 seconds, that BLAST cannot solve this
problem, and that SATABS [14] only verifies the program for an array with 2
elements.

Sum of Squares Our last benchmark is described in Figure 9 and computes
the sum of the square of the n first integers stored in an array. The precondi-
tion states that n is the size of the array and that t must contain any possible
permutation of the n first integers. The postcondition states that the result is
n × (n + 1) × (2 × n + 1)/6. The benchmark illustrates two functionalities of
constraint programming: the ability of specifying combinatorial constraints and

A Constraint-Programming Framework for Bounded Program Verification 19

/*@ requires (\forall int i; i>=0 && i<t.length;t[i]==t.length-1-i)

@ ensures (\forall int i; i>=0 && i<t.length-1;t[i]<=t[i+1]) */

void bubleSort(int[] t) {

for (int j = 0; j < t.length; j++)

for (int i = 0; i< t.length-1; i++)

if (t[i] > t[i+1]){

int temp = t[i];

t[i] = t[i+1];

t[i+1] = temp;

}

}

Fig. 7. The Bubble Sort Benchmark From [2].

CPBPV ESC/Java CBMC EUREKA

length 8 1.45s 3.778 s 1.11s 91s

length 16 2.97s TIME_OUT 2.01s TIME_OUT

length 32 TIME_OUT TIME_OUT 6.10s TIME_OUT

length 64 TIME_OUT TIME_OUT 37.65s TIME_OUT

Table 5. Experimental Results for Bubble Sort.

of solving nonlinear problems. The alldifferent constraint [33] in the pre-
condition specifies that all the elements of the array are different, while the
program constraints and postcondition involves quadratic and cubic constraints.
The maximum instance that we were able to solve with CPBPV was an array
of size 10 in 66.179s.

This example highlights one feature of constraint programming, the use of
the combinatorial constraint alldifferent. Note that we also verified the usual
version of this function that takes as input an integer number n and returns the
sum of the square of numbers from 0 to n. For that version, the size of the data
does not fix the number of loop iterations, which depends on the numeric input
value n. Both CPBPV and CBMC were able to verify this program for n less
than 128. Their computation time are similar (see Table 6).

Discussion CPLEX, the MIP solver, plays a key role in all these benchmarks
since they all contain many linear expressions. For instance, the CP solver is
never called in the Tritype benchmark, which only contains linear expressions.
For the Binary search benchmark, there are length calls to the CP solver, to
solve the element constraint for the specification case where result! = −1 and
t[result] = x. In that case, both t, result and x are unknown, thus almost 75%
of the CPU time is spent in the CP solver. Since there is only one path in the
bubbleSort benchmark, the CP solver is only called once. In the sum of squares
program, 80% of the CPU time is spent in the CP solver, since here both the
specification and the program contains non linear expressions.

20 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

/*@ ensures (\forall int i; 0<=i && i<t.length-1;t[i]<=t[i+1]) @*/

1 static void selectionSort(int[] t) {

2 for (int i=0; i<t.length;i++){

3 int k = findMin(t,i);

5 int tmp = t[i];

6 t[i]= t[k];

7 t[k] = tmp;

8 }

9 }

/*@ requires 0<=l && l<t.length

@ ensures (l<=\result) && (\result<t.length)

@ && (\forall int k; l<=k && k<t.length;t[\result]<=t[k]) @*/

1 static int findMin(int[] t,int l) {

2 int idx = l;

3 for (int j = l+1; j < t.length;j++)

4 if (t[idx]>t[j])

5 idx = j;

6 return idx;

7 }

Fig. 8. Selection Sort for Modular Verification.

CPBPV CBMC

b= 8 0.152s 0.83s

b= 16 0.557s 0.85s

b= 32 1.111s 0.95s

b= 64 1.144s 1.13s

b= 128 1.868s 1.60s

Table 6. Sum of the Squares of the n First Integers.

6 Discussion of Related Work

We briefly review recent work in constraint programming and model checking
for software testing, validation, and verification. We outline the main differences
between our CPBPV framework and existing approaches.

6.1 Constraint Logic Programming

Constraint logic programming (CLP) was used for test generation of programs
(e.g., [25, 29, 34, 27, 3]) and provides a nice implementation tool extending sym-
bolic execution techniques [9]. Gotlieb et al showed how to represent imperative
programs as constraint logic programs and used predicate abstraction (from
model checking) and conditional constraints within a CLP framework.

Delzanno and Podelski [19] have shown that CLP could provide a concep-
tual basis for model-checking of infinite-state systems but their implementation

A Constraint-Programming Framework for Bounded Program Verification 21

* @ requires (n == t.length-1) && (\forall int i; 0<=i && i<t.length-1;

@ (\alldifferent t;) // More compact notation than the

// JML quantified formula

@ ensures \result == n*(n+1)*(2*n+1)/6 @*/

1 int sum(int[] t, int n) {

2 int s = 0;

3 int i = 0;

4 while (i!=t.length) {

5 s=s+t[i]*t[i]

6 i =i+1; }

7 return s;}

Fig. 9. Sum of the Squares of the n First Integers in an Array.

mainly uses a BDD-based Boolean solver and a linear solver over reals (integers
are abstracted by reals). Flanagan [23] formalized the translation of imperative
programs into CLP, argued that it could be used for bounded model checking,
but did not provide an implementation.

The test-generation methodology was generalized and applied to bounded
program verification in [16, 17]. The implementation was driven by the Boolean
solver: a SAT solver was used to solve the Boolean constraint system generated
with the information provided by the control flow graph. For each Boolean so-
lution a new constraint system over finite domains was built and solved. The
drawback of this approach was the fact that numerous inconsistent constraint
systems over finite domains were generated. As shown by the benchmarks in
this paper, the strategy of the CPBPV verifier which is based on an incremental
detection of inconsistent constraint stores is significantly more efficient.

To sum up, the constraint-programming framework for bounded program
verification introduced in this paper is much more scalable and efficient than
previous approaches because it is parameterized with a list of solvers (LP solver,
MIP solver, Boolean solver, finite domain solver) which are tried in sequence to
incrementally prune execution paths.

6.2 Model Checking

It is also useful to contrast the CPBPV verifier with model-checking of software
systems. Model checking is an automatic technique for determining if a model of
a system satisfies correctness of a specification [18]. Model checking tools have
been designed to verify partial specifications, i.e., safety (unreachability of bad
states) or liveness properties. Model checkers use a translation to a Boolean
representation. A fundamental issue faced by model checkers is the state space
explosion of the resulting model. Various techniques have been proposed to ad-
dress this challenge. The most effective are generalized symbolic execution and
abstraction/refinement techniques [30, 18] .

Symbolic model checkers work on implicit representations of sets of states.
They can start from initial states as well as from error states. Predicate ab-
straction is a popular technique to address the state space explosion. The idea

22 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

consists in abstracting the program to obtain an abstract program on which
model checking is performed. The model checker may then generate an abstract
counterexample, which must be checked to determine if it corresponds to a con-
crete execution path. If the counterexample is spurious, the abstract program is
refined and the process is iterated. A successful predicate abstraction consists
of abstracting the concrete program into a Boolean program (e.g., [10, 12, 13]).
In recent work [2], Armando et al proposed to abstract concrete programs into
linear programs and used an abstraction of sets of variables and array indices.
They showed that their tool compares favourably and, on some of the programs
considered in this paper, outperforms model checkers based on predicate ab-
straction.

Our CPBPV verifier contrasts with SAT-based model checkers using pred-
icate abstraction and refinement techniques: It does not abstract the program
and does not generate spurious execution paths. Instead it uses a constraint-
solver and nondeterministic exploration to incrementally refine these constraint
stores, which define a superset of the potential concrete execution paths. On all
the benchmarks of this paper, CPBPV outperforms BLAST, a model checker
based on abstraction refinement.

In bounded model checking (BMC), only states reachable within a bounded
number of steps are explored. In other words, BMC [11] consists in building a
propositional formula whose models correspond to execution paths of bounded
length violating some properties and in using SAT solvers to check whether the
resulting formula is satisfiable. SAT-based model-checking platforms [11, 28] have
been widely popular thanks to significant progress in SAT solvers. The most fa-
mous BMC tools are CBMC [20, 13] and F-Soft [28]. They have been designed
to handle reachability properties. CBMC was successfully used to compare an
ANSI C program with a circuit given as design in Verilog [12]. Armando et al [4]
proposed to use SMT17 solvers instead of SAT solvers for bounded model check-
ing of C programs. They showed that their approach may lead to considerably
more compact formulae than those obtained with CBMC.

CPBPV has some similarities with bounded model checking but, in contrast
to the above-mentioned BMC tools, CPBPV can easily handle integer data type
variables and non-linear relations. To handle floating point variables, we just have
to add a dedicated solver (e.g. [9]). On many bounded verification benchmarks,
our preliminary experimental results show significant improvements over the
state-of-the-art results in [2], SMT-based bounded model checking, and CBMC.

17 SMT-based bounded model checking is based on the idea of representing and check-
ing quantifier-free formulas in a more general decidable theory (e.g. [26, 22, 31]). SMT
solvers integrate dedicated solvers and share some of the motivations of constraint
programming. Observe also that this research provides convincing evidence of the
benefits of Nieuwenhuis’ challenge [31] aiming at extending SMT with CP tech-
niques. See also [1] for a study of the relations between constraint programming
and SMT.

A Constraint-Programming Framework for Bounded Program Verification 23

7 Perspectives and Future Work

This paper introduced the CPBPV framework for bounded program verifica-
tion. Its main novelty is to use constraints to represent sets of memory stores
and to explore execution paths over these constraint stores nondeterministically
and incrementally. As a result, it never explores spurious execution paths con-
trary to earlier approaches combining constraint programming and predicate
abstraction [16, 17] or integrating SMT solvers and the abstraction/refinement
approach from model checking [2]. We have demonstrated the CPBPV verifier on
a number of standard benchmarks from model checking and program checking as
well as on nonlinear programs and functions using complex array indexings, and
showed how to perform modular verification. The experimental results demon-
strate the potential of the approach: The CPBPV verifier provides significant
gain in performance and functionalities compared to other tools.

Our current work aims at improving and generalizing the framework and im-
plementation. In particular, we would like to include tailored, light-weight solvers
for a variety of constraint classes, the optimization of the array implementation,
and the integration of Java objects and references. There are also many research
avenues opened by this research, three of which are reviewed now.

Currently, the CPBPV verifier does not check for variable overflows: the
constraint store enforces that variables take values inside their domains and
execution paths violating these constraints are thus not considered. It is possible
to generalize the CPBPV verifier to check overflows as the verification proceeds.
The key idea is to check before each assignment if the constraint store entails that
the value produced fits in the selected integer representation and generate an
error otherwise. Similar assertions must in fact be checked for each subexpression
in the right hand-side in the language evaluation order. Interval techniques on
floats [9] may be used to obtain conservative checking of such assertions.

Recent work on loop invariant generation [32] also deserves some attention.
Indeed, the use of a priori computed invariant might drastically enhance the
scalability of the approach.

An intriguing direction is to use the CPBPV approach for properties check-
ing. Given an assertion to be verified, one may perform a backward execution
from the assertion to the function entry point. The negation of the assertion is
now the pre-condition and the pre-condition becomes the post-condition. This
requires to specify inverse renaming and executions of conditional and iterative
statements but these have already been studied in the context of test generation.

Acknowledgements We would like to thank Michel Lecomte for much help
and advice with JSOLVER and Jean-François Couchot for advice with the Why
framework. We are also grateful to David Cok and Joseph Kiriny for discussions
about ESC/Java and for providing a version of the binary search.

24 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

References

1. Aït-Kaci H., Berstel B., Junker U., Leconte M., Podelski A. Satisfiability Modulo
Structures as Constraint Satisfaction : An Introduction. Procs of JFLA 2007.

2. Alessandro Armando, Massimo Benerecetti, Jacopo Mantovani. Abstraction Re-
finement of Linear Programs with Arrays. Proc. of TACAS 2007: 373-388.

3. Elvira Albert, Miguel Gómez-Zamalloa, Germán Puebla. Test Data Generation of
Bytecode by CLP Partial Evaluation. Proc. of LOPSTR 2008: 4-23

4. Alessandro Armando, Jacopo Mantovani, Lorenzo Platania. Bounded Model
Checking of Software Using SMT Solvers Instead of SAT Solvers. Proc. of Spin
2006: 146-162.

5. Thomas Ball, Sriram K. Rajamani. Bebop: A Symbolic Model Checker for Boolean
Programs. Proc. of SPIN 2000: 113-130.

6. Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, Traian Muntean.
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices. Proc.
of International Workshop, CASSIS 2004, Marseille, France, March 2004, Revised
Selected Papers . LNCS (Springer Verlag) 3362:108-128 (2005).

7. Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry,
Gary T. Leavens, K. Rustan M. Leino, Erik Poll. An overview of JML tools and
applications. International Journal on Software Tools for Technology Transfer, 7(3):
212-232 (2005).

8. Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar. The Soft-
ware Model Checker BLAST: Applications to Software. STTT(Journal on Software
Tools for Technology Transfer), 9(5-6): 505-525 (2007).

9. Bernard Botella, Arnaud Gotlieb, Claude Michel. Symbolic execution of floating-
point computations. Software Testing, Verification and Reliability. 16:2:97–
121.2006.

10. Thomas Ball, Andreas Podelski, Sriram K. Rajamani. Boolean and Cartesian Ab-
straction for Model Checking C Programs. Proc. of TACAS 2001:268-283.

11. Edmund M. Clarke, Armin Biere, Richard Raimi, Yunshan Zhu. Bounded Model
Checking Using Satisfiability Solving. Formal Methods in System Design 19(1):
7-34 (2001).

12. Edmund M. Clarke, Daniel Kroening, Flavio Lerda. A Tool for Checking ANSI-C
Programs. Proc. of TACAS 2004: 168-176.

13. Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, Karen Yorav. Predicate
Abstraction of ANSI-C Programs Using SAT. Formal Methods in System Design
25(2-3): 105-127 (2004).

14. Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, Karen Yorav. SATABS:
SAT-Based Predicate Abstraction for ANSI-C. Proc. of TACAS 2005: 570-574.

15. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, F. Kenneth
Zadeck. Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Trans. Program. Lang. Syst. 13(4): 451-490 (1991).

16. Hélène Collavizza, Michel Rueher. Exploration of the Capabilities of Constraint
Programming for Software Verification. Proc. of TACAS 2006: 182-196.

17. Hélène Collavizza, Michel Rueher. Exploring Different Constraint-Based Modelings
for Program Verification. Proc. of CP 2007: 49-63

18. Vijay D’Silva, Daniel Kroening, Georg Weissenbacher. A Survey of Automated
Techniques for Formal Software Verification. IEEE Trans. on CAD of Integrated
Circuits and Systems 27(7): 1165-1178 (2008).

A Constraint-Programming Framework for Bounded Program Verification 25

19. Giorgio Delzanno, Andreas Podelski. M odel Checking in CLP. Proc. of TACAS
1999: 223-239

20. Edmund M. Clarke, Daniel Kroening, Karen Yorav. Behavioral consistency of C
and verilog programs using bounded model checking. Proc. of DAC 2003: 368-371.

21. Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck. Comparison between
CPBPV, ESC/Java, CBMC, Blast, EUREKA and Why for Bounded Program
Verification CoRR abs/0808.1508: (2008).

22. Bruno Dutertre, Leonardo Mendonça de Moura. A Fast Linear-Arithmetic Solver
for DPLL(T). Proc. of CAV 2006: 81-94.

23. Cormac Flanagan. Automatic software model checking via constraint logic. Sci.
Comput. Program. 50(1-3): 253-270 (2004).

24. Jean-Christophe Filliâtre, Claude Marché. The Why/Krakatoa/Caduceus Platform
for Deductive Program Verification. Proc. of CAV 2007: 173-177.

25. Arnaud Gotlieb, Bernard Botella, Michel Rueher. Automatic Test Data Generation
Using Constraint Solving Techniques. Proc. of ISSTA 1998: 53-62.

26. Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, Cesare
Tinelli. DPLL(T): Fast Decision Procedures. Proc. of CAV 2004: 175-188.

27. Patrice Godefroid, Michael Y. Levin, David A. Molnar. Automated Whitebox Fuzz
Testing. NDSS(Network and Distributed System Security Symposium) 2008.

28. Franjo Ivancic, Zijiang Yang, Malay Ganai, Aarti Gupta, and Pranav Ashar. Effi-
cient SAT-based bounded model checking for software verification. Theor. Comput.
Sci. 404(3): 256-274 (2008).

29. Daniel Jackson, Mandana Vaziri. Finding bugs with a constraint solver. Proc.
ISSTA 2000: 14-25.

30. Sarfraz Khurshid, Corina S. Pasareanu, Willem Visser. Generalized Symbolic Ex-
ecution for Model Checking and Testing. Proc. of TACAS 2003: 553-568.

31. Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, Albert Rubio.
Challenges in Satisfiability Modulo Theories. RTA 2007: 2-18.

32. Corina S. Pasareanu, Willem Visser. Verification of Java Programs Using Symbolic
Execution and Invariant Generation. SPIN 2004: 164-181.

33. Jean-Charles Régin. A Filtering Algorithm for Constraints of Difference in CSPs.
AAAI 1994: 362-367.

34. Nguyen Tran Sy, Yves Deville. Automatic Test Data Generation for Programs with
Integer and Float Variables. ASE 2001: 13-21.

35. Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

36. Pascal Van Hentenryck, Laurent Michel, Yves Deville. Numerica: A Modeling Lan-
guage for Global Optimization. MIT Press, 1997.

Appendices

Appendix 1: Error trace provided by CBMC for an incorrect binary
search

Counterexample:
State 15 file bsearchAssertKO.c line 10 function binsearch thread 0
--

bsearchAssertKO::binsearch::1::low=0 (00000000000000000000000000000000)
State 16 file bsearchAssertKO.c line 10 function binsearch thread 0
--

bsearchAssertKO::binsearch::1::high=7 (00000000000000000000000000000111)

26 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

State 17 file bsearchAssertKO.c line 11 function binsearch thread 0
--

bsearchAssertKO::binsearch::1::result=-1 (11111111111111111111111111111111)
State 18 file bsearchAssertKO.c line 13 function binsearch thread 0
--

bsearchAssertKO::binsearch::1::1::middle=3 (00000000000000000000000000000011)
State 21 file bsearchAssertKO.c line 17 function binsearch thread 0
--

bsearchAssertKO::binsearch::1::high=2 (00000000000000000000000000000010)
State 25 file bsearchAssertKO.c line 13 function binsearch thread 0
--

bsearchAssertKO::binsearch::1::1::middle=1 (00000000000000000000000000000001)
State 29 file bsearchAssertKO.c line 15 function binsearch thread 0
--

bsearchAssertKO::binsearch::1::high=0 (00000000000000000000000000000000)
State 33 file bsearchAssertKO.c line 13 function binsearch thread 0
--

bsearchAssertKO::binsearch::1::1::middle=0 (00000000000000000000000000000000)
State 37 file bsearchAssertKO.c line 15 function binsearch thread 0
--

bsearchAssertKO::binsearch::1::high=-1 (11111111111111111111111111111111)
Violated property:

file bsearchAssertKO.c line 21 function binsearch
assertion
result != -1 && a[result] == x || result == -1 && a[0] != x && a[1] != x

&& a[2] != x && a[3] != x && a[4] != x && a[5] != x && a[6] != x && a[7] != x
VERIFICATION FAILED

A Constraint-Programming Framework for Bounded Program Verification 27

Appendix 2: the Tritype program

/*@ requires (i>=0)&&(j>=0)&&(k>=0);
@ ensures
@ ((i+j<=k)||(j+k<=i)||(i+k<=j)) ==> \result == 4 &&
@ !((i+j<=k)||(j+k<=i)||(i+k<=j))&&((i==j)&&(j==k)) ==> \result == 3 &&
@ !((i+j<=k)||(j+k<=i)||(i+k<=j))&&!((i==j)&&(j==k))
@ &&((i==j)||(j==k)||(i==k)) ==> \result == 2 &&
@ !((i+j<=k)||(j+k<=i)||(i+k<=j))&&!((i==j)&&(j==k))
@ &&!((i==j)||(j==k)||(i==k)) ==> \result == 1;

@*/
1 public static int tritype(int i, int j, int k){
2 int trityp ;
3 // not a triangle
4 if ((i==0)||(j==0)||(k==0)) trityp = 4 ;
5 else {
6 trityp = 0 ;
7 if (i==j) trityp = trityp + 1 ;
8 if (i==k) trityp = trityp + 2 ;
9 if (j==k) trityp = trityp + 3 ;
10 if (trityp==0){
11 // triangular inequality not verified
12 if ((i+j <= k)||(j+k <= i)||(i+k <= j)) trityp = 4 ;
13 else trityp = 1 ; // any triangle
14 }
15 else {
16 if (trityp > 3) trityp = 3 ; // equilateral
17 else
18 //i=j and triangular inequality verified
19 if ((trityp==1)&&(i+j>k)) trityp = 2 ;
20 else
21 //i=k and triangular inequality verified
22 if ((trityp==2)&&(i+k>j)) trityp = 2 ;

//ERROR if ((trityp==1)&&(i+k>j))
23 else
24 //j=k and triangular inequality verified
25 if ((trityp==3)&&(j+k>i)) trityp = 2 ;
26 else trityp = 4 ; // not a triangle
27 }
28 }
29 return trityp;
30 }

Appendix 3: Version of tritype program verified with BLAST

#include <assert.h>
int main(int i, int j, int k) {
1 int trityp ;
2 if ((i <= 0) || (j <= 0) || (k <= 0)){
3 trityp = 4 ;
4 assert((i <= 0) || (j <= 0) || (k <= 0));
5 }
6 else {
7 trityp = 0 ;
8 if (i == j) trityp = trityp + 1 ;
9 if (i == k) trityp = trityp + 2 ;
10 if (j == k) trityp = trityp + 3 ;
11 if (trityp == 0) {
12 if ((i+j <= k) || (j+k <= i) || (i+k <= j)) {
13 trityp = 4 ;
14 assert((i+j<=k)||(j+k<=i)||(i+k<=j));
15 }
16 else{
17 trityp = 1 ;
18 assert((i!=j) && (j!=k) && (i!=k)
19 && !((i+j<=k)||(j+k<=i)||(i+k<=j)));
20 }

28 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

21 }
22 else {
23 if (trityp > 3) {
24 trityp = 3 ;
25 assert((i==j && j==k && i==k));
26 }
27 else
28 if ((trityp == 1) && (i+j > k)){
29 trityp = 2 ;
30 assert(i==j);
31 }
32 else
33 if ((trityp == 2) && (i+k > j)){ //ERROR trityp==1
34 trityp = 2 ;
35 assert(i==k);
36 }
37 else
38 if ((trityp == 3) && (j+k > i)) {
39 trityp = 2 ;
40 assert(j==k);
41 }
42 else {
43 trityp = 4 ;
44 assert((i+j<=k)||(j+k<=i)||(i+k<=j));

}
}

}
return trityp ;

}

Appendix 4: Error trace provided by ESC/JAVA and CPBPV for
faulty tritype program

Error trace provided by CPBPV
trityp_3 is the last renaming of local variable “trityp”

i_0[-2147483647:2147483646] : 1
j_0[-2147483647:2147483646] : 1
k_0[-2147483647:2147483646] : 2
trityp_0[-2147483647:2147483646] : 0
trityp_1[-2147483647:2147483646] : 0
trityp_2[-2147483647:2147483646] : 1
trityp_3[-2147483647:2147483646] : 2

Error trace provided by ESC/JAVA

TritypeKO.java:67: Warning: Postcondition possibly not established (Post)
}
^

Associated declaration is "TritypeKO.java", line 12, col 5:
@ ensures ...

^
Execution trace information:

Executed else branch in "TritypeKO.java", line 23, col 7.
Executed then branch in "TritypeKO.java", line 25, col 15.
Executed else branch in "TritypeKO.java", line 28, col 3.
Executed else branch in "TritypeKO.java", line 31, col 3.
Executed else branch in "TritypeKO.java", line 42, col 8.
Executed else branch in "TritypeKO.java", line 46, col 9.
Executed else branch in "TritypeKO.java", line 50, col 10.
Executed then branch in "TritypeKO.java", line 51, col 39.
Executed return in "TritypeKO.java", line 66, col 2.

A Constraint-Programming Framework for Bounded Program Verification 29

Counterexample context:
(0 < k:18.32)
((2 * j:18.25) <= k:18.32)
(k:18.32 <= intLast)
(longFirst < intFirst)
(1000001 <= intLast)
(null <= max(LS))
(eClosedTime(elems) < alloc)
(vAllocTime(this) < alloc)
((intFirst + 1000001) <= 0)
(intLast < longLast)
(0 <= j:18.25)
(k:18.32 == 0) == tmp0!cor:20.6
null.LS == @true
(null <= max(LS))
typeof(j:18.25) <: T_int
((j:18.25 + k:18.32) > j:18.25) == @true
(0 + 1) == 1
(j:18.25 == 0) == tmp1!cor:20.6
typeof(k:18.32) <: T_int
typeof(this) <: T_TritypeKO
((j:18.25 + j:18.25) > k:18.32) == tmp4!cand:47.9
typeof(this) <: T_TritypeKO
trityp:19.6<7> == 2
T_bigint == T_long
tmp0!cor:20.23 == tmp0!cor:20.6
trityp:19.6<2> == 1
trityp:19.6<5> == 2
elems@pre == elems
j:18.25 == i:18.18
trityp:19.6<8> == 2
tmp5!cand:51.25 == @true
trityp:19.6 == 2
trityp:26.4 == 1
trityp:19.6<3> == 1
state@pre == state
trityp:19.6<6> == 2
tmp1!cor:20.13 == tmp1!cor:20.6
trityp:19.6<1> == 1
tmp5!cand:51.13 == @true
alloc@pre == alloc
tmp4!cand:47.21 == tmp4!cand:47.9
!typeof(this) <: T_void
!T_java.lang.Object <: T_java.io.Serializable
typeof(this) != T_void
bool$false != @true
tmp4!cand:47.9 != @true
ecThrow != ecReturn
1 != 0
k:18.32 != j:18.25
k:18.32 != 0
this != null
trityp:19.6<7> != 4
tmp0!cor:20.23 != @true
j:18.25 != 0
tmp1!cor:20.6 != @true

