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Summary 
 
1. The structural organization of a forest canopy is an important descriptor 
that may provide spatial information for vegetation mapping and 
management planning, such as above-ground biomass or carbon stock 
estimate. In the case of tropical forests, remote sensing-based structure 
assessments are often hampered by technical difficulties mainly related to 
high above ground biomass stocks. In this project, we present a powerful 
method of canopy texture analysis from very-high remotely sensed images 
and test the potential of the method for studying the wet tropical forests of 
the Western Ghats region in Southwest India (objective 1). Topography 
variations influencing image texture, we investigate its impact on the 
method results and attempt to mitigate it (objective 2). Lastly, high 
resolution images prices is an important break to remote sensing-based 
researches while the quality of freely available image provided by Google 
EarthTM has proven to sufficient to derived textural information, an 
interesting stake for forest research that is worth being further investigated 
(objective 3). 
 
2. Based on the multivariate ordination of Fourier spectra, the method 
allowed us to classify canopy images with respect to canopy grain, i.e. a 
combination of mean size and frequency of tree crowns per sampling 
window. We defined a canopy textural gradient on 1557 125-m square 
windows and test its correlation with several forest structural parameters 
based on 7 1-ha ground plots. The reference canopy textural gradient 
derived from IKONOS commercial image is compared through descriptive 
statistics and linear regressions to the Google Earth-derived one to assess 
the performance of latter freely-accessible image provider. The effect of 
topography variations are identified with linear regressions using (1) a set of 
“exposition codes” attributed to each window and computed with respect to 
the underlying terrain and the sun position, (2) a hillshade model computed 
with GIS software. A partitioned standardization, previously used with 
success to mitigate the effect of image acquisition parameters on the method 
results, is performed to attempt tackling topography influences. 
 
3. We shown that IKONOS-derived canopy textural index enable us to 
discriminate forested scenes according to the dominance of specific ranges 
of spatial patterns in the image texture and that this ordination highly and 
reasonably correlate with structural parameters of modeled forested scenes 
(e.g. R² = 0.87 for mean crown diameter, R² = 0.95 for mean tree density) 
and ground plots (e.g. R² = 0.54 for mean tree diameter, R² = 0.63 for stand 
basal area and above ground biomass estimate), respectively. Topography 
variation induced a “local” effect, arising from the presence of pronounced 
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geomorphologic features within the scene that bias the ordination of 
relatively few windows, as well as a more “global” effect related to an 
increase or decrease of trees shade size according to the underlying terrain 
and having little but significant influence over windows ordination. The 
performed correction method allowed us to remove the latter un-wanted 
influence. Google Earth-derived results were consistent regarding the 
reference commercial image, with a reasonable correlation between the 1st 
PCA axes derived from the two image types (R² = 0.48) and similar trends 
of regression scores with forest structural parameters (e.g. R² = 0.67 for 
mean tree diameter, R² = 0.50 for stand basal area and R² = 0.51 for above 
ground biomass estimate) although the poor model calibration led to un-
realistic prediction values on one part of the textural gradient. 
 
4. This study investigates several issues of interest for a large-scale 
applicability of this novel and promising method and shows its good 
predictive ability on forest structural parameters that may be supported by 
current theoretical trends in forest ecology (chronosequences approach, 
metabolic theory). We underline the spurious effect of several sources of 
spatial heterogeneity (topography-, canopy complexity-related) on the 
method results  and emphasis the need for a greater field effort that would 
be valuable for both Western Ghats forests characterization and 
methodological development (efficiency of the topography correction 
method, notably). 
 
Keywords:  Canopy texture, Fourier spectra, high-resolution images, forest 
structure, topography, Google Earth TM, Western Ghats 
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1. Introduction 

1.1. Context 
 
As one of the countries that ratified the Kyoto Protocol of the United Nations 

Framework Convention on Climate Change (UNFCCC), India is committed to regularly 
report on greenhouse gases emissions (mainly CO2). Since the UN Climate Change 
Conferences in Montréal  (2005) and Bali (2007), the importance of reducing emissions from 
deforestation and forest degradation in developing countries (REDD) has grown as one of the 
major challenges in future climate change policy, including mechanisms to compensate 
countries for stabilizing/increasing forest carbon stocks (Gibbs et al., 2007). The crucial role 
of the REDD program in the world climate change mitigation strategy has been later on 
acknowledged during the 2009 15th Conference of the Parties in Copenhagen, although global 
agreements on the multiple political, financial and technical questions that its implementation 
would raise have not been reached (Minang and Murphy, 2010). In this context, the Indian 
Space Research Organization recently launched a National Carbon Project in order to (i) 
assess carbon pools, fluxes and net balance in Indian terrestrial biospheres, (ii) establish a 
remote sensing-based spatial database for carbon modeling and periodic stock assessments 
and in turn (iii) support national communications to UNFCCC. The French Institute of 
Pondicherry (IFP) accompanies these research efforts with specific programs oriented toward 
the development of methods to estimate and map biomass of the forests of the Western Ghats, 
one of the largest tropical forests left in India. One basic requirement conditioning REDD 
efficiency indeed relies on our technical ability to accurately monitor forest carbon stocks 
across landscapes. The main carbon pools in forest ecosystems are the living biomass of trees 
and understorey vegetation along with the dead mass of litter, woody debris and soil organic 
matter. In the case of tropical forests, the living biomass parts contain most of the ecosystem’s 
carbon; indeed, the dead biomass component is the least important among forest biomes due 
to rapid turnover rates and higher respiration (Thompson et al., 2009). Besides, the above 
ground living component is the most directly impacted by deforestation and degradations. 
Estimating forest aboveground biomass (AGB) is therefore one of the most critical steps in 
quantifying carbon stocks and fluxes, particularly in tropical countries. For that purpose, 
traditional methods are based on field measurements and rely on direct (destructive sampling) 
or indirect (allometric equations, conversion from volume to biomass) AGB estimation 
techniques. Such approaches are often labor intensive, time consuming, hardly implementable 
in remote locations and fail to provide AGB spatial estimations over large areas (Lu, 2006). 
On the other hand, retrieving forest stand structure parameters (e.g. tree density, basal area, 
canopy height) from remotely sensed data allows overcoming some critical field-based 
approaches’ drawbacks (e.g. access to remote locations, national-wide cover) and has proven 
to be of great interest (e.g. Houghton et al., 2001; Grace, 2004; Boyd and Danson, 2005). 
Moreover, getting insights into the structural organization of forest canopies over extensive 
areas is not only valuable in the framework of forests carbon monitoring, but would also 
provide spatial information for both ecological research (e.g. plant species distributions; 
Couteron et al., 2003) and operational management/conservation (e.g. vegetation mapping 
and management planning; Tuomisto et al., 1995). 
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1.2. Background 
 
Broad remote-sensing principles 
 
A variety of airborne and satellites images have been used to characterize forest 

resources. The remotely sensed information depicted on these images relies on the same 
principle regardless of the sensor type: “the interaction of electromagnetic radiation with the 
target and analysis of the returned signal as recorded by a sensor” (Boyd and Danson, 2005). 
Sensors can be broadly categorized into optical or RADAR and differ in the origin of the 
target electromagnetic signature. Optical systems measure reflected solar radiation in the 
visible and near infrared spectral range (0.4 to 3 x 10-6 m), for one or more discrete 
wavelengths, while RADAR systems measure backscattered microwave radiation at 
wavelengths ranging from 1 x 10-2 to 1 x 102 m (Boyd and Danson, 2005, Eric et al, 1997). 
This difference in the physical properties of the radiation types measured by the two systems 
engenders differences in the information collected by the sensors. Optical sensors are 
traditionally considered to provide information on foliage amount and its biophysical 
properties (small wavelengths absorbed and scattered by leaves, needles or branches) while 
RADAR sensors provide information on woody biomass and stand structure (long microwave 
wavelengths scattered by branches, trunks and ground) (Boyd and Danson, 2005). 
 

Forest resources characterization & Problem definition 
 

Medium resolution satellites equipped with optical devices have been largely 
exploited in the past decades to yield stand parameter estimates with a spatial resolution of a 
dozen to several dozen meters (Couteron et al., 2005), such as LANDSAT (eg. Lu et al., 
2004), SPOT (eg. De Wasseige and Defourny, 2002) or MODIS satellite (Baccini et al., 
2004). However, the accuracy of these estimates and therefore of the derived carbon stocks 
and fluxes in tropical forests is still spoilt by uncertainty (e.g. Grace, 2004; Houghton, 2005; 
Ramankutty et al., 2007). Indeed, one of the main reasons for uncertainty in AGB estimates in 
tropical forests is that the AGB can easily reach values up to 500 t.ha-1, largely above the 
saturation threshold of 100 to 200 t.ha-1 that limits the use of remote sensing instruments, 
including RADAR systems such as Synthetic Aperture Radar (SAR), for detecting spatio-
temporal AGB variations (Imhoff, 1995; Lucas et al., 2007). Some believe that both optical 
and RADAR systems are unable to detect the whole gradient of biomass found in much of the 
world’s high biomass forests (Proisy 2007, Kasischke et al., 1997). Addressing topical 
forests degradation issues is therefore greatly hindered by this technical difficulty. 

 
The potential of  recent generation of very high resolution (VHR) optical data provided by 
IKONOS or QUICKBIRD satellites have not been fully explored for tropical forest structure 
parameter estimations (Proissy et al., 2007 ; Greenberg et al., 2005) although they may 
deliver a greater thematic accuracy (Mumby and Edwards, 2002). If there has been an 
emphasis in the scientific community to develop relationships between spectral signals and 
biomass (Li and Strahler, 1992), traditionally with classification techniques on an individual 
pixel basis, such approach may be neither relevant (Greenberg et al., 2005) nor always 
reliable (Leboeuf et al., 2007) with metric and sub-metric optical data. Hay et al. (1996) 
indeed underlined that as the image spatial resolution increases, so does the inter-class 
spectral variability of surface features, resulting in poorer classification accuracy. Besides, at 
such spatial resolution, a pixel encompasses a portion of a single object (e.g. branch) rather 
than an unknown combination of several scene objects. Target objects (e.g. individual tree 
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crowns) being larger than a pixel, analyses integrating pattern recognition or image 
segmentation should improve the spectral or textural information used later on to perform 
classification (Greenberg et al., 2005, 7; Hay et al., 1996; Malhi et al., 2008). 
 

To day, VHR images have mostly been used for visual tree crown delineation in 
tropical forests (e.g. Asner et al., 2002, ; Read et al., 2003), while few studies have been 
investigating automatic analysis approaches. Tree crown delineation, both visual and 
automatic, do not accurately estimate tree crown size distribution so far (Asner et al., 2002), 
mostly because of the complex geometry of tropical canopies that are often too aggregated or 
merged so it gets often difficult to differentiate a group of small crowns from a single large 
one. The gain in detail allowed by VHR data, notably in terms of brightness variations (i.e. 
contrast between shadowed and illuminated canopy) is potentially informative (Proisy et al., 
2007) and might be exploited using textural analyses. 

1.3. Strategy 
 
1.3.1. Image texture and FOTO framework 

 
Despite its importance in image interpretation, texture is a complex concept that has 

not been formally defined (Bharati et al., 2004; de Jong and Van der Meer, 2004). The term 
generally goes along and characterizes image properties such as smoothness, coarseness, 
symmetry, regularity, etc. and represents tonal or brightness variations within an image or 
spatial domain (Bharati et al., 2004; de Jong and Van der Meer, 2004). Providing information 
on arrangements of objects and their spatial relationships within an image, texture has proven 
to be of primary importance for landcover classification (de Jong and Van der Meer, 2004) 
and to predict forest attributes (Wulder et al., 1998). Diverse approaches have been developed 
to analyze texture and they mainly differ by the method used to extract the textural 
information (Bharati et al., 2004). These approaches can be broadly categorized as statistical, 
structural or spectral methods (see de Jong and Van der Meer, 2004).  In this project, we 
adopted a spectral approach and more specifically the Fourier Transform Ordination method 
(FOTO). 
 

FOTO is a novel approach that has been applied on various forest types, with different 
input data (aerial photographs, satellite images) and for different aims. However, it proved to 
consistently characterize tropical canopy structure (e.g. Couteron et al., 2005) and at broader 
scale, semi-arid ecosystem patterns (e.g. Barbier et al., 2006; Couteron et al., 2006). 
 

First applied to the evergreen rain forest of French Guiana, FOTO was used to 
characterize and predict forest structural attributes from a single digitized aerial photograph 
(Couteron et al., 2005). This initial attempt led to good models’ explanatory powers on 
several stand attributes (see Table 1) with no sign of saturation on dense locations. With the 
wish to apply the method over large areas, the logical next step was to test if such promising 
results would hold true for sub-metric satellite images, which would therefore simplify image 
handling (geocoding & moisaicing). Proisy et al. (2007) used a set of 1-m panchromatic 
IKONOS images to derive AGB estimate of the mangrove forests of the same country. It is 
worth stressing that satellite images were used without any radiometric or geometric 
corrections, except the ones already applied by the image provider. The study confirmed the 
potential of the method. Indeed, compared to the former study, a similar canopy grain textural 
range was found and it allowed the method to consistently discriminate mangroves with 
respect to their development stage. Moreover, FOTO-derived AGB estimates did not show 
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saturation for biomass values above 400 t.ha-1 of dry matter as well as any obvious variance 
increase, while having a reasonable accuracy (Table 1). 
 
Table 1. FOTO explanatory power regarding forest attributes and derived estimates (from 
Couteron et al., 2005; Proisy et al., 2007) 
 

Field data 
range 

Determination 
coefficient (R²) Forest type Forest attribute RMSE 

Density (tree / ha) 455 - 861 0.80 

 
Recently, Barbier et al. (2009) used images extracted from Google EarthTM to 

characterize apparent crown size of Amazonian terra firme forests using the FOTO method. 
Despite their interesting findings on forest dynamics over the region, the authors used a set of 
artificially generated canopy scenes simulated using a light interception model (see: 2.1.4 
Simulated forested scenes) to identify and tackle the influence of image acquisition 
parameters on the FOTO outputs. Indeed, variations in scene acquisition parameters, namely 
sun and sensor vertical angles and sun-sensor azimuthal angle, do influence size and 
proportion of tree shadows, and therefore the parameters FOTO characterized. 
 

FOTO has been applied in very few case studies, and many remain to be investigated 
in order for this method to be validated and fully operational in various circumstances. In this 
project, our main objective is to assess the performance of the FOTO method in predicting 
stand structure parameters (including AGB estimate) for the wet evergreen forests of the 
Western Ghats (India) (objective 1). 

 
1.3.2. Tree shade and topography 

 
One major issue, which could be a serious limit for applying the method in 

mountainous areas such as in our study site, the Western Ghats, is the potential bias 
introduced by the study area geomorphologic features on the FOTO results. Indeed, one may 
logically wonder whether terrain variations, as image acquisition parameters, would have the 
potential to influence tree shadows and therefore alter our canopy textural analysis. Whilst 
Couteron et al. (2005) noticed this influence of relief variations on the results, Proisy et al. 
(2007) and Barbier et al. (2009) focused on areas virtually flat, i.e. mangrove forests and the 
Amazon basin. This specific issue has not been investigated so far, although identifying and 
tackling relief influence on FOTO results may be critical for any large scale implementation 
of the method, particularly in hilly landscapes. 
 

Shadowing is an inherent part of remote sensing-based land-surface studies (Asner and 
Wamer, 2003) and the relationship between shadow in forested scenes and the structural 
features of the given forest have been acknowledged for long (e.g. Asner and Wamer, 2003; 
Kane et al, 2008; Li and Strahler, 1992) even though it is still poorly understood (Kane et al, 
2008). Gu and Gillespie (1998) distinguished three scales of interactions between forest and 
light. The first interaction take place at the leaves – branches – trunk scale (“tree elements”) 
and is controlled by their biochemical properties and structure, resulting in specific scattering, 
transmission and absorption of light. The second level takes place at the tree crown scale 

mean diameter (cm) 20.6 - 34.2 0.71 Evergreen rain 
forest 

Height (m) 21.1 - 30.4 0.57   
-1) 80 - 436 0.91 AGB (t DM.ha 33 Mangrove forest 
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where light redistribution within the crown is controlled by its biophysical properties (leaf 
density, distribution, orientation). The third and coarser scale is at the canopy level where 
light interactions among tree crowns influence the directional distribution as well as the 
radiance intensity as observed by the sensor. At this latter scale, tree shade consists of visible 
shadows or darkening cast by tree or branch on another one (Kan et al., 2008) and/or on the 
ground (Li and Strahler, 1992) and vary with canopy geometric complexity (see fig 1, b - c). 
Attributes of tree shade, such as area or length, should be correlated with crown attributes 
such as dimensions, height or even diameter at breast height (dbh) (Li and Strahler, 1992 ; 
Oladi, 2001). The tree shade fraction, defined as the sum of individual tree shade areas 
divided by a reference ground area, has indeed been used in numerous studies to derive forest 
structural attributes (e.g. Leboeuf et al., 2007). However, topographic variations are known to 
complexify shade analyses by adding noise to classification processes (Gu and 
Gillespie,1998; Kane et al, 2008). Because trees are geotropic (i.e. growing straight up), 
topography does not influence the two firsts forest-light interaction scales mentioned earlier. 
The effect of topography is introduced at the third scale, because it does directly influence the 
relative arrangement of trees (Gu and Gillespie,1998). It results that the proportion of sun-
lighted tree crowns increases as the slope becomes more pro-sun and vice versa, so that the 
canopy appears brighter or darker to the sensor due to topographic variations (Gu and 
Gillespie, 1998; Kane et al, 2008; see fig. 1 a - d) 
 

 
 
Figure 1. Effect of topography and canopy structural complexity on crown exposure to the 
sun. On sun-facing slopes, a larger portion of tree crowns is exposed to the sun (d) relatively 
to slope facing away from it (a), causing the canopy to appear brighter or darker to the sensor. 
Canopy roughness or complexity leads to heterogeneous tree shades (c) and an increased 
canopy self-shadowing in comparison with homogeneous canopy (b) (adapted from Kane et 
al, 2008). 
 

In order to consistently characterize forest canopy texture along the pronounced reliefs 
of the Western Ghats, it is therefore necessary to normalize our canopy textural gradient to 
account for the effect of topography variations (objective 2). 
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Figure 2. Effect of solar angle on tree shade 

A large body of work has been devoted to 
develop methods and models in order to correct for 
topographic effect on optical remotely sensed 
imagery. Traditional methods are based on pixel 
radiance correction on the raw image, as reviewed 
by Soenen et al. (2005). However, these correction 
methods come at the cost of complex algorithms and 
are known to be heavily time consuming. In this 

project, we adopt the standardized partition 
technique, as described by Barbier et al. (2009). 

This technique has been successfully used to factor out the un-wanted influence of e.g. solar 
angle on the FOTO-derived canopy textural gradient. 

 
For instance, a low solar angle results in extended, large shadows while a sun position 

closer to the zenith reduces shadow size as observed by the sensor (Fig. 2). It is therefore 
necessary to minimize the variability induced by this parameter to consistently characterize 
canopy scenes acquired with different sun elevation angles. To do so, unit-windows (i.e. sub-
part of the satellite images) were split into groups of homogeneous sun elevation angle 
(considered as a discrete factor) and the FOTO index was standardized per group. This simple 
technique allowed normalizing the canopy textural gradient regarding this parameter effect. A 
similar approach may be used to account for the potential influence of topography variations. 
To apply this technique however, it is necessary to define an index or gradient that would 
mimic the effect of topography variations on tree shadows and allow gathering unit-windows 
with homogeneous index values (see 2.1.3 Topographical data).   

 
1.3.3. Google Earth TM : advantages and drawbacks for scientific researches 

 
Another important issue that is worth being investigated is the performance of Google 

EarthTM in providing quality image data for textural analyses. The successful characterization 
of Amazonian forests apparent crown sizes based on GE images (Barbier et al., 2009) may 
hold the promise of cost-limited extensive forest resource assessments, a particularly valuable 
feature in developing countries. 

 
Nowadays, Google Earth TM (GE) provides high resolution satellite images that have 

only recently been used in scientific researches such as to validate MODIS tree cover models 
(Montesano et al., 2009) or Land Cover maps (Cha and Park, 2007). This newly available 
tool, largely unexploited by the scientific community (Potere, 2008), comes with advantages 
and drawbacks that condition its use for scientific purposes. 

 
One serious limitation of commercial VHR images is the expense involved for their 

acquisition, and that is the main and obvious advantage of the GE archive database since it 
contains rapidly expanding and cost-free VHR satellite images. In terms of VHR, GE hosts 
Quickbird and IKONOS images from Digital Globe and Geoeye providers, respectively, 
while areas where VHR is not available are covered by moderate-resolution sensors such as 
Landsat (Potere, 2008). Moreover, a vector layer delineates the contour of each satellite 
image, and basic image metadata are available under the option “More” of the GE “Primary 
Database”. Together with the name of the image provider and the year of image acquisition 
that are displayed once the user zooms to a fine detail level, it allows the identification of the 
image displayed with a reasonable confidence. 
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There is no public documentation detailing the process by which satellite images are 
added to the GE databases, notably in terms of spectral modification, spatial interpolation 
(Potere, 2008), or geo-coding. However some ground observations can be made. 

 
Images are orthorectified and projected in a geographic projection system using WGS-

84 datum (Potere, 2008), with a narrower spectral range and sometimes a slightly coarser 
spatial resolution than the underlying commercial image. Indeed, for the spectral component, 
images are extractable in true color composite (RGB) without the near infrared channel 
(Potere, 2008, Montesano et al., 2009, Barbier et al., 2009). Concerning the spatial resolution, 
there is no clear agreement among scientific GE users. For example, GE images overlying 
Quickbird native images has been referred to has either high resolution images (2.44 m at 
nadir, e.g. Montesano et al., 2009, Potere, 2008) or very high resolution (0.6-0.7m at nadir) 
which correspond to the pan-sharpened version of the multispectral high resolution image 
(e.g. Barbier et al., 2009, Alparone et al., 2007). However, over areas covered by IKONOS 
images, it seems clear that the spatial resolution is finer than 4 meters per pixel (i.e. the one of 
IKONOS multispectral images) which could indicate that GE hosts the VHR pan-sharpened 
products (1-m per pixel), at least in the case of IKONOS native images. 

 
Another critical GE image property that may limit its utility for scientific research is 

the georegistration quality. Potere (2008) studied the horizontal positional accuracy of GE 
images over various regions of the world and found an overall accuracy of 39.7 m (0.4 – 
171.6m). The more “developed” countries beneficiated from a significantly better positional 
accuracy than “developing” countries, with 24.1m and 44.4m of root mean square error 
(rmse) respectively. For western and south Asia, the positional accuracy was 42.3 m (rmse) 
and ranged from 1.4 to 115m. 

 
To sum up, if GE images are not the exact replicates of commercial images, they still 

contain a large part of the information provided by the later, notably in terms of pixel spatial 
resolution, and therefore can represent an interesting alternative since they are free of cost. 
For example, methods such as FOTO, with an important need in spatial resolution and which 
is less relying upon the spectral information component, could particularly value GE data.  It 
would be interesting to compare FOTO outputs with GE images and the underlying 
commercial satellite image, given the public knowledge hole revolving around GE image 
integration process, and this is the last objective of this study. 
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1.4 Objectives and research questions 
 
Objective 1: To assess the performance of the FOTO method in predicting stand structure 
parameters (including AGB estimate) for the wet evergreen forests of the Western Ghats, 
India. 
 
- Does the FOTO-derived textural gradient correlate with ground truth sampling plot 
parameters? 
 
Objective 2: To identify and investigate ways to mitigate the potential influence of 
topographic variations on FOTO results. 
 
- Do topographic variations influence the FOTO-derived canopy textural gradient? 
- How could a Global Digital Elevation Model (GDEM) be used to mitigate this influence? 
 
Objective 3: To investigate the potential of Google Earth data as input for the FOTO method. 
 
- Does FOTO run over GE images leads to a similar textural gradient as over IKONOS 
images? 
- Does the textural indice(s) derived from G.E. images correlate with ground truth sampling 
plot parameters? 
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2. Materials and Method 

2.1. Materials 
2.1.1. Study site 
 

The study area is part of the humid forests of the Western Ghats, broadly located 
within a stretch of 60 to 100 km, south of 15°N latitude along the south-western coast of 
India. In this area, complex interactions between the relief variations of the Ghats and the 
summer monsoon rains determine a wide array of forest habitats, from wet evergreen to moist 
deciduous, more or less degraded formations. Acknowledged for their biological diversity, 
and particularly their high level of endemism, these forests brought the region to the rank of 
World Biodiversity Hotspot (Myers et al., 1990). 

 
The project specially focused on an area of about 30 km² of wet evergreen forests 

located on the west-facing escarpment of the Ghats, in the Kadamakal Reserve Forest 
(Kodagu District, Karnataka), near the Uppangala village. These forests receive an annual 
rainfall higher than 5 000 mm with a marked dry season between December and March and a 
rainfall peak in June-July (Pascal and Pélissier, 1996). The general South Indian geology is 
made up of archean rocks of the Precambrian shield dominated by gneisses and granites. The 
Kadamakal reserve soils have been classified as highly desaturated, impoverished ferrallitic 
soils (Ferry, 1992, in Pascal and Pélissier, 1996) and display two co-habiting facies that 
dominate according to the local geomorphology : deep alterites on the interfluves and thin, 
rocky boulders-full soils on the slopes shaping the thalwegs (Pélissier, 1995). If the area has 
been recently included in the Pushpagiri Wildlife Sanctuary, which consolidate its protection 
status, it has been partly exploited in the 70-80s by selective logging of less than 10 trees a 
hectare (unique rotation) (IFP Database) and later on subject to wild fires on certain locations 
(Madelaine-Antin C., 2009). 

 
This area is of particular interest for this project since its forests’ AGB is known to 

have an upper range of at least 450 t.ha-1 of dry matter (Flavenot, 2009) and it presents a 
varied geomorphology responsible for the stand structure to vary accordingly (Pélissier 1995). 

 
2.1.2. Satellite data 

 
The study area has been delineated according to the availability of very high resolution 

Google Earth TM images. The native commercial images are provided by Geoeye TM - 
IKONOS 2 TM and have been taken in January 2002. Full IKONOS 2 imagery metadata are 
provided as Appendix 1. GE images are extracted at the image size of 2400 x 2091 pixels 
from the commercial version of the software. The user view is set to 4.15 km altitude which 
corresponds to an image spatial resolution of about 2 meters per pixel. GE logos are masked 
and RGB true color composite bands averaged in a single grayscale layer using ER mapper 
7.0 (Earth Resource Mapping Ltd.). 
 

The commercial image used is the GE native image (IKONOS 2 TM). We used the 
panchromatic version of the image, which correspond to a wavelength of 0.45–0.93 μm and a 
spatial resolution of 1 m per pixel. The image was delivered in a georegistered UTM 
projection encoded in GEOTIF format. 
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2.1.3. Topographical data 
 

The ASTER Global Digital Elevation Model (DEM) released in June 20091 and 
displaying a 30 m spatial resolution was used in GIS software (ArcGis 9.0) to derive several 
“topographical” variables. 
 

We first utilize the “AnalyseParMailles” ESRI plug-in to create a polygon-shapefile 
over the DEM data that matched the windowing process of FOTO (see 2.2.1. FOTO 
Overview). Each polygon was representing one subpart (i.e. unit-window) of the satellite 
image and overlying the related topographical conditions (DEM data). Three types of 
variables were then extracted per polygon. 
 

First, we used the Zonal Statistics function of the Spatial Analyst tool (Arctoolbox) to 
simply extract the mean and standard deviation of the elevation data. 
 

A Triangulated Irregular Network (TIN, Peucker et al., 1978), commonly used to 
describe surface morphology, was then derived from the DEM with 3D Analyst tool (z 
tolerance: 5m). A TIN is a vector-based layer that models the surface with a network of non-
overlapping triangles built upon a set of points (“nodes”) and satisfying, in this case, the 
Delaunay triangle criterion. Each triangle facet describes the behavior of the surface (slope, 
aspect, surface area, etc). We extracted from the TIN model aspect and slope data based on 
the class breaks described in Table 2. 
 

For the aspect data, class breaks were defined as described in Figure 3. The sun 
azimuth angle is about 148° on our scene; surfaces that face this direction (toward “1”) are 
fully illuminated and surfaces facing away to this direction (toward “2”) are shadowed. To 
characterize these differences in window “exposition” to the sun, we consider 3 sectors on the 
aspect cycle : (1) face the sun (centered on 148°), (2) face away from the sun (centered on 
328°) and (3) else. For (1) and (2), we define 3 sector widths: ±20° ; ±30° and ±40° which 
correspond to the class breaks 1, 2 and 3 respectively (Tab. 2). These 3 “tolerance” ranges 
have been subjectively defined by assessing the window subsets characterized as (1) and (2) 
with varying sector widths and with respect to the visual impression of illumination intensity 
displayed by each window. 

 
Slope data were divided into 3 classes. The sun elevation angle is about 50° on our 

scene; we considered that the effect of slope on surface illumination may be maximum when 
the surface is perpendicularly hit by light rays (i.e. slope = 40°). We therefore build a class 
around this figure with a subjective ±20° tolerance range (Tab. 2) 

 

 

Table 2. Class breaks used to extract aspect and

 Sector Break 1 Break 2 Break 3 
1 128 - 168 118 - 178 108 - 188

288 - 3602 308 - 348 298 - 358 
0 - 8 

0 - 128 0 - 118 8 - 108 
168 - 308 178 - 298 188 - 288

Aspect 

3 
348 - 360 358 - 360   

0 0 - 20.4 
1 20.4 - 60.4 Slope 
0 60.4 - 90 

 
 

 
 
 
 
 
 
 

P

1http://asterweb.jpl.nasa.gov/gdem.asp 

 
slope data from the TIN (breaks in degrees). 

 

Figure 3. Critical position for aspect class breaks 
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Once computed, slope data were directly combined with aspect data (intersect 
function, 3D Analyst tool) in order to create triangles characterizing both slope and aspect of 
the surface (referred to as “combined data”). We only retain the combination with Aspect 
class break 3 later on this report. This combination allow to further divide the “aspect” 
window subsets between “optimal slope” (i.e. 20.4° < x < 60.4°; maximum illumination) and 
“else” (i.e. x < 20.4° or x > 60.4°) and therefore facilitate trends detection. 

 
The Aspect and Combined data were derived for the whole DEM and afterwards 

extracted per polygon or unit-window. Each polygon was characterized by either one or more 
TIN triangles; in the latter case the largest triangle was retained to characterize the given 
window exposition. 
 

Finally, a hillshade model was created with the DEM data and the light source 
parameters corresponding to the satellite image metadata. The mean hillshade value per 
polygon was extracted with the Zonal Statistics function of the Spatial Analyst tool. The 
hillshade function (3D Analyst) combines slope and aspect data (derived from the DEM) with 
illumination angle and direction (derived from the light source parameters) and results in a 
raster layer containing local illumination value per raster cells. Hillshades are commonly used 
in spatial mapping, notably as “cheap and fast” technique in landslides studies (e.g. Van Den 
Eeckhaut et al., 2005; Lee and Choi, 2003) because it facilitates topography perception, but 
also in ecological researches involving spatial variations of solar radiations (e.g. species 
distribution : Noguchi and Yoshida, 2005; soil moisture index: Iverson et al., 2004). In forest 
canopy researches, Hillshades have been notably used to quantify the proportion of shadowed 
canopy and in turn assess e.g. the effectiveness of topography correction methods (Kane et 
al., 2008) or the canopy light-use efficiency (Hilker et al., 2008). 
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2.1.4. Simulated forest scenes 
 

We used a set of artificially generated canopy scenes that Barbier et al. (2009) created 
using the so-called DART model (Discrete Anisotropic Radiative Transfert, v.2.0.4, 
CESBIO). This light interception model is able to simulate radiative transfer over potentially 
complex/heterogeneous 3D scenes in the entire optical domain and to take into account 
atmospheric radiative transfer and topography variations. Complete description of the model 
has been published elsewhere (Gastellu-Etchegorry et al., 1996; Gastellu-Etchegorry et al., 
2004). The following scenes correspond to two forest strata simulated in the visible domain 
without atmospheric or topography interactions. Table 3 presents the range of morphological 
parameters used to model the dominant stratum and Fig. 4 illustrates some of those DART 
scenes. Refer to Barbier et al. (2009) for full details on DART model parameterization. 

 
Table 3. Morphological parameters of the DART scenes dominant strata (density per stand 
(2.25 ha-1), mean crown diameter, mean tree height, DBH of tree with mean height)  
  

Stand Density crown (m) height (m) d.b.h. (m) 
3 25.00 71.0 1.7 1 

2 36 21.42 60.3 1.4 
69 18.75 52.4 1.2 3 

4 102 19.75 55.4 1,3 
135 15.00 41.4 1.0 5 

6 168 12.50 34.1 0.8 
201 10.71 28.9 0.7 7 

8 234 9.37 25.1 0.6 
9 267 8.33 22.2 0.5 

10 300 7.50 19.8 0.5 
 
       Stand 1          Stand 3                     Stand 5                      Stand 7 

    
 

Figure 4. Examples of DART scenes 
 

Lets finally note that among the entire set of modeled scenes provided by Barbier et 
al. (2009), we only used the subset whose acquisition parameters were roughly matching the 
ones of the real satellite images used in this study (i.e. satellite azimuth angle = 12°, sun 
elevation angle = 45° and relative sun-sensor angle = -180°). 
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2.1.5. Ground control data 
 

 Plot choice and field data 
 

Forest areas with a homogeneous FOTO-derived texture were identified on a map and 
plots were positioned with the aim of covering the whole textural gradient. The exact plot 
positioning within each pre-defined area was left to visual interpretation, once in the field, in 
order to avoid potential artefacts of the method and to consider the accessibility of each site. 
Plots geoposition was recorded using a Trimble Juno SB GPS device to locate the plot in the 
satellite images (see Appendix 2). Each plot was a 100 x 100 m square corrected for 
topography variations with a Vertex Laser instrument (VL400) and sampled for tree density, 
diameter at breast height (dbh) or above the buttress for all trees greater than 10 cm dbh and 
crown position in the canopy (i.e. “emergent”, “high canopy”, “low canopy” or “understory”). 
 

Because the largest trees are more likely to be visible in canopy images, stand 
structural characteristics were computed from field data each time considering (1) all the 
trees, (2) only trees greater than 30 cm dbh and (3) only trees greater than 40 cm dbh : density 
(D), mean tree diameter (Dg or tree of mean basal area), basal area (G). Tree density was also 
computed from the perspective of trees crown position, considering (1) tree crowns in the 
higher strata of the canopy (i.e. high canopy + emergent) and (2) tree crowns higher than the 
understory (i.e. low canopy + high canopy + emergent). Dbh data were also classified into 6 
equal-counts bins and the table crossing plots with dbh bins was submitted to a 
correspondence analysis (CA). The first CA axis (91.64 % of table variance) ranked dbh bins 
in their natural order from the smallest on its positive side (< 11.5 cm) to the largest on the 
opposite one (> 32.5 cm). Plots coordinates along this axis were used to summarize dbh 
distribution. Finally, AGB estimates per plot were computed from dbh data as follow: 
 
Ln (AGB) = a*Ln(dbh) with a = 1.988422 
 

This model choice as well as the “a” parameter value were selected from a previous 
study of AGB estimation over the study area (Flavenot, 2009). This model proved to yield 
more accurate AGB estimates when derived from dbh data only. 
 
 Plot satellite image 
 

In order to integrate ground-data, plots had to be delineated in the satellite images to 
derive their specific r-spectrum (see 2.2.1 FOTO Overview). This procedure takes into 
account two main issues: plot aspect (deviation from the N-S axe) and positional error 
(mainly GPS-induced). In order to cope with these potential biases in the spectral 

characterizations of plots, instead of extracting 
a single 125x125m square window per plot 
(see 2.2.1 FOTO Overview), 4 overlapping 
windows are extracted to create a half-window 
size margin error (i.e. 62.5 m) on both North-
South and East-West axes (see Fig. 5). 
 

Each window is visually inspected to 
detect potential features (e.g. large canopy 
gaps, river path, pronounced geomorphologic 
feature, etc.) that may or may not have been 

Figure 5. Plot delineation strategy
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noticed in the field. This inspection backs up the choice to keep or leave apart a given window 
from the plot characterization. For example, we see a river path on 3 out of 4 windows 
extracted over the “F” plot (Fig. 6). This river pattern results in important changes on the 
spectral characterization of each window, therefore inducing a bias in our plot 
characterization. Knowing that the plot was not crossed by the river and being able to roughly 
locate it from the river pattern, we decided to retain only the North-West window for this plot. 
When no clear feature can be identified, such as on the plot “G” windows (Fig. 6), the spectral 
characterization is averaged over all 4 windows. 
 

  
 
Figure 6. IKONOS images of plot F (left) and G (right). Each image is composed of 4 
overlapping 125 x 125 m windows as described in Fig. 5. 
 
 

By doing so, two plots (F, K) were characterized by the first window only and one plot 
(I) by the first two. 
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2.2. FOTO method 
2.2.1. Overview 

 

Figure 7. General overview of the 
FOTO method (from Proisy et al., 

2007)

The method will be partly implemented thanks to the free package “Texturemod” 
which gathers several Matlab® scripts2. 

 
A given run of the method is illustrated 

hereafter (see Fig. 7). Delineation of non-forest area 
has to be performed beforehand. The first step is the 
“windowing” of the images; a grid with window size 
possibly varying from 19 to 200 pixels is applied to 
each image. Radial spectra (see 2.2.2) are computed at 
this scale (i.e. per window) and the radial spectra 
variation between windows is analyzed with a 
standardized Principal Component Analysis (PCA). 
Window scores against the first (e.g. Couteron et al., 
2005) up to the three first PCA axes (e.g. Proisy et. al., 
2007) are then used as textural indices to produce 
texture maps, which can be correlated with ground 
measurements. All analyses on windows r-spectra were 
performed with the R statistical freeware (R 
Development Core Team, 2008). 
 

2.2.2. 2D Fourier Tranform and r-spectra 
 

Detailed presentation of 2D Fourier Transform 
and its application to digital images are available in the 
literature (Renshaw and Ford, 1984; Mugllestone and 
Renshaw, 1998), only the main features are developed 
hereafter. 

 
A digital image is defined as an m by n array, 

say {Mx,y} with (x=1,…,m; y=1,…,n),  whose cells 
contain grey scale values in the range of 0 - 255 and 
express the panchromatic radiance of each pixel in the spatial domain. When applying the 
Fourier transform, we transpose this spectral radiance into the frequency domain as a function 
F(p,q), with p and q the spatial frequencies (or wavenumbers) traveling in the XY directions. 

MMM xyxy −=' )Fourier coefficients are computed on mean-corrected observations (i.e.  as 
proposed by Mugllestone and Renshaw (1998): 
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The next step is the computation of the Fourier periodogram as follows: 
. The value I)²²( pqpqpq bamnI += pq/mn represents the portion of mean-corrected data 

variance accounted for by a cosine wave of spatial frequency (p,q) (Mugglestone and 
Renshaw, 1998). This periodogram contains information about both scales and directions of 
the patterns and can be equivalently expressed in polar form, which allows the separation of 

2 details of Texturemod G.U.I. on http://amapmed.free.fr/FOTO/ 

22 
 



these two components (r- and o-spectrum). I  refers to a waveform of spatial frequency rθ

²² qpr +=  and direction θ . The wavenumber r is defined as the number of 
times a pattern repeats itself within the image in direction θ. Within the FOTO framework, we 
only consider the r-spectrum, which is computed by averaging I

)/(tan -1 qp=

rθ values over all θ directions 
and yield an azimuthally cumulated “radial” spectrum, denoted Ir. By the way, Ir values 
distribution is also suitable for statistical tests. In the absence of spatial structure, 2Irθ

θ

/σ² ~ 
(with σ² the image variance; Mugglestone and Renshaw, 1998) and therefore a bin 

containing θ I

2
2X

r values has its sum distributed as     (expected value of 2θ). 2
2X

 
The radial spectrum is convenient to summarize coarseness-related image textural 

properties by looking at the way the image variance is decomposed by the successive spatial 
frequencies (Couteron et al. 2002, Couteron et al. 2006). Figure 8 (right) shows that an image 
with a coarse texture will yield a radial spectrum skewed toward small wavenumbers (i.e. 
large patterns). In this case, the radial spectra display a spike at the 5th wavenumber which 
corresponds to the horizontal periodic pattern (vertical bands) while the high value attached to 
the 1st wavenumber correspond to the vertical linear trend. It is also an interesting feature of 
the r-spectra that catches image macro-heterogeneity in the first wavenumbers, allowing 
filtering it. Images with finer texture will yield more balanced spectra and an image with pixel 
values randomly allocated will yield a spectrum virtually flat (Fig. 8, left). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Examples of r-spectra for two images (100x100 pixels) : (a) absence of spatial 
structure, pixel values generated with a Gaussian white noise (WN) with µ=10σ. (b) Presence 
of spatial structure generated by the superimposition of a cosine wave (vertical bands) of 
amplitude β, a linear trend of amplitude β and a WN (σ=0.1 β). The full line represents the r-
spectra while the dot line stands for the 5% bilateral confidence interval around 1 (expected 
value in the absence of spatial structure) (from Couteron et al., 2002). 

23 
 



2.2.3. Textural ordination based on r-spectra 
 
The output of the Fourier Tranform by Texturemod on one or several images is a 

single table gathering the Ir values for all windows (in lines) and per spatial frequencies (in 
columns, Tab. 4). 

 
Table 4. Output of 2D-FT on a one or several satellite images: PCA data table. 
 

   wavenumber 1  wavenumber 2 wavenumber 3 …  wavenumber n 
window 1  I I …       1.1 2.1

window 2  I …          1.2

window 3  …             
…                

window m                
 

Each table line represents the r-spectrum of the given window and displays the grey-
scale level variance (Ir, table cell values) accounted for by increasing spatial frequencies (or 
wavenumber r) from the Nyquist to the lowest resolvable one, in columns. Column-wize 
standardization is performed and the table is submitted to a standardized Principal Component 
Analysis, where windows are considered as observations that are characterized by the way 
their grayscale variance is broken down by the successive spatial frequencies, seen as 
quantitative variables. The PCA is carried out using the R FactoMiner package (Husson et al., 
2009). 
 

Window ordination along these axes composes a gradient that allows us to 
differentiate windows with respect to their length scale (spatial frequency) distribution and 
dominance. In other words, canopy scenes are sorted as a function of the presence and 
dominance of one or more modal spatial frequencies, which can be interpreted as apparent 
crown sizes (Barbier et al., 2009). 
 

2.2.4. Windows r-spectra characterization 
 

Two statistics are used to characterize and compare windows r-spectra. We saw that in 
the absence of spatial patterning (i.e. random allocation of pixel values), windows yield a 
virtually flat r-spectrum of known statistical distribution. Since most Earth surface images 
yield spectra above the confidence envelop, testing against complete randomness (uniform 
distribution) is of limited interest (Couteron, 2006). 
 

Therefore, to characterize a single (or averaged) r-spectrum, we used the Dmax statistic 
as proposed by Olier et al. (2005): 
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ni
 with i a given spatial frequency and n the total 

number of spatial frequencies. Dmax measures the position of the maximum deviation between 
the cumulated r-spectra variance and the null hypothesis of uniform distribution, in a very 
similar way as Kolmogorov-Smirnov statistics. 
 

In complement to window r-spectrum characterization, we carry out comparisons 
between windows with the simple log ratio technique. Let I  and I  be the r-spectra of two 1(r) 2(r)
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windows. Under the null hypothesis of identity, the ratio R =  I  / I(r) 1(r) 2(r)  is expected to be 1. 
Deviation from the null hypothesis can be characterized with a confidence envelop built from 
a Fisher-Snedecor distribution: F2k,2k with k the number of periodogram values per spectrum 
(Diggle, 1990; Couteron et al., 2006). 
 

2.2.5. Image texture – forest structure relationships and mapping 
 

We relate forest structure parameters to the FOTO textural index (i.e. windows 
ordination scores along PCA axes) with additive linear models: 
 

  with X: structural parameter, a∑
=

+=
j

i
ii PCAaaX

1
0 . : intercept, a0 i: regression coefficients of 

the i PCA axis and j: number of PCA axes retained. 
 

The set of modeled canopy scenes (i.e. DART scenes) is used as a cheap and more 
theoretical data source to assess the quality of the textural index; regression models quality is 
characterized with adjusted R² and AIC criterion (see Appendix 3 for details). The quality of 
the regression models based on ground truth plots is complemented with relative error (s) and 
root mean square error (rmse) (Appendix 3). 
 

For analysis and mapping convenience, we perform a K-means clustering (Euclidian 
distances) on windows coordinates. 
 

2.3. Google Earth vs IKONOS images
 

In order to compare outputs from IKONOS and GE, the same window size (in meter) 
and resulting number of spatial frequencies was used in both cases. The largest class of crown 
diameter is expected to be about 25 meters in our study area. IKONOS window size was 
therefore set to 125 1-m pixels (i.e. five repetitions of the largest pattern; Barbier et al., 2009) 
and GE windows size to 63 2-m pixels. Only the 31 first spatial frequencies were conserved 
in the IKONOS-derived r-spectra table, corresponding to the spatial frequencies resolvable 
with GE spatial resolution. 
 

IKONOS images being of higher quality than GE ones (spectral and spatial 
resolutions), results derived from the commercial image were therefore considered as a 
reference. The comparison between results derived from the two image types was carried out 
at the different steps of the analysis with simple linear regressions and scatter plots: 

- Textural gradient computation: although direct comparison of unit-window ordination 
on GE and IKONOS-derived factorial plans may be hampered by differences in total 
image variances (GE ≠ IKONOS) or small variations in variables position within each 
plan, it allows identifying rough trends in windows displacement along the textural 
gradient. 

- Textural gradient sensitivity to topographical variations 
- Textural gradient predictive power regarding stand structural parameters 
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2.4. Investigation of topography effect 
 

In a first exploratory step, we carried out linear regressions between window 
coordinates along the two firsts PCA axes and several environmental variables derived from 
the DEM in order to identify potential influences. Two types of variables were retained for 
this report. 
 

Firstly, the mean elevation was used as a basic measurement to check whether 
elevation itself would influence window ordination. Elevation standard deviation was also 
used as a proxy for surface heterogeneity. 
 

Secondly, we attempted to build spatial variables that would model the effect of 
topography variations on canopy texture and therefore allow gathering unit-windows 
undergoing similar effect.  For that purpose, two approaches were adopted: 
 
(1) A set of variables computed to describe windows 

exposition to the sun position was used to identify 
trends. 

 

Figure 9. IKONOS (top) and hillshade 
(bottom) view of a forested scene with 
marked topography variations. 
 

(2) An index characterizing the local illumination with 
respect to the surface and surrounding 
geomorphology and to the sun position (hillshade 
model) was created. High hillshade values were 
found on slopes facing the sun (i.e. illuminated) 
while slopes facing away from the sun were 
attributed a low value (i.e. shaded). This 
illumination index, built upon both elevation data 
and the sun position, is assumed to be a good 
modeler of canopy illumination conditions by 
correlating with changes in the canopy brightness 
and therefore, at finer scale, in the proportion of 
tree crown illuminated. Visually, hillshade 
variations were indeed found to closely match canopy brightness variations (see Fig. 9, 
full map as Appendix 4). 

 
In a second step, we tried to mitigate the r-spectra variability due to topography 

variations by performing a so-called partitioned standardization (Barbier et al., 2009). The 
spatial variable showing the strongest influence over the textural gradient is divided into n 
bins (K-means clustering on Euclidian distances) and unit-windows are allocated to their 
respective bin. Bins are standardized separately and then pooled together to perform the PCA. 
By doing so, we attempted to normalize windows r-spectra regarding the different canopy 
illumination conditions resulting from variations in the underlying terrain, and regardless of 
the canopy grain. It is therefore important that each bin encompasses the whole canopy 
textural gradient. 

 
The last step consists of assessing the effect of this partition process on the influences 

of environmental variables on the PCA axes and is carried out with simple linear regressions.   
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3. Results 
 

We first carry out the textural analysis on the reference IKONOS image type (3.1) 
prior to the comparison of the derived textural gradient to the one from the cheaper GE 
alternative (3.2). Effects of topography (3.3) as well as FOTO index relationships with stand 
structural parameters (3.4) are later on presented for both image types with an emphasis on 
IKONOS-derived results. 

3.1. Textural analysis 
The PCA run over the r-spectra table yielded a prominent first axis explaining more 

than 40% of the variation between windows, while the second and third axes only explained 
6.6% and 3.7%, respectively (Fig.10. up-left). We therefore retained the first plan formed by 
axes 1 and 2 which positioned windows in a slight “horseshoe” shaped cloud similarly to 
previous FOTO applications (e.g. Proisy, 2007). The circle of correlation between variables 
(spatial frequencies) and the two first axes (Fig.10.up-right) also displayed an expected 
pattern with the lowest spatial frequencies (f < 30 cycles.km-1 or 30 < ࣅm) on the negative 
side of the first axis and the highest (f > 100 cycle.km-1 or 10 > ࣅm) on the opposite one. 
Intermediate spatial frequencies were correlating with the positive side of the second axis. 

 

  

 
Figure 10. Main PCA results: (up-left) Eigenvalues histogram expressed in percentage of 
variance explained, only the 10 first values are plotted; (up-right) correlation circle of 
spatial frequencies with PCA axes, selective spatial frequencies above the 15th 

wavenumbers for visibility; (bottom) first factorial plan with 5 clusters, solid black circles 
illustrate clusters barycenter. 
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A K-means clustering was performed on window coordinates and the resulting clusters were 
forming a gradient over the first axis, as shown by the position of their barycenters (Fig. 10. 
bottom). Spectral analyses carried out on the averaged cluster r-spectra underlined the 
differences of spatial frequencies distribution and dominance that characterize the range of 
textural patterns found across this gradient. 

 
Figure 11 (top) shows the averaged clusters’ r-spectra and is computed on 

standardized data (i.e. for a given spatial frequency, relatively to the whole window-set). It 
illustrates the successive dominance of clusters among spatial frequencies, with the first 
cluster scoring relatively higher over low frequencies (f < 24 cycles.km-1 or 41 < ࣅm, texture 
dominated by large patterns) to the 5th over high frequencies (f > 65 cycles.km-1 or 15 > ࣅm, 
texture dominated by small patterns). 

 
The spatial frequency characterizing the maximum deviation between the cluster 

averaged r-spectra and a uniform distribution (Dmax, computed on raw r-spectra) were indeed 
increasing from the 1st to the 5th cluster with 40, 65, 81, 81 and 105 cycles.km-1 respectively, 
which corresponds to pattern sizes of 25, 15.5, 12.5, 12.5 and 9.5m. Although Dmax parameter 
did not differentiate clusters 3 and 4, the ratio of their r-spectra show significant differences 
with cluster 4 scoring significantly lower for spatial frequencies below 50 cycles.km-1 or ࣅ > 
21 m and higher above 70 cycles.km  or 14 > ࣅ m (see Fig. 11, bottom). -1

 

  
 
Figure 11. (top) Averaged standardized clusters r-spectra (bottom) Ratio of averaged r-
spectra for successive cluster (solid line) and 5% bilateral confidence interval (dot line). 
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We have shown that our textural ordination is able to discriminate forested scenes (i.e. 
unit-windows of IKONOS image) according to the dominance of a range of spatial patterns in 
the image texture. In order to test the relationship between these textural patterns and forest 
structural parameters of interest such as stand average crown size, we used DART scenes as 
supplementary individuals in our factorial plan (Fig. 12). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. DART scenes as supplementary individuals in the IKONOS-derived factorial plan. 
 

Once plotted on the first factorial plan, the modeled scenes were distributed over the 
large majority of the first axis gradient, providing us with insights on the structural range this 
axis is theoretically able to discriminate. Indeed, for e.g. crown diameters, windows ordinated 
below -4.5 on this axis may be dominated by trees with crown diameters > 20 m while 
windows placed above the 7.5 ordinate might be dominated by trees with crown diameters < 
7.5 m. 
 

We used the scene coordinates along the axes as textural indices to test the quality of 
the ordination for forest structure prediction (see Fig. 13). 
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Figure 13. DART modeled structural parameters as a function of DART scenes’ coordinate 
along the first PCA axis used as a textural index. Stand numbers label the observations (see 
Table X). All adjusted R2 values are significant (p-value < 0.001). 
 

When considered separately, the first axis was a good predictor of all structural 
parameters with all adjusted R2 values above 85% while the second axis did not significantly 
explain structural variance among windows. Indeed, window ordination along the second axis 
is not as clear as in the case of the first axis. Barbier et al. (2009) considered that the second 
axis provides us with information on the homogeneity of the structure within the window (i.e. 
the higher the distance to the origin is, the more homogeneous is the window structure).The 
relationship between forest structure (response variable) and structure homogeneity, and all 
the more with the second axis alone (used as predictor variable) is poor and logically lead to 
un-significant regression results. However, the second axis did improve structure predictions 
when used in combination with the first axis yielding all adjusted R2 up to 97% and lower 
AIC criterion values than with only A1 (see. Tab. 5). 
 
Table 5. Linear regressions between scene structure parameters and IKONOS-derived textural 
indices (model 1: first PCA axis used as predictive variable; model 2: 2 first PCA axes used 
as predictive variables) 
 
 model 1 (~ A1) model 2 (~ A1 + A2) 
 AIC AIC adj. R2 adj. R2

Crown diameter 0,87 17,68 0,97 3,62 
Tree density 0,95 64,49 0,97 58,46 
Tree height 0,86 39,49 0,97 25,30 
Tree d.b.h.  0,85 -34,54 0,97 -48,92 
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3.2. Google Earth-derived textural gradient 
 

The first principal component of the PCA based on Google 
Earth-derived windows r-spectra explained a similar percentage of 
variance (40.1%) as in the cases of r-spectra derived from the 
IKONOS commercial image, while the second axis was slightly 
heavier (10.1% ; see. Fig. 14). 
 

In terms of window ordination, Figure 15 shows that in 
the case of the first axes, GE-based windows ordinates are 
reasonable predictors of IKONOS-based ones with an adjusted R2 
of nearly 50% (p-value < 0.001, rmse=2.5), no apparent systematic 
bias and a similar range of error all along the axis. There are 
however major differences 
of windows ordination along the second GE-based and 
IKONOS-based axes with an adjusted R

Figure 14. Eigenvalues histogram 2 bellow 5% (expressed in % of variance) 
(p-value < 0.001, rmse=1.7) and a high variance around the 
regression trend (Fig. 15, right). This linear trend also greatly differs from a x=y line (i.e. 
ideal match between GE and IKONOS-derived window ordination) and the regression line on 
smoothed data is virtually plane bellow the -2 ordinate on GE axis. Such differences may 
indicate that even though GE-based 2nd PCA axis explains more r-spectra variation among 
windows, it may not carry the same information as the IKONOS-based 2nd axis or contains 
irrelevant information in terms of canopy texture (noise). 
 

 
 
Figure 15. IKONOS-based windows ordinates as a function of GE-based ones (dotted line: 
regression line, full line: non-parametric regression on smooth data (locally-weighted 
polynomial regression) 
 

We detailed the IKONOS – GE comparison by looking at the trends of windows 
displacement on the PCA axes from GE to IKONOS factorial plans (Fig. 16). On A1, about 
34% of the windows are displaced by less than 1 unit, 6% by more than 5 units and the overall 
median is about 2 units. The large majority of the windows were ordinated between -5 and 5 
and a slight trend appear with windows positively ordinated on this axis range (close to 5) 
being displaced toward a more negative ordination on IKONOS (i.e. “GE > IKONOS”) and 
the other way around in the negative side of the range (i.e. “IKONOS > GE”). This very same 
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trend is increased for windows ordinated at the edges of the axis (i.e. above 5 or bellow -5) 
with displacements up to 13 units. 
 

 
 
Figure 16. Difference trends between GE and IKONOS-based ordinations (dotted line: linear 
regression line) 
 

Examples of windows concerned by such important displacement from one factorial 
plan to the other are plotted in the figure bellow and the visual inspection of their canopy 
grains confirms the higher quality of the textural gradient derived from IKONOS. 

 

 
Figure 17. IKONOS and GE view of windows undergoing an important displacement from 
the GE to the IKONOS-derived PCA first axis: (left) window ordinated as a very coarse grain 
on GE (PCA1=-8) and as an intermediate grain on IKONOS (PCA1=0); (right) window 
ordinated as a very fine grain on GE (PCA1=13) and as an intermediate grain on IKONOS 
(PCA1=2). 
 

The canopy grain of the left window is slightly coarser than the right one, although its 
more complex structure (tree height heterogeneity) creates larger shades and makes the 
distinction of large tree crowns easier. The fine scale illumination variations that allow the 
recognition of crowns or branches limits in dense/homogeneous window parts disappear with 
the lost of spatial details from IKONOS to GE, while the visual importance of moderate to 
large shade remains. 
 

Windows displacement on the 2nd axes of the PCA display the same trends as in the 
case of the first axes although it is visually more pronounced (Fig. 16 - right). On this axis, 
41% of the windows are displaced by less than 1 unit and about 2% by more than 5 units. 
Displacement on this axis is however quantitatively more important than on the first axis 
given its smaller range. 
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Alongside the differences of windows ordination between the two image types, it is 
noteworthy underlining the limited spectral range of GE images. Indeed, even though both 
image types are displayed in 0-255 grayscales, averaging GE RGB true color bands result in 
actual input data range tremendously smaller than the IKONOS input range (Fig. 18). 

 

 

Figure 18. Transform histogram of (a) IKONOS and (b) GE pixel values over the top part of 
the study area. The X axis displays the actual input data values.

 
Finally, DART scenes were also used to study the quality of the GE-derived textural 

indices. The virtual scenes were ordinated at very similar positions on the first G.E. and 
IKONOS axes and differed in their ordination on the 2nd axes. Therefore, we obtain the very 
same regression scores between the textural indices based on the first axis only and structural 
parameters as we obtained with the IKONOS image. Regressions based on the model 
including the second axis also lead to a slightly better fit of the models to observed data and 
lower AIC criterion values (see Tab. 6). We can however expect a decrease of the second axis 
explanatory power with a larger model calibration sample size, due to the apparent noise it 
seems to contain. 
 
Table 6. Linear regressions between scene structure parameters and GE-derived textural 
indices (model 1: first PCA axis used as predictive variable; model 2: 2 firsts PCA axes used 
as predictive variables) 

 
 model 1 (~ A1) model 2 (~ A1 + A2) 
 adj. R2 AIC adj. R2 AIC 
Crown diameter 0.87 17,52 0,93 12,69 
Tree density 0,95 64,20 0,96 63,45 
Tree height 0,87 39,33 0,92 34,52 
Tree d.b.h.  0,85 -34,68 0,92 -39,96 
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3.3. Effect of topography 
3.3.1. Local effect 

 
Detailed investigations of windows ordination along the PCA axes with regards to 

their specific canopy grain allowed us to identify a first bias introduced at the window level 
(local effect). Indeed, abrupt topographic variations may lead in some cases to sudden 
changes in canopy texture as observed by the sensor. Figure 19 (left) illustrate one of those 
varying cases, with a slope going steeply down from South-Est to North-West and abruptly 
raising up in the same direction. The sun azimuth position (148°), roughly in line with the 
slope aspect, maximizes the difference in canopy texture observable on each hill. Windows 
that happened to encompass two different types of texture (Fig. 19, right) seemed to be 
inconsistently ordinated along the first PCA axis. In the given example, the window scores -
7.6 on the first PCA axis, which correspond to a very coarse canopy grain whereas its grain 
would be visually characterized as barely intermediate. 
 

 
 
Figure 19. Influence of abrupt slope changes on window texture. (left) Area displaying two 
steeps slopes of opposite aspects and (right) example of window encompassing textural types. 
 

Windows located on such textural change were identified on the satellite image and 
were roughly found on the same quadrant of the factorial plan (Fig. 20, top-left) regardless of 
their canopy grain (Fig. 20, bottom). 
 

The mean r-spectra of this window group shows that relatively to the whole window 
set, their variance is broken down into the two firsts spatial frequencies mainly (Fig. 20, top-
right), which could be explained by the high macro-heterogeneity they contain, while higher 
frequencies that could describe the canopy grain do not explain any image variance. Those 
windows therefore end-up being ordinated regarding this macro-heterogeneity (i.e. correlate 
with the first spatial frequencies, negative side of the first PCA axis) rather than their canopy 
grain. 
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Figure 20. (top-left) Position of windows encompassing two types of canopy texture on the 
IKONOS-derived first factorial plan, (top-right) standardized R-spectra of this window group 
(mean) and of window presented in Figure X and (bottom) examples of such windows 
displaying different canopy grain. 
 

The proportion of such windows depends on the geomorphologic set up of the studied 
scene and the position of the sun. It has been quantified to less than 3% (n=36) on the 
northern part of our study area (19 km²), which presents however marked topographic 
variations. Because of its size, this group of windows displaying a particular illumination 
pattern do not have major influence on PCA axes computation and therefore on our textural 
gradient. It is noteworthy that the same problematic windows were found on IKONOS and 
GE images. 
 

3.3.2. Global effect 
 
The good regression scores found between the textural gradient and different DART 

scenes parameters prior to any topographic correction suggest that topography variations do 
not induce major biases in the computation of this textural gradient. However, we found that 
the selected environmental variables do influence the PCA axes. The mean elevation as well 
as its standard deviation were significant predictors of the IKONOS-derived first axis (R2 adj. 
of 0.09 and 0.05 respectively) and had no influence over the second one (Tab. 7). Figure 20 
(left) shows that windows with high elevation tend to be ordinated negatively on the first axis 
and the other way around. A similar, though weaker trend was found on GE first axis with R2 
adj. of 0.02 and 0.01 for elevation mean and standard deviation respectively. It was 
unexpected to find that the later variables also had important influences on GE 2nd axis, with 
R2 adj. of 0.22 (see Fig. 21 - right) and 0.04, respectively. 

 
Table 7. Influence of elevation mean and SD on window ordination scores (derived from 
IKONOS and G.E. images). R2 adj. with significance level (p-value: *** < 0.1%; ** < 1%; 
 . < 10%) 
 

  IKONOS Google Earth 
 Dim 1 Dim 2 Dim 1 Dim 2 

Elevation (mean) 0.092 *** 0.001 0.019 *** 0.217 *** 
Elevation (SD) 0.045 *** 0.000 0.009 *** 0.042 *** 
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Figure 21. Influence of mean elevation on IKONOS 1st nd axis (left) and GE 2  axis (right) 
 

Spatial variables computed to describe the effect of topography-induced illumination 
variations on the canopy also correlated with the PCA axes. The set of manually 
parameterized variables characterizing window dominant facet aspect regarding the sun 
position (i.e. face, face away, else) coupled or not with slope data displayed the same trends 
with different levels of significance. The combination of the more “tolerant” aspect variable 
(i.e. Aspect 3) with slope data lead to the best results (Tab. 8) and show that on GE and 
IKONOS-derived PCA1, windows facing the sun tend to be ordinated toward the positive side 
of the axis while windows facing away to the sun toward the negative one (Fig. 22). While 
GE-derived PCA2 did not seem to be influenced by this set of variables, IKONOS-derived 
PCA2 displayed the opposite trend than the first axis. 

 
Table 8. Relationships between PCA axes and spatial variables manually computed (Aspect & 
Combined data). Windows are divided among 3 groups (1: face away to the sun, 2: else, 3: 
face the sun) and multiple mean comparison tests are carried out (Kruskal & Wallis: X² value, 
Tukey: t-value). Significance levels coded as follow:  *** < 0,1%; ** < 1% ; * < 5% ; . < 
10%. 
 

IKONOS  
 Dim 1 Dim 2 
 Kruskal & Wallis Tukey post-hoc test Kruskal & Wallis Tukey post-hoc test 

X² 2 - 1 3 - 1 3 - 2 X² 2 - 1 3 - 1 3 - 2  
Aspect 1 13.2 ** -1.5 -2.1 . -2.9 ** 51.6 *** 1.5 2.8 * 6.5 *** 
Aspect 2 23.6 *** -1.7 -2.8 * -4 *** 76 *** 3.2 ** 5.1 *** 7.6 *** 
Aspect 3 40.3 *** -2.2 .  -3.9 *** -5.2 *** 101.2 *** 3.8 *** 6.6 *** 8.7 *** 

Combined data 71.7 *** -2.5 * -4.7 ***  -7.3 *** 83 *** 3.1 ** 5.6 *** 8 *** 
                  

Google Earth  
 Dim 1 Dim 2 
 Kruskal & Wallis Tukey post-hoc test Kruskal & Wallis Tukey post-hoc test 

X² 2 - 1 3 - 1 3 - 2 X² 2 - 1 3 - 1 3 - 2  
Aspect 1 8.8 * -1.5 -1.8  -1.5 3.8     
Aspect 2 22.7 *** -2.4 * -3.1 ** -2.8 * 5.6 .  1.9  1.7 -1 
Aspect 3 43.2 *** -2.4 * -4 ***  -4.6 *** 2.2     

Combined data 54 *** -2.5 *  -4.2 ***  -5.3 *** 3.3       
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Figure 22. Influence of Combined data on IKONOS-derived PCA1 (left) and PCA2 (right). 
Exposition codes divide windows among the ones facing the sun (3), facing away (1) and 
else (2); only the subset of windows characterized by a slope between 20.4° and 60.4° is 
considered. Letters (a, b, c) correspond to significant results of Tukey post-hoc tests. 

The hillshade index consistently described the same trends (Tab. 9, Fig. 23 – top). 
Windows with high mean hillshade (i.e. illuminated) tend to be ordinated positively on the 
first axis and the other way around (see Fig. 23). This trend confirm the hypothesis that on the 
illuminated side of the hill, trees display smaller shades and may be confuse with smaller trees 
while on the shaded side of the hill, tree shades are larger which induce a confusion with 
larger trees. The regression line on smoothed data show that this trend is more pronounced on 
the second half of the hillshade gradient. Indeed, one can imagine that a tree located on a hill 
facing away to the sun will have a larger shade only if he is directly hit by light rays. 
Therefore, trees on steeps slopes facing away to the sun may only be illuminated by the 
diffuse illumination and not display shade at all. The PCA 2nd axis displayed the opposite 
trend with the brightest windows being negatively ordinated, which could indicate a greater 
textural heterogeneity. GE-derived axes were similarly influenced by hillshade variations, 
although the relationships are weaker. 
 
Table 9. Influence of mean hillshade on window ordination scores (derived from IKONOS 
and G.E. images). R2 adj. with significance level (p-value: *** < 0.1%). 
 

IKONOS  Google Earth 
 PCA 1 PCA 2 PCA 1 PCA 2 
Hillshade (mean) 0.095 *** 0.068 *** 0.046 *** 0.015 *** 

 
 
The hillshade gradient was divided into a subjective number of bins (6 bins, K means 

clustering). The underlying idea was to obtain a reasonable number of bins so that they may 
encompass the whole canopy textural gradient while displaying at the same time significant 
differences in term of ordination on the factorial plan.  A multiple mean comparison test 
(Tukey) was used (Fig. 23 – bottom) and the 3 firsts bins were pulled together (Fig. 24, left). 
 

37 
 



 
Figure 23. (top) Regressions of mean hillshade on windows coordinate along PCA1 (right) 
and PCA2 (left); dotted lines: linear regression, full lines: non-parametric regression on 
smooth data; (bottom) Initial bins on mean hillshade (K mean clustering on Euclidian 
distance) and Tukey post-hoc test results. 
 

 
Figure 24. (left) Final bins on mean hillshade and Tukey post-hoc test results; (right) Log 
ratio technique on the 2 first (top) and 2 extreme (bottom) bins; full lines: log ratio, dotted 
lines: point-wise confidence interval computed from a F-distribution. 
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A comparison of the mean bin r-spectra show that when we consider two successive 
bins (e.g. 1 and 2, Fig. 24, right-top) or windows set, the brightest one have significantly 
higher scores over high frequencies (starting from 90 cycles.km-1 or 11.3 = ࣅ m) and no 
significant differences appear over lower frequencies while when the hillshade difference 
increase between the bins (e.g. 1 and 5, Fig. 24 right-bottom), the brightest one also display 
significantly lower scores over the low frequencies. 
 

A partitioned standardization was performed and allowed removing the unwanted 
influences of the hillshade (Fig. 25, left) as well as the Aspect and Combined variables on the 
textural gradient. The influences of elevation mean (Fig. 25, right) and standard deviation 
were mitigated but still very significant (R2 adj. of 0.035*** and 0.003** respectively). 
Similar results were observed on the GE-derived textural gradient with the total disappearance 
of the hillshade influence on both PCA axes, the mitigation of mean elevation (R2 adj. = 
0.003, p-value < 5%) and disappearance of elevation standard deviation influences on the first 
axis. The two latter variables conserved however important influences on the 2nd PCA axis 
with R2 adjusted of 0.167 and 0.016 (p-values < 0.1%) for elevation mean and SD 
respectively. 
 

 
 
Figure 25. Regression of mean hillshade (left) and mean elevation (right) on window 
coordinate along PCA1 after partitioned standardization (IKONOS). 
 
 
We used the PCA results from this partitioned approach later on the analysis. 
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3.4. Predicting stand structure parameters 
3.4.1. Plots structure 

 
Plot overview (IKONOS) and location within the study area is presented in Appendix 

2. 
 

Plots G, I and P, J, K were sampled in November 2009 and January 2010 respectively. 
We also extracted structural data along with location coordinates for two more plots in the IFP 
database: H (2009) and F (2005). 
 

Tables 10 and 11 summarize plots structural parameters as used for the model 
calibration. Variables considering only trees greater than 30 and 40 cm dbh led to similar 
results, the latter set of variables is therefore left away for clarity purpose. 
 
Table 10. Stand structure parameters collected for 7 1-ha ground-truth plots (horizontal 
distance) close to the Uppangala village (Western Ghats, India). 
 
  Density (D, trees.ha-1 2 -1) Basal area (G, m ) Mean tree diameter  (Dg, cm) .ha
Plots > 10 cm dbh > 30 cm dbh > 10 cm dbh > 30 cm dbh > 10 cm dbh > 30 cm dbh 

K 381 16 10.28 2.47 17.93 44.29 
J 517 25 12.84 3.48 18.55 42.08 
P 539 178 54.38 44.12 35.16 56.18 
I 371 87 21.84 15.45 27.02 47.54 
F 577 106 29.57 18.81 25.54 47.53 
G 567 143 36.31 25.64 28.97 47.78 
H 624 150 50.02 39.46 31.95 57.87 

 
Table 11. AGB estimates and CA1 plot 
scores (see fig 27, left) 
 
 

Plots 
AGB 

(t. DM. ha-1)
Diametric 

structure (CA1) 
K 126,28 0,42 
J 157,80 0,48 
P 661,06 -0,40 
I 266,60 -0,05 
F 361,09 0,01 
G 442,97 -0,23 
H 608,36 -0,08 

 
Figure 26 Relative tree density in function of tree crown 
position (E : emergent, C+ : high canopy, C- : low canopy, U : understory). 

 
We attempted to cover the canopy textural gradient extremities with plots J and K 

(very fine canopy grain) and plot P (very coarse canopy grain). This is indeed apparent in 
Figure 26 (right) with J and K largely dominated by small trees (< 15cm dbh) while P have 
the more balanced distribution over the dbh bins. The long-known plots H and F were judged 
as coarse and intermediate (respectively) by experienced IFP staff. We therefore tried to 
sample a replicate for the coarse grain (G) and a fine grain (I). In the later set of plots (H, F, 
G, I), if H plot was indeed the coarser, the specific structure of the other plots did not lead to 
the same plots rank by all the structural parameters. For example, G Plot was similar to the F 
plot in term of total density, but was closer to the H plot when considering only trees greater 
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than 30 cm dbh. Also, with its low density but high relative number of trees greater than 30 
cm dbh, the I plot obtain a higher mean tree diameter than the F plot even though its AGB is 
estimated to be about 100 t. DM. ha-1 lower. It is noteworthy that plots K, J, and to a lesser 
extent, I, greatly differ from the other plots in term of species composition and structural 
features. Indeed, these plots underwent an intense fire about two decades ago which led to the 
formation of a secondary succession composed of pioneer (e.g. Acacia sp.) and sparse 
deciduous species while other plots were located in undisturbed mature evergreen stands. 
Plots K and J were characterized by  a very low understorey with more than 80% of trees in or 
higher than the canopy strata while this proportion falls below 60% in undisturbed plots (i.e. 
G and P; Fig. 26). 
 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27. (left) First plan of CA on 6 equal-count dbh bins (only CA1 is used later on the 
analysis); (right) Distribution of relative frequencies (%) on 5 dbh bins among plots. 
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3.4.2. Model calibration 
 

Windows covering the ground plots (see methodology) were added up to the PCA data 
as supplementary individuals and the barycenters of their coordinates along PCA axis 1 
(model 1) and PCA axes 1 and 2 (model 2) were used as indexes of canopy texture. Figure 28 
shows that even though modeled forested scenes (DART) obtained very similar positions 
along PCA1 in the IKONOS and GE-derived factorial plans, this is not the case for real 
forested scenes. 
 

  
 
Figure 28. Ground plot position on IKONOS-derived (left) and Google Earth-derived (right) 
factorial plans (grid mesh = 2) 
 

Several observations can be made from the above figure. There is a higher variance 
among windows constituting each plot on the GE-derived factorial plan, which underline 
greater differences in the range of dominant spatial frequencies that characterize each, 
although overlapping, windows. This observation confirms the higher quality of the 
IKONOS-derived textural indice. Secondly, the displacement of plots barycenter from 
IKONOS-PCA1 to GE-PCA1 does not always occur in the 
same direction and globally result in a grouping of the 
coarse with the intermediate canopy grains plots on the 
positive side of GE-PCA1 close by the origin. This could 
imply a form of saturation of the GE-derived textural 
gradient in its discrimination of windows canopy grain, but 
remains surprising given the good ordination of DART 
scenes all along the PCA1 gradient. The poor relative 
position of the plots on PCA1, particularly the coarse 
canopy-grain H and P plots, may be explained by their own 
textural specificities combined with the lower spatial 
resolution of GE image. Fig 28 indeed show that both plots 
scores higher than the entire window set for spatial 
frequencies above 170 cycles.km-1 (ࣅ  < 6 m) in the GE 
image only, which explain their steering toward the 
positive side of PCA1. 
 

Figure 29. Plots P and H 
standardized r-spectra derived 
from IKONOS

Simple linear regressions and linear models were 
carried out to test the explanatory power of the canopy 
texture indexes regarding ground-plots structural 
parameters. Regressions quality was characterized with the adjusted coefficient of 
determination (R2), the root mean square error (rmse) expressed in arithmetic units and the 
relative error (s) in percent. The following figures illustrate the results based on the first PCA 
axis only and derived from IKONOS (Fig. 30) and GE (Fig. 31). 
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Figure 30. Stand structural parameter (see 
Tab. 10 & 11) as a function of ground plots 
score on PCA axis 1 (i.e. index of canopy 
texture) derived from IKONOS. Adjusted 
coefficient of determination (R2), root mean 
square error (rmse) in arithmetic units and 
relative error (s) in percent are presented in 
bold character when regression p-value < 
0.05. 

43 
 



Figure 31. Stand structural parameter (see 
Tab. 10 & 11) as a function of ground plots 
score on PCA axis 1 (i.e. index of canopy 
texture) derived from Google EarthTM. 
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Adjusted coefficient of determination (R2), 
root mean square error (rmse) in arithmetic 
units and relative error (s) in percent are 
presented in bold character when regression 
p-value < 0.05. 



The first axis of the IKONOS-derived factorial plan was good predictor of mean tree diameter 
(Dg) with an R2 above 50% and a low relative error (s = 12.5%). This axis also reasonably 
predict stand basal area and AGB estimate with fairly similar R2 but higher relative errors (s = 
25%). Total stand density (D) or stand diametric distribution (CA1) did not led to significant 
relationship with the textural index but considering only trees greater than 30 cm dbh led to 
significant relationship with stand density (R2=0.51, rmse=43.4, s=29.7%) and increased the 
predictive power on Dg. 

The linear model involving both PCA axes as predictor variables for stand parameters 
did not led to a significant contribution of the second axis, except for the prediction of stand 
diametric distribution (R2=0.80, p-value < 0.05, rmse=0.146, s=37.2%). Lets note however 
that other models yield a second axis significant at 0.1, with Dg and D>30 cm dbh as response 
variables, increasing the fit of the models (R2 of 0.74 and 0.75) and lowering the relative error 
(s of 7.3% and 20.9% respectively). 

The GE-derived FOTO index based on PCA1 obtain similar prediction trends on stand 
structural parameters as the IKONOS-derived one.  Good predictions were obtain with Dg 
(R2 2=0.67, rmse=3.7, s=9.3%), G (R =0.50, rmse=12.1, s=27.3%) and AGB estimates 
(R2=0.51, rmse=43.4, s=29.7%). Once we considered only the subset of trees greater than 30 
cm dbh, the GE-derived FOTO index was also a significant predictor of tree density (R2=0.70, 
rmse=33.9, s=19.9%), but it did not improve the relationship with Dg. 

Unlike in the case of IKONOS, the 2nd GE-derived PCA axis significantly contributed 
to stand structural parameters predictions. However, the marked differences between windows 
ordination along GE and IKONOS-derived 2nd axes stress the need to take these results with 
caution. The linear model resulted in improved relationships with AGB estimates (R2=0.84, 
rmse=82.7, s=13.5%), basal area for all trees G (R2=0.84, rmse=6.8, s=13.5%) and trees 
greater than 30 cm dbh (R2=0.86, rmse=6, s=18%) as well as their mean diameter Dg>30 cm dbh 
(R2=0.96, rmse=1.1, s=1.5%). 
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3.4.3. Model inversion 
 

We re-computed the textural clusters defined earlier (see 3.1 Textural analysis) to take 
into account windows displacement induced by the partitioned standardization technique and 
used these clusters to map the canopy texture over the study area (Fig. 32). Stand structural 
parameters that led to the best relationships with the textural indices are predicted per textural 
cluster (Tab. 12). 

 
Table 12. Structural parameter predictions inferred from the above regressions and based on 
IKONOS image. Mean and SD values per cluster of canopy texture. 
 

 

 
 
Figure 32. (left) Project study area, near to Uppangala village (Western Ghats, India) – black 
dots represent a GPS trace along the trail road crossing the area; (right) same area overlaid by 
125 m side square windows with grayscale corresponding to the canopy texture clusters 
defined previously (see Fig. x-c (plan PCA) and Tab. X), from black (cluster 1, very coarse 
canopy grain) to light gray (very fine canopy grain). In the top 19 km2 (i.e. GE image extent), 
white crosses represent windows particularly marked by relief-induced illumination 
discrepancies, resulting in a poor canopy characterization. 

 model Clusters of canopy texture  
Predicted variables a a a C1 C2 C3 C4 C5 0 1 2

 
133.6D >30cm dbh (trees h-1 -11.0 29.3  168.6 (37.4) 160.6 (34.9)  140.3 (34.6)   98.8 (34.8)  31.4 (21.1)) 

Dg (cm)  29.9 -1.2 2.8 34.0 (3.6) 32.7 (3.5) 30.5 (3.3)  26.2 (3.4) 16.2 (4.4) 

 G (m2 ha-1) 41.5 -4.0   63.6 (5.4) 50.1 (3.3) 39.5 (3.2) 27.4 (4.0) 13.7 (5.6) 

167.9 
(68.4) AGB (t. DM. ha-1) 505.3 -49.0   772.7 (65.9) 609.1 (40.1)  480.8 (38.4) 334.8 (48.4) 
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Both stand parameters predicted with the model involving the 2 firsts PCA axes 
display overlapping ranges of predicted values across the four first textural clusters. The 
overlapping proportion is particularly marked between the two firsts’ clusters and then 
decrease toward the 4th cluster. This drawback is induced by the very use of the second axis 
combined with a poor model calibration in the coarse-grain edge of the textural gradient. 
Indeed, the ground-plots positions in the PCA observations cloud do not cover the decrease of 
windows ordination along the second axis toward coarse canopy grain and therefore results in 
a strong positive model coefficient for A2 (i.e. a2, Tab. 12). Because of the horseshoe-shape 
of the PCA cloud (i.e. C1 more negative on PCA1 and PCA2 than C2), the two model 
coefficients of contrary signs (i.e. a1 and a2) tend to compensate themselves while predicting 
stand parameter values, which results in this lack of clear differences between clusters. Such 
drawback is logically not observed on the predictions of G and AGB, which are linearly 
derived from one PCA axis only. 

 
The spatial distribution of textural clusters over the study area (Fig. 32) is consistent 

with the forests structural variations observed on the field. The general pattern display a 
coarser canopy grain the less the stand is accessible, which may be explain by different 
degrees of anthropological disturbances throughout time. The Uppangala village is roughly 
located nearby the North-West corner of the area, and a trail road cross the area from this 
corner to the West bottom of the fully illuminated hills observable in the satellite image (Fig. 
31, left) down to the bottom of the major hills located on the South of the area. We can indeed 
see that the finest canopy structures are mainly found on the North-West quarter of the area, 
close to the village, along and around the trail road, while the canopy grain become coarser 
away from this “frequented” part, the further the terrain display steeps slopes and abrupt 
elevation variations. 

 
We can also notice that most of the very fine texture (i.e. lightest gray color) is found 

on these fully sun-lighted hills that form a diagonal band on the study area top part, while 
most of the very coarse texture (i.e. near-black color) are found on stands containing marked 
topographical features (e.g. thalwegs) and in turn marked illumination patterns within the 
unit-window. Even though it has been noticed on the field that e.g. very fine canopy grain 
were found on the fully illuminated hills, the former observation raises the question of the 
extent to which the partitioned standardization correct for topography-induced biases in the 
canopy texture characterization. 
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4. Discussion 
TM4.1. Google Earth  images performances 

 
We assessed Google EarthTM image performance as input for the FOTO method by 

comparing the canopy textural gradient (i.e. FOTO index) derived from the former image type 
to the one derived from IKONOSTM image, the GE native image considered as a reference. 

 
4.1.1. Set up and limits 

 
Lets first bear in mind that the main differences existing between the two image types 

are the spectral information (IKONOS panchromatic grayscale against GE average of RGB 
true color bands) , spatial resolution (metric IKONOS resolution against the coarser and 
unknown GE resolution, considered to be about 2 m.pixel-1), unknown additional radiometric 
and geometric corrections applied to GE images and lastly, an increased positional error of 
GE images estimated to range from 2 to 115 m in Western and South-central Asia (Potere, 
2008). As underlined by Barbier (2009), the FOTO method presents the advantage of being 
relatively independent from the absolute values of both the mean and variance of the image, 
because the mean-centered images are characterized by the proportion of variance explained 
by spatial frequency bins. It follows that differences in images contrast or luminosity should 
not influence the results as long as the spatial arrangement of relative pixel values is 
conserved. If the positional error induced by GE do not modify the spatial arrangement of 
features (Montesano et al., 2009) and should therefore not bias the FOTO results (model 
calibration/validation issues apart), it hinders our IKONOS-GE comparison. Indeed, the small 
positional difference between IKONOS and GE images results in small differences of ground 
area covered by each “fix” unit-window and therefore induce variability in the resulting 
FOTO index per unit-window which bias window to window direct comparison. Moreover, 
the PCA axes of IKONOS and GE-derived factorial plans being computed on the basis of the 
total image variances, which differ among the two image types, a co-inertia analysis should 
have provided more reliable results than direct comparison of ordination scores. However, our 
rough and straight approach consisting of a direct comparison of unit-window scores along 
PCA axes of both factorial plans reveal trend differences in window relative position that may 
orientate further researches. 
  

4.1.2. Textural gradients 
 
A certain extent of similarity 

 
We initially observed that the r-spectra variability among unit-windows of the two 

image types was decomposed in a fairly similar way by the PCA technique. In both cases the 
two first axes were retained. The largely prominent first axes explain about 40% of the total 
variances and compose the core coarsness-finess textural gradient, while the second axes only 
counted for 7 % (IKONOS) and 10 % (GE) of the variances and were considered to carry 
information on window texture homogeneity, a potentially interesting feature of stands 
structural organization. This first analysis step provides comparable results to previous FOTO 
applications based on GE images (PCA1: 48%, PCA2: 9%, Barbier et al., 2009) and, to a 
lesser extent, IKONOS panchromatic images (PCA1: 58%, PCA2: 13%, Proisy and al., 2007). 
In the later case, the authors were studying mangroves forests of French Guiana. Those forests 
are composed of very few species, display a limited number of development stage trajectories 
and present a relatively high stand homogeneity (e.g. tree age) due to major environmental 
constraints (Fromard et al., 2004), which should simplify the range of periodic textural 
patterns detectable by FOTO and result in heavier PCA axes (less noise). 
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It is also interesting to note that in the framework of the later study, FOTO results 
based on IKONOS 1 m panchromatic image and IKONOS 4 m NIR channel were compared 
and yield distinct organizations of the different mangrove development stages on the two 
firsts PCA axes. Such difference has not been observed in this study, IKONOS and GE 
images led to PCA observation clouds of fairly similar shape and extent without obvious 
differences in window canopy grain organization. Direct comparison of windows positions 
along IKONOS and GE-based PCA axes however allowed us to glimpse the main differences 
between the derivable textural indexes. The two major textural gradients (i.e. GE and 
IKONOS PCA1) were fairly consistent (R²= 50%, rmse=2.5) with increasing differences at 
both edges of the gradients. A limited part of the window set was concerned by important 
displacement from one factorial plan to the other and largely contributed to weaker the 
relationship between the two axes. Interestingly, the promising match between the two main 
and major axes (i.e. PCA1) was supported by very similar DART scenes positions, which 
show that IKONOS and GE windows sets’ variance in term of r-spectra distribution over 
spatial frequencies yield to the computation of a very similar main PCA axis, allowing the 
consistent ordination of noise-free simulated supplementary scenes. Windows’ ordination 
along the second PCA axes was however prone to a greater variability with an R² value as low 
as 5%. Besides, the analysis of topographical variables influences over PCA axes shown that 
if GE-PCA1 displayed the same though weaker trends of sensitivity than IKONOS-PCA1, 
such similarity was not found between the second PCA axes which exhibited distinct 
relationships with the different variables. Notably, GE-PCA2 was not significantly influence 
by window aspect or slope-aspect combination and weakly with the main hillshade variable 
(R²=2%). The axis was surprisingly well correlated to window mean elevation (R²=22%) 
unlike IKONOS-PCA2 (R²=2%) which may point toward an effect/artifact induced by GE 
geometric corrections. 
 

Although the relative position of ground-truth plots differs among the two factorial 
plans, GE-PCA1 was a significant predictor of several stand structure parameters with a 
comparable and sometime slightly better fit to the observed data than IKONOS-PCA1. 
Surprisingly, despite its marked differences with IKONOS-PCA2 and unlike the latter, GE-
PCA2 significantly contribute to stand parameters predictions and increase the models 
accuracy such as with mean basal area (R²=0,84) or the AGB estimate (R²=0,84). Let’s also 
underline that if GE-derived FOTO indexes yield good regression scores with stand structure 
parameters, they present a major flaw due to the relative position of ground-truth plots in the 
canopy textural gradient, notably on PCA1. In the case of the PCA1-based model for 
example, the coarser plots being located at an intermediate position on PCA1 and stand 
parameters being linearly linked to windows ordination score, the model predict unrealistic 
parameters values for windows located on the negative edge of the axis (e.g. intercept of AGB 
prediction model above 500 t. DM.ha-1). Such flaw is also observed with IKONOS images but 
to a lesser extent. 

 
These results confirm the potential of GE images to characterize forest canopy 

structure but stress the need for further investigations. A better understanding of GE image 
characteristics influences on the observed differences of forest scenes relative positions along 
PCA axes compared to the IKONOS reference should help minimize this variability and 
accurate GE-based FOTO results. 
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Dissimilarities and research avenues 
 

It remains difficult to explain the differences in ordination scores of real forested 
scenes along PCA axes of the two factorial plans, because of the multiples differences 
between image types, notably in terms of spatial resolution and spectral information. The 
sensibility of FOTO to image spatial resolution as well as the effect of this instrumental 
parameter on canopy r-spectra have not been specifically addressed so far and could be 
investigated with a modeling approach (e.g. DART model). The small value range of GE 
averaged bands (Fig. 18) is also one pitfall that should certainly contribute to the observed 
differences with IKONOS, and one should attempt to optimize this range with more a 
complex combination of the RGB bands. 

This decrease in tonal variations combined with the coarser spatial resolution of GE 
hinder the visual recognition of individual crowns limits and may have a specific effect on 
window r-spectra computation according to stand canopy structure and its spatial organization 
within the unit-window. Although the window set exhibit a great variability of canopy 
structure (tree density, crown size distribution, etc) and possible spatial arrangements, 
preventing any straight and simple relationship between stand structural features and the 
observed differences’ trends between GE and IKONOS results, one could advance the 
following hypotheses: on the coarser spectral and spatial resolutions image type (i.e. GE),  the 
largest and more pronounced canopy patterns or shaded areas visually remains and represents 
a greater share of image variance than on the higher resolutions image (i.e. IKONOS) because 
of the decrease or disappearance of fine scale variations (spatial and spectral). For the later 
reason, the presence and spatial arrangement of such marked features seems to play a greater 
role in window r-spectra computation for the lower resolutions image type.  An heterogeneous 
stand structure (tree height notably) with marked emergent trees and/or canopy gaps often 
display spatially heterogeneous shades of large size (i.e. induced by the differences in tree 
height or canopy gaps ; Fig. 17 - right) and may therefore be overestimated (i.e. considered as 
coarser, higher proportion of image variance accounted for low spatial frequencies) by the 
low resolutions images, while the r-spectra of the same window captured in high resolution 
imagery may be balanced by a greater relative detection of smaller and less clearly marked 
patterns (crown limits). On the other hand, dense, homogeneous forest stands are less subject 
to such spatial heterogeneity (closed canopy, homogeneity in tree height), display more 
periodic tree shade patterning (Fig. 17 - left) and should therefore be less influenced by this 
potential bias. This trend seems also confirmed with the largest patterns, in terms of macro-
heterogeneity or –homogeneity (Fig. 33), which support that GE-PCA1 might be more 
sensible to texture homogeneity than IKONOS-PCA1. 

 

 
 

Figure 33. The two scenes on the left display a macro-heterogeneity, with tree shades 
gradually more pronounced from the bottom-right to the top-left corner. Such scenes seem 
particularly overestimated by GE. The two scenes on the right display a particular macro-
homogeneity with periodic and rather homogeneous tree shades.  Such scenes seem 
particularly underestimated by GE. 
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The influence of spatial heterogeneity on window ordinations may be investigated by 
coupling the FOTO method to e.g. a lacunarity analysis. Lacunarity is another form of textural 
analysis particularly relevant to characterize image spatial heterogeneity at diverse scales. 
Frazer et al. (2005) shown that such analysis allowed to accurately characterize stands canopy 
according to canopy cover and intercrown gap volume, an example of “spatial heterogeneity” 
index that may provide new insights into FOTO windows classification. 
  

4.1.3. Interest and remarks 
 

It is likely that GE images characteristics (spatial and spectral) as well as the extent of 
Earth coverage underlaid by high resolution images will increase in the coming years, which 
make pertinent to investigate the potential of this virtual globe software for forest research 
studies. This free-access database provide the opportunity to collect quality satellite data at 
spatial scales (e.g. regional) that would not be economically conceivable for research studies 
relying on commercial products such as hyperspatial IKONOS images (10x10km). Latest 
researches in the field of tropical forest mapping have indeed succeed to value GE database, 
in combination with affordable level of commercial data (i.e. Lidar), to assess forest carbon 
distribution over extensive areas (above 4,000,000 ha; CLASlite Peru REDD demo) and for a 
limited cost (about $0,10 USD.ha-1) while maintaining a high spatial resolution (30m) and 
accuracy (10%) (CLASlite Haway REDD demo; Asner et al., 2009a). It is however unclear 
whether the latter results were based on GE native images provided by Google TM or images 
extracted from the GE software, similarly to the present approach. Our results suggest that GE 
images directly extracted from the software provide a sufficient level of information for 
FOTO to discriminate windows on the basis of canopy textural patterns that indeed 
significantly relate to a certain number of stand biophysical attributes. The quality of the GE-
derived textural gradient was however poorly assessed because of the limited number of 
sample plots leading to a poor model calibration and the absence of model validation step. 
These results are nonetheless promising and should lead to further research notably to 
disentangle the influence of spatial and “spectral” image resolutions on FOTO, and in turn 
increase our understanding of GE images potential and limits. 

 
For FOTO to be operational, notably with GE images, it would also worth 

investigating the method sensibility to sample plots geo-location error. This common remote 
sensing-related source of uncertainty constrained us to extract 4 overlapping windows per 
sample plot, which shown a certain extent of variability once positioned on the FOTO textural 
gradient, particularly marked with GE images. This uncertainty, hampering an accurate mode 
calibration, may be quantified with simple statistical techniques (Anser et al., 2009b) to 
compute prediction confidence interval. 
 

4.2. Relief variations 
 

The project study site being topographically diverse, it was necessary to identify and 
attempt to correct for potential influences of relief variations on the FOTO-derived textural 
index. Our analysis suggest that image texture variations related to topography indeed 
influence unit-window r-spectra, at different spatial scales, which in turn alter the reliability of 
the derived canopy textural index. 
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4.2.1. Contribution to windows macro-heterogeneity 
 

A first and obvious influence of topography variations on window r-spectra was 
identified in the first steps of the textural analysis by comparing window position on the PCA 
plan to the visual assessment of canopy grain-size it contains. We have shown that unit-
windows overlaying a ridge or a valley bottom could encompass two distinct types of canopy 
texture, due to underlying abrupt terrain variations, and were therefore characterized by a 
marked macro-heterogeneity. Those windows were positioned in the textural gradient 
regarding this heterogeneity rather their specific canopy grain, preventing an accurate 
inferring of their biophysical characteristics. These results partly confirm the observations of 
Couteron et al. (2005) who explained windows loading on the 2nd PCA axis by this relief-
induced macro-heterogeneity. In the latter study, windows subjected to this macro-
heterogeneity seemed indeed to be consistently positioned along the PCA1 while obtaining 
high score on the second axis. We may explain the stronger effect observed in our analysis 
(i.e. macro-heterogeneity influence on PCA1) by the selection of a larger window size (125 m 
against 100 m) or more pronounced relief variations. 

 
Although this macro-heterogeneity profoundly influence window r-spectra and 

relative position in the textural gradient, it affects a limited number of windows (< 5% in our 
case) and therefore do not induce major bias in the PCA axes (un-presented results). Lets 
however note that we quantified this window subset by a subjective visual assessment and 
may have left apart windows affected by this bias to a lesser extent. Attempts to automatically 
select those windows on the basis of DEM data (hillshade range or SD, presence of large TIN-
polygons of opposed aspects, etc.) proved difficult. Mitigating this source of noise may be 
achievable by selecting smaller window sizes, or through pixel-based radiometric corrections. 
 

4.2.2. Influence on canopy textural patterns 
 

Our results also emphasize more global influence of topography variations on window 
r-spectra, consistently with working hypothesis that could has been formulated from the 
literature. It has been indeed stated that on slopes facing the sun, forest canopy appear brighter 
to the sensor since at finer scale, a larger proportion of each tree crown is illuminated, and the 
other way around on slope facing away to the sun. This variation in the crown-shade sizes 
relationship lead to different image textures for similar forest stand and must be normalized to 
compare windows on the same bases. 
 
It was first necessary to attribute to each unit-window an index value characterizing the effect 
of relief variations on canopy illumination, in order to identify the influence of this effect on 
window ordination and gather unit-windows with homogeneous index values. Both types of 
spatial variables (i.e. manually computed and hillshade) depicted the same significant trends 
although the hillshade model captured a greater share of variability. Linear regressions 
(hillshade) and multiple means comparison tests (manually computed variables) confirmed 
that on slopes facing the sun, windows tend to be ordinated toward the positive side of PCA1 
(i.e. fine canopy-grain) while windows facing away to the sun tend to be ordinated toward the 
negative side of the axis (i.e. coarse canopy-grain). Spectral analysis indeed showed that the 
brightest windows group is characterized by a significant higher dominance of small patterns 
(< 11m) and a lower share of image variance explained by large patterns compared to the 
darkest one and regardless of the canopy grain size. We can therefore state that for a given 
stand, variations in proportion of sun-lighted and shaded tree crown driven by slope’s aspect 
regarding the sun position bias window ordination toward coarser or finer canopy grains. This 
relationship was marked on the second half of e.g. the hillshade gradient (illuminated part) 
and seems to disappear on the first half that relate to windows particularly shadowed by relief 
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variations. This result seems consistent because on windows strongly shaded by their 
geomorphologic set up and the surrounding environment, trees may only be illuminated by 
diffuse and scattered lights rather than direct sun light, and therefore do not display shade. 
 

A simple partitioned standardization with as few as 4 hillshade bins allowed removing 
the unwanted influence of the hillshade on both PCA axes. It also factored out the significant 
though weaker influences of spatial variables manually computed, which support the potential 
of this hillshade model to correct for topography-induce biases. The hillshade function is 
easily and rapidly computable with GIS software such as ArcGis and could be integrated to 
the FOTO routines. Further investigations suggest that partitioned coordinates do not increase 
the fit of the FOTO index to stand structural parameters (see Appendix 5) and it would 
therefore be interesting to assess the effect of this correction on the accuracy of stand 
parameter predictions with the appropriate study design (ground plots across a gradient of 
hillshade). 
 

Lets finally note that the influences of elevation variables on PCA1 were mitigated but 
still significant, notably with the mean window elevation (R²=0.035*), which could point 
toward a actual effect of elevation on forest structural organization. Few studies have 
documented tropical forest structure and AGB spatial changes with altitude and those 
parameters vary greatly among tropical forest types (Wang et al., 2006), even at the same 
altitude (Austin et al., 1972, in Aiba and Kitayama, 1999).It arises from the literature that 
altitudinal gradients modify forest structure through changes and complex interactions among 
and between abiotic (temperature, rainfall and humidity, substrate nature and nutrient 
availability, wind) and biotic factors. It is commonly observed that stem density increase with 
elevation (Wang et al., 2006; Aiba and Kitayama, 1999; Lieberman et al., 1996) while tree 
height, dbh and AGB estimate decrease (Wang et al., 2006; Miyajima and Takahashi, 2007; 
Aiba and Kitayama, 1999; Asner et al., 2009c), which contradicts our findings on the Ghats 
that show a slight decreasing trend in window ordination along PCA1 (i.e. coarser canopy-
grain) with elevation, and therefore an increase in e.g. AGB estimate. This difference might 
first be explained by the ranges of elevation in consideration. Elevation on our study site 
range from 200 to 1100 m, which is fairly bellow most of the high elevation range limits 
found in the literature (up to 3100 a.s.l., Aiba and Kitayama, 1999). Lieberman et al. (1996) 
also obtained contrasting results along a large altitudinal gradient (30 to 2600 m) of Costa-
Rican tropical forest with a constant mean tree diameter from 30 to 1500 m a.s.l. which 
slightly increased at higher altitudes and greater mean basal area on the highest plots. One 
should also take into account the influence of local topography (slope,  aspect) on forest 
structure organization, which proved to dominate altitudinal influence on several stand 
structural parameters (D, Dg, mean tree height; Wang et al., 2006). Considering this effect is 
relevant in our study area, because most of the elevation increase is concentrated in the 
southern part of the site which therefore display steeps slopes and North, North-West, West 
main aspects. For example, forest stands growing on sloppy terrain are known to be denser 
and smaller in height and mean trunk diameter (Wang et al., 2006) due to e.g. mechanical 
constraints or better access to light. Nevertheless, there are also contrasting observations with 
for example, Hartshorn and Peralta (1988, in Lieberman et al., 1996) whom documented 
denser but taller stands on sloping landforms, which was attributed to a better soil drainage. 
The variability of elevation and local topography influences on forest structure stress the 
importance of local site conditions (e.g. soil quality) and support a possible increase of forest 
canopy grain size with elevation on the study area, which would be consistent with field 
observations but could also be partly induced by a bias of the method (see : next part). Last 
but not the least, anthropogenic disturbances on low elevation – more accessible areas may 
have contributed to the observed trend. 
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4.3. Characterization of tropical forest canopy structure 
 

This first assessment of the potential of the FOTO method to characterize the wet 
evergreen forests of central Western Ghats provided consistent results with respect to 
previous FOTO applications. Our empirical findings indeed confirm that similarly to the 
mangrove (Proisy et al., 2007) and lowland evergreen rain forests (Couteron et al., 2005), 
canopy images of wet evergreen forests display pseudo-periodic patterns leading to the 
dominance of specific spatial frequency ranges in window r-spectra that allow characterizing 
and discriminating forest types. It is however apparent that at the current methodological 
development stage, environmental variables (local topography) and forest structural 
complexity modulate FOTO results precision and accuracy. 
 

4.3.1. Several scales of spatial heterogeneity 
 

On the basis of previous FOTO applications, and notably the results of Proisy (2007) 
on the mangrove forests of French Guiana, we emphasized the influence of image spatial 
heterogeneity on the performance of FOTO. Spatial heterogeneity arises at several scales and 
is induced by diverse factors. 
 

Our study area presents the specificity of being topographically diverse, and we shown 
that local geomorphology could create large illumination patterns on forest canopy that 
account for most of the image variance and therefore strongly bias window ordination toward 
these large patterns. Topography variations also induce a weaker and more subtitle bias, not 
directly induced by local geomorphology but rather its effect on forest structure. It is well 
known that canopy gaps and chablis/tree falls are more abundant on sloppy terrains than on 
flat grounds, because of decreased tree stability (mechanical constraint), increase exposition 
of tree crown to the wind, etc. This natural disturbance trend has been observed on the study 
area (Pélissier, 1998) and should be more pronounced as elevation increases, because 
distances between thalwegs often decrease as we get closer to hill tops, which results in a 
greater frequency of thalwegs – interfluves terrain variations. Within the unit-window, canopy 
gaps and medium to large tree falls create a spatial heterogeneity fairly well detected by 
varying low spatial frequencies (depending on their spatial arrangement) and therefore 
contribute to a certain extent to bias window ordination toward coarser canopy grains. This 
element may contribute to the remaining influence of elevation on PCA1 after the partitioned 
standardization technique which was not designed to correct for such bias. Beside the direct 
and indirect influences of land forms on the textural index, the spatial heterogeneity displayed 
by complex tropical forest canopies may also hamper the classification process. 
 

Spatial patterns and structure of the outer forest canopy are commonly described to 
vary with the size, shape, abundance and spatial arrangement of canopy trees as well as the 
inter- and intra-crowns gaps of varying sizes (Frazer et al., 2005). Although we have a limited 
understanding of the physical and biological determinants of forest canopy pseudo-
periodicity, it seems logical to think that the more structurally and spatially (horizontal and 
vertical) diverse is this canopy layer, the less pseudo-periodic it gets. For instance, forests 
compose of very few canopy species such as mangrove forests of French Guiana should 
display fewer variations in e.g. crowns geometry and sizes amplitude than hyper-diverse wet 
evergreen forests, and therefore display a greater periodicity. Similarly, the great spatial 
homogeneity of mangrove forests in tree height and allometrically related parameters   
contribute to image texture homogeneity/patterns periodicity and minimize the spurious effect 
of spatial heterogeneity on window r-spectra. Such homogeneity in age/height at the unit-
window scale  is less often encountered on the pluri-strata wet tropical forests of the Central 
Western Ghats (CWG) that often display a certain extent of macro- and meso- heterogeneity 
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throughout successional stages. For example, the post-fire highly degraded secondary 
successions notably display tall emergent trees that survived the fire, patches of shrubs of 
varying sizes or variations in re-growth crown sizes that may relate to local site conditions 
(e.g. soil depth variations along the slope). In the other side of our textural gradient, mature – 
primary wet evergreen forests are also characterized by the high occurrence of the large 
emergent trees that shade the canopy as well as gap openings and crown aggregations that 
contribute to create a meso-scale spatial heterogeneity in the image. It follows that spatial 
heterogeneity has a much greater influence on windows r-spectra of upland wet evergreen 
forests than on mangrove forests (fig 34.) 
 

 
Figure 34. Averaged r-spectra per cluster of canopy texture on (left) wet evergreen forest of 
the CWG (window size: 125m) and (right) mangrove forests of French Guiana (window size: 
100 m; from Proisy et al., 2007). 
 

While obvious differences can be visually observed among averaged r-spectra of 
mangrove development stage clusters, this is not the case with the wet forests of the CWG. 
The mean of textural clusters raw r-spectra are always skewed toward low frequencies, even 
in the case of fine texture (C5), and our stand discrimination is therefore based on much 
smaller differences / specificities of each cluster mean r-spectra. This is of course a major 
obstacle in our study and more broadly, for the application of FOTO on structurally complex 
hyper-diverse tropical forests. Mitigating this bias should be achievable by using smaller 
window sizes (< 125 m). 
 

4.3.2. Ability of FOTO to discriminate forest structure in our case study 
  

Limits 
 

Although the calibration of the FOTO-derived canopy textural gradient with modeled 
stands (DART) yield a very good linear fit of several stand structural parameters on the basis 
of PCA1 only (e.g. R² = 0.85 for mean tree dbh) or both PCA axes (e.g. R² = 0.97 for mean 
tree dbh), we obtained weaker relationships with our set of real stands images. This second 
calibration was indeed weakened by several factors, primarily the insufficient number of 
sample plots and failure to cover the entire gradient, particularly along the negative side of 
PCA1 (i.e. coarse grain). The intermediate positions of plots along PCA2 also hamper the 
proper calibration of this axis and stress the importance a field work that should specifically 
target plots located on the most homogeneous canopy grain conditions. This poor model 
calibration notably result in a great within-cluster variability in predicted structural parameters 
and is the primary factor to be improved during further applications of the method on this 
study area. 
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FOTO index and canopy structure 

 
The relationships between FOTO canopy textural index and stand structural 

parameters on the wet forests of the Ghats mostly differ from the ones established on the low-
land evergreen rain forest of French Guiana.  The latter study indeed evidence e.g. a 
significant and strong (R²=0.8) relationship between the FOTO index and stand total density 
(i.e. the finer is the canopy grain, the higher is the total tree density), while we obtained a non-
significant opposite trend. This is not surprising because we calibrated the coarse-grain side of 
our gradient with mature climax evergreen stands (P, H) that contain a low tree density 
respectively to this forest type, and the fine-grain side with young semi-evergreen stands 
heavily degraded (K, J and to a lesser extent I) which also contain very few trees with respect 
to their own forest type (Ramseh et al., 2009). According to the typology of Ramseh and al 
(2009) and field observations, our study area is likely to contain semi-evergreen forests at its 
northern-west corner, close by the Uppagala village, whom should gradually change into 
evergreen ones toward the Southern-East corner, the latter type of forest having been further 
divided into climax and non-climax forests according to a floristic classification (Ramseh et 
al., 2009). Successional pathways from semi-evergreen to non-climax evergreen and further 
to climax evergreen have been evidenced with gradual changes in species composition and 
recruitment (increase in secondary and primary evergreen species, decrease in deciduous 
species) and also in structure. However, great structural variations within and between forest 
types, notably in terms of stem density, did not bring to light any predictable pattern with 
forest age. Chazdon et al. (2006) confirm the high variability of stem density within 
successional stages of Neo-tropical Costa-Rican secondary forests and underline the wide 
array of potential influencing factors (e.g. degradation intensity on the Ghats, Ramseh et al., 
2009). If our study area would have encompass only one forest type (say climax evergreen), 
we would have certainly obtained the typical negative exponential trend of tree density as the 
undisturbed forest ages, but the cross-forest types characteristic of our model calibration 
prevent it. For FOTO to be properly calibrated on mixes of forest types, a forest structural 
parameter homogeneously evolving across forest types dynamics (i.e. not tree density) and 
consistently with canopy textural patterns (i.e. windows location on PCA axes) should be 
used. The mean tree diameter (Dg), relating to basal area distribution and stem density, seems 
to capture this dynamic fairly well for rather homogeneous forests (R²=0.7, Couteron et al., 
2005) and mixed forest types (R²=0.54). Although Couteron (2005) do not find a significant 
relationship between FOTO index and stand basal area due to a lack of differences between 
sample plots values, this stand parameter significantly relate to our FOTO index (R²=0.63) 
and display an increasing trend as the canopy get coarser. Increasing evidences emphasize the 
good match of basal area with chronosequences trends, because it is more related to diameter 
and height growth rates of standing trees than net changes in tree density through recruitment 
and mortality (Chazdon et al., 2006). This metric may therefore be more conservative to 
calibrate FOTO performed over several forest types. Basal area is also known to be closely 
linked to AGB (Chazdon et al., 2006) and may be more representative of stand spatial 
attributes  that  are process-related  (e.g. biomass accumulation) than other stand-level 
characteristics (e.g. age, height, density, etc.) which seems to correspond to the FOTO 
classification. For instance, the FOTO index reasonably (R²=0.63) and highly (up to R²=0.91) 
correlate with AGB estimates on our study area and the tropical mangrove forests of French 
Guiana (Proisy et al., 2007), respectively. 

 
Lets finally note however that the most substantial patterns of vertical and horizontal 

spatial heterogeneity in tropical forest stands are often observed in the later stages of 
development (Frazer et al., 2005) which should drag mature climax evergreen stands on the 
coarsest side of PCA1 while less spatially heterogeneous though mature/dense semi-evergreen 
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stands may be less negatively ordinated along this axis. Yet, mature secondary tropical forests 
sometimes contain higher AGB or BA values than primary forests; a trend explained by the 
contribution of long-lived pioneers that disappear in the later stage (Chazdon et al., 2006) and 
observed on the study area (Ramesh et al., 2009). It follows that the first PCA axis alone 
should fail to linearly correlate with BA and one should retain and properly calibrate at least 
the 2 first axes. 
 

4.3.3. Interest and remarks 
 

The method shown promising results for the characterization of the CWG wet tropical 
forests, which make worth investing in additional analyses and field sampling. A comparative 
analysis with smaller window sizes may rapidly lead to better results. Moreover, another field 
sampling seems necessary to complement the present one with more plot replicates per 
textural clusters, accurate the regression models and allow a model validation step. Nested 
sampling designs including forest types (or dominant species cohort) or window mean 
hillshade could also provide valuable insights for the development of the method. Yet, the 
current calibration of the FOTO model provide consistent trends with an increasing stand 
basal area throughout forest successional stages, from the degraded semi-evergreen secondary 
succession to the climax evergreen primary one. In their study of Cost-Rican tropical forest 
successions, Chazdon et al. (2010) underline an increase of basal area beyond 40 years after 
land abandonment (i.e. from exploited-land (e.g. pasture) to mature low-land wet forests), 
which offer good prospects to characterize forest “recovery” with FOTO if this relationship 
with BA hold after strengthening the model calibration. The effect of lighter land uses such 
has selective logging on forest structure have also been documented for the evergreen wet 
forests of the CWG; Ramesh et al. (2009) found a decrease from 39.3 m².ha-1 (un-logged 
stand) to 34.8 m².ha-1 (once selectively logged stand) which may be marked enough to be 
detectable by FOTO. Besides, selective logging usually target the largest trees in the stand 
which are often found in the canopy and particularly contribute to the patterns FOTO 
characterize, as shown by the higher match between structural parameters of trees greater than 
30 cm dbh and the FOTO-derived textural indexes. 
 

Lastly, although the FOTO model calibrated on the subset of largest trees per ground 
plots (i.e. > 30 cm dbh) display better fits than with a calibration on all measured trees (i.e. > 
10 cm dbh), the differences of R² values are surprisingly small (e.g. R² of 0.79 to 0.54 for Dg, 
R² of 0.64 to 0.63 for BA) and very good fits are obtained with all measured trees in other 
studies (e.g. R² = 0.8 for tree density, Couteron et al., 2005). This is particularly interesting 
because instinctively, one would think that FOTO being based on outer canopy textural 
patterns, it should provide structural information relative to the trees composing this top 
canopy layer (trees visible on the image) rather than to the entire stand population, while the 
good results obtain on the latter may indicate otherwise. Considering basal area or AGB for 
example, it seems logical that as the largest trees in a stand are often found in the canopy and 
account for the largest part of total stand AGB estimate, up-scaling our AGB model 
calibration from the “visible largest trees” (trees > 30cm dbh) to the “entire stand” (trees > 10 
cm dbh) may only add some noise to the model fit related to variations in “non-visible” AGB 
across plots. A stake for the FOTO method would be to show that this relative proportion of 
“non-visible” AGB is constant across sites or, in other words, that there is an invariant scale 
factor between canopy trees’ AGB and sub-canopy trees’ or total stand AGB. As far as I 
know, the later relationship has not been demonstrated to day, but potential tracks arise from 
the metabolic theory of Enquist et al. (1998). This resource-based theory extends fundamental 
metabolic constraints operating at the individual level (animal & vegetal) to macro-ecological 
attributes observed at community level. Using a mechanistic model of biomass allocation, 
Enquist et Nklas (2001) demonstrate that the total number of trees (per dbh classes) 
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invariantly scale as -2 the power of mean Dg (Y ~ X-2, Fig. 35) and -3/4 the power of standing 
AGB estimate, both within and across plant communities of varying geographic origins. 
 

 
 

Figure 35. (left) Results of biomass allocation model simulations from Enquist and Nklas 
(2001); (right) regardless of their dbh (“arbitrary units”), the largest / canopy trees visible 
from the satellite image and characterized by FOTO may contain information relative to size-
frequency distribution of all the trees within the stand. 
 

Enquist et al. (2008) further state that in principle, it should be possible to extrapolate 
e.g. energy use or biomass of the entire stand from values of the largest trees, although their 
current model may lead to misleading predictions due to e.g. absence of density-independent 
mortality parameter. Developing and validating this theory would be a very important step for 
varying kind of remote sensing-based forest researches and particularly the FOTO method. 
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Conclusions & Recommendations 
 

Within the context of IFP research efforts to characterize and map Western Ghats 
tropical forests, we assessed the performances of the newly developed FOTO method and take 
advantage of this opportunity to focus on technical issues of particular interest with respect to 
the study site specificities (effect of topography variations) and socio-economical context (GE 
image quality). The latter difficulties / constraints being encountered worldwide, the present 
findings and discussion points are therefore not limited to the Indian context. 

 
As performed in this project, the FOTO method provided a consistent characterization 

of forest canopy in spite of the marked topography variations and the structural complexity of 
the studied forests (high species diversity, high AGB range). We shown than topography 
variations only weakly influence the FOTO-derived textural index and that a simple 
technique, namely the partitioned standardization, coupled with a quickly computable 
hillshade model can tackle this influence. Other topographically induced effects such as the so 
called “local effect” did not induce major biases in the results and further investigations 
should allow correcting for this marginal drawback. 

 
In term of forest structure inferring, we obtained good predictions on mean tree 

diameter (Dg), stand basal area (G) and AGB estimate, in agreement with ground plots 
particularities (distinct dynamics) and previous FOTO applications. Those promising results 
should be complemented by additional field samplings and improved by the use of smaller 
window size to limit the effect of spatial heterogeneity on window r-spectra computation, a 
textural component hindering the characterization of canopy patterns of interest. These steps 
are crucial to assess the performance of FOTO in characterizing forest stands located on the 
high side of the AGB range, an important stake for remote sensing-based tropical forest 
studies, but also to accurate the model calibration, achieve a validation step and compute 
prediction confidence intervals. 

 
The interesting results obtained with GE images not only stress the potential value of 

this freely accessible satellite image database but also underline the operational asset of 
FOTO that provide consistent results with input images of different spatial resolutions and 
spectral content. We obtained reasonable correlations between forest structural parameters 
and GE-based FOTO index, although some extent of dissimilarities between IKONOS- and 
GE-derived results was highlighted pointing toward a need for further research. Nevertheless, 
it is apparent that GE-derived FOTO maps can be very useful to get a broad picture of tropical 
forest characteristics over thousand of unexplored area and it is not unrealistic to think that 
GE may serve as a spatially extensive – less detail data source in combination with high 
spatial resolution images to enable affordable landscape-level forest characterization. 
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