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We consider stochastic differential equations driven by some Volterra processes. Under time reversal, these equations are transformed into past dependent stochastic differential equations driven by a standard Brownian motion. We are then in position to derive existence and uniqueness of solutions of the Volterra driven SDE considered at the beginning.

Introduction

Fractional Brownian motion (fBm for short) of Hurst index H ∈ [0, 1] is the Gaussian process which admits the following representation: For any t ≥ 0,

B H (t) = t 0 K H (t, s) dB(s)
where B is a one dimensional Brownian motion and K H is a triangular kernel, i.e. K H (t, s) = 0 for s > t, the definition of which is given in [START_REF] Decreusefond | Flow properties of differential equations driven by fractional Brownian motion[END_REF]. Fractional Brownian motion is probably the first process which is not a semi-martingale and for which it is still interesting to develop a stochastic calculus. That means we want to define a stochastic integral and solve stochastic differential equations driven by such a process. From the very beginning of this program, two approaches do exist. One approach is based on the Hölder continuity or the finite p-variation of the fBm sample-paths. The other way to proceed relies on the gaussiannity of fBm. The former is mainly deterministic and was initiated by Zähle [START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus[END_REF], Feyel, de la Pradelle [START_REF] Feyel | On fractional Brownian processes[END_REF] and Russo, Vallois [START_REF] Russo | The generalized covariation process and Itô formula[END_REF][START_REF] Russo | Itô formula for C 1 -functions of semimartingales[END_REF]. Then, came the notion of rough paths introduced by Lyons [START_REF] Lyons | Differential equations driven by rough signals[END_REF], whose application to fBm relies on the work of Coutin, Qian [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions[END_REF]. These works have been extended in the subsequent works [START_REF] Coutin | Good rough path sequences and applications to anticipating stochastic calculus[END_REF][START_REF] Decreusefond | Flow properties of differential equations driven by fractional Brownian motion[END_REF][START_REF] Friz | Approximations of the Brownian rough path with applications to stochastic analysis[END_REF][START_REF] Friz | A note on the notion of geometric rough paths[END_REF][START_REF] Gradinaru | m-order integrals and generalized Itô's formula: the case of a fractional Brownian motion with any Hurst index[END_REF][START_REF] Lejay | On (p, q)-rough paths[END_REF][START_REF] Lyons | An extension theorem to rough paths[END_REF][START_REF] Neuenkirch | Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion[END_REF][START_REF] Nourdin | Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire[END_REF][START_REF] Nourdin | On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion[END_REF][START_REF] Nourdin | Some linear fractional stochastic equations[END_REF]. A new way of thinking came with the independent but related works of Feyel, de la Pradelle [START_REF] Feyel | Curvilinear integrals along enriched paths[END_REF] and Gubinelli [START_REF] Gubinelli | Controlling rough paths[END_REF]. The integral with respect to fBm was shown to exist as the unique process satisfying some characterization (analytic in the case of [START_REF] Feyel | Curvilinear integrals along enriched paths[END_REF], algebraic in [START_REF] Gubinelli | Controlling rough paths[END_REF]). As a byproduct, this showed that almost all the existing integrals throughout the literature were all the same as they all satisfy these two conditions. Behind each approach but the last too, is a construction of an integral defined for a regularization of fBm, then the whole work is to show that under some convenient hypothesis, the approximate integrals converge to a quantity which is called the stochastic integral with respect to fBm. The main tool to prove the convergence is either integration by parts in the sense of fractional deterministic calculus, either enrichment of the fBm by some iterated integrals proved to exist independently or by analytic continuation [START_REF] Unterberger | An explicit rough path construction for continuous paths with arbitrary Hölder exponent by Fourier normal ordering[END_REF][START_REF] Unterberger | A Lévy area by Fourier normal ordering for multidimensional fractional Brownian motion with small Hurst index[END_REF].

In the probabilistic approach [START_REF] Alòs | Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2[END_REF][START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF][START_REF] Decreusefond | Stochastic integration with respect to Gaussian processes[END_REF][START_REF] Decreusefond | Stochastic integration with respect to fractional Brownian motion[END_REF][START_REF] Decreusefond | Stochastic calculus with respect to Volterra processes[END_REF][START_REF] Decreusefond | Stochastic analysis of the fractional Brownian motion[END_REF][START_REF] Hu | Differential equations driven by Hölder continuous functions of order greater than 1/2[END_REF][START_REF] Nualart | Differential equations driven by fractional Brownian motion[END_REF][START_REF] Nualart | Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion[END_REF], the idea is also to define an approximate integral and then prove its convergence. It turns out that the key tool is here the integration by parts in the sense of Malliavin calculus.

In dimension greater than one, with the deterministic approach, one knows how to define the stochastic integral and prove existence and uniqueness of fBm driven SDEs for fBm with Hurst index greater than 1/4. Within the probabilistic framework, one knows how to define a stochastic integral for any value of H but one cannot prove existence and uniqueness of SDEs whatever the value of H. The primary motivation of this work is to circumvent this problem.

In [START_REF] Decreusefond | Stochastic calculus with respect to Volterra processes[END_REF][START_REF] Decreusefond | Stochastic analysis of the fractional Brownian motion[END_REF], we defined stochastic integrals with respect to fBm as a "damped-Stratonovitch" integral with respect to the underlying standard Brownian motion. This integral is defined as the limit of Riemann-Stratonovitch sums, the convergence of which is proved after an integration by parts in the sense of Malliavin calculus. Unfortunately, this manipulation generates non-adaptiveness: Formally the result can be expressed as

t 0 u(s) • dB H (s) = δ(K * t u) + trace(K * t ∇u),
where K is defined by

Kf (t) = d dt t 0 K H (t, s)f (s) ds and K * t is the adjoint of K in L 2 ([0, t], R).
In particular, there exists k such that

K * t f (s) = t s k(t, u)f (u) du
for any f ∈ L 2 ([0, t], R) so that even if u is adapted (with respect to the Brownian filtration), the process (s → K * t u(s)) is anticipative. However, the stochastic integral process (t → t 0 u(s)• dB H (s)) remains adapted, hence, the anticipative aspect is, in some sense, artificial. The motivation of this work is to show, that up to time reversal, we can work with adapted process and Itô integrals. The time-reversal properties of fBm were already studied in [START_REF] Darses | Time reversal for drifted fractional Brownian motion with Hurst index H > 1/2[END_REF] in a different context: It was shown there that the time-reversal of the solution of an fBm-driven SDE of the form

dY (t) = u(Y (t)) dt + dB H (t)
is still a process of the same form. With a slight adaptation of our method to fBm-driven SDEs with drift, one should recover the main theorem of [START_REF] Darses | Time reversal for drifted fractional Brownian motion with Hurst index H > 1/2[END_REF].

In what follows, there is no restriction about the dimension but we need to assume that any component of B H is an fBm of Hurst index greater than 1/2. Consider that we want to solve the equation ( 1)

X t = x + t 0 σ(X s ) • dB H (s), 0 ≤ t ≤ T
where σ is a deterministic function whose properties will be fixed below. It turns out that it is essential to investigate the more general equations:

(A) X r, t = x + t r σ(X r, s ) • dB H (s), 0 ≤ r ≤ t ≤ T.
The strategy is then the following: We will first consider the reciprocal problem:

(B) Y r, t = x - t r σ(Y s, t ) • dB H (s), 0 ≤ r ≤ t ≤ T.
The first critical point is that when we consider {Z r, t := Y t-r, t , r ∈ [0, t]}, this process solves an adapted, past dependent, stochastic differential equation with respect to a standard Brownian motion. Moreover, because K H is lower-triangular and sufficiently regular, the trace term vanishes in the equation defining Z. We have then reduced the problem to an SDE with coefficients dependent on the past, a problem which can be handled by the usual contraction methods. We do not claim that the results presented are new (for instance see the brilliant monograph [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF] for detailed results obtained via rough paths theory) but it seems interesting to have purely probabilistic methods which show that fBm driven SDEs do have strong solutions which are homeomorphisms. Moreover, the approach given here shows the irreducible difference between the case H < 1/2 and H > 1/2 : The trace term only vanishes in the latter situation, so that such an SDE is merely a usual SDE with past-dependent coefficients. This representation may be fruitful for instance, to analyze the support and prove the absolute continuity of solutions of (1).

This paper is organized as follows: After some preliminaries on fractional Sobolev spaces, often called Besov-Liouville space, we address, in Section 3, the problem of Malliavin calculus and time reversal. This part is interesting in its own since stochastic calculus of variations is a framework oblivious to time. Constructing such a notion of time is achieved using the notion of resolution of the identity as introduced in [START_REF] Üstünel | The construction of filtrations on abstract Wiener spaces[END_REF][START_REF] Li | Un traitement unifié de la représentation des fonctionnelles de Wiener[END_REF]. We then introduce the second key ingredient which is the notion of strict causality or quasi-nilpotence, see [START_REF] Zakai | When does the Ramer formula look like the Girsanov formula ?[END_REF] for a related application. In Section 4, we show that solving Equation (B) reduces to solve a past dependent stochastic differential equation with respect to a standard Brownian motion, see Equation (C) below. Then, we prove existence, uniqueness and some properties of this equation. Technical lemmas are postponed to Section 5.

Besov-Liouville Spaces

Let T > 0 be fix real number. For a measurable function f :

[0, T ] → R n , we define τ T f by τ T f (s) = f (T -s) for any s ∈ [0, T ].
For t ∈ [0, T ], e t f will represent the restriction of f to [0, t], i.e., e t f = f 1 [0, t] . For any linear map A, we denote by A * T , its adjoint in L 2 ([0, T ]; R n ). For η ∈ (0, 1], the space of η-Hölder continuous functions on [0, T ] is equipped with the norm

f Hol(η) = sup 0<s<t<T |f (t) -f (s)| |t -s| η + f ∞ .
Its topological dual is denoted by Hol(η) * . For f ∈ L 1 ([0, T ]; R n ; dt), (denoted by L 1 for short) the left and right fractional integrals of f are defined by :

(I γ 0 + f )(x) = 1 Γ(γ) x 0 f (t)(x -t) γ-1 dt , x ≥ 0, (I γ T -f )(x) = 1 Γ(γ) T x f (t)(t -x) γ-1 dt , x ≤ T,
where γ > 0 and I 0 0 + = I 0 T -= Id . For any γ ≥ 0, p, q ≥ 1, any f ∈ L p and g ∈ L q where p -1 + q -1 ≤ γ, we have :

(2)

T 0 f (s)(I γ 0 + g)(s) ds = T 0 (I γ T -f )(s)g(s) ds.
The Besov-Liouville space I γ 0 + (L p ) := I + γ,p is usually equipped with the norm : (3)

I γ 0 + f I + γ,p = f L p . Analogously, the Besov-Liouville space I γ T -(L p ) := I - γ,p
is usually equipped with the norm :

I -γ T -f I - γ,p = f L p .
We then have the following continuity results (see [START_REF] Feyel | On fractional Brownian processes[END_REF][START_REF] Samko | Fractional Integrals and Derivatives[END_REF]) :

Proposition 2.1. i. If 0 < γ < 1, 1 < p < 1/γ, then I γ 0 + is a bounded operator from L p into L q with q = p(1 -γp) -1 .
ii. For any 0 < γ < 1 and any p ≥ 1, I + γ,p is continuously embedded in Hol(γ -1/p) provided that γ -1/p > 0.

iii. For any 0 < γ < β < 1, Hol(β) is compactly embedded in I γ,∞ . iv. For γp < 1, the spaces I + γ,p and I - γ,p are canonically isomorphic. We will thus use the notation I γ,p to denote any of this spaces.

Malliavin calculus and time reversal

Our reference probability space is Ω = C 0 ([0, T ], R n ), the space of R n -valued, continuous functions, null at time 0. The Cameron-Martin space is denoted by H and is defined as

H = I 1 0 + (L 2 ([0, T ])).
In what follows, the space L 2 ([0, T ]) is identified with its topological dual. We denote by κ the canonical embedding from H into Ω. The probability measure P on Ω is such that the canonical map W : ω → (ω(t), t ∈ [0, T ]) defines a standard n-dimensional Brownian motion. A mapping φ from Ω into some separable Hilbert space H is called cylindrical if it is of the form φ(w)

= d i=1 f i ( v i,1 , w , • • • , v i,n , w )x i where for each i, f i ∈ C ∞ 0 (R n , R) and (v i,j , j = 1, • • • , n) is a sequence of Ω * .
For such a function we define ∇ W φ as

∇ W φ(w) = i,j=1 ∂ j f i ( v i,1 , w , • • • , v i,n , w )ṽ i,j ⊗ x i ,
where ṽ is the image of v ∈ Ω * by the map (I 1 0 + • κ) * . From the quasi-invariance of the Wiener measure [START_REF] Üstünel | An Introduction to Analysis on Wiener Space[END_REF], it follows that ∇ W is a closable operator on L p (Ω; H), p ≥ 1, and we will denote its closure with the same notation. The powers of ∇ W are defined by iterating this procedure. For p > 1, k ∈ N, we denote by D p,k (H) the completion of H-valued cylindrical functions under the following norm

φ p,k = k i=0 (∇ W ) i φ L p (Ω; H⊗L p ([0,1]) ⊗i ) .
We denote by L p,1 the space D p,1 (L p ([0, T ]; R n )). The divergence, denoted δ W is the adjoint of ∇ W : v belongs to Dom p δ W whenever for any cylindrical φ,

|E T 0 v s ∇ W s φ ds | ≤ c φ L p
and for such a process v,

E T 0 v s ∇ W s φ ds = E φ δ W v .
We introduced the temporary notation W for standard Brownian motion to clarify the forthcoming distinction between a standard Brownian motion and its time reversal. Actually, the time reversal of a standard Brownian is also a standard Brownian motion and thus, both of them "live" in the same Wiener space. We now precise how their respective Malliavin gradient and divergence are linked. Con-

sider B = (B(t), t ∈ [0, T ]) an n-dimensional standard Brownian motion and BT = (B(T ) -B(T -t), t ∈ [0, T ]
) its time reversal. Consider the following map

Θ T : Ω -→ Ω ω -→ ω = ω(T ) -τ T ω,
and the commutative diagram

L 2 τT ----→ L 2 I 1 0 +     I 1 0 + Ω ⊃ H ----→ ΘT H ⊂ Ω Note that Θ -1 T = Θ T since ω(0) = 0. For a function f ∈ C ∞ b (R nk ), we define ∇ r f (ω(t 1 ), • • • , ω(t k )) = k j=1 ∂ j f (ω(t 1 ), • • • , ω(t k ))1 [0, tj ] (r) and ∇r f (ω(t 1 ), • • • , ω(t k )) = k j=1 ∂ j f (ω(t 1 ), • • • , ω(t k ))1 [0, tj ] (r).
The operator ∇ = ∇ B (respectively ∇ = ∇ B ) is the Malliavin gradient associated with a standard Brownian motion (respectively its time reversal). Since,

f (ω(t 1 ), • • • , ω(t k )) = f (ω(T ) -ω(T -t 1 ), • • • , ω(T ) -ω(T -t k )), we can consider f (ω(t 1 ), • • • , ω(t k ))
as a cylindrical function with respect to the standard Brownian motion. As such its gradient is given by

∇ r f (ω(t 1 ), • • • , ω(t k )) = k j=1 ∂ j f (ω(t 1 ), • • • , ω(t k ))1 [T -tj , T ] (r).
We thus have, for any cylindrical function F , (4)

∇F • Θ T (ω) = τ T ∇F (ω).
Since Θ * T P = P and τ T is continuous from L p into itself for any p, it is then easily shown that the spaces D p, k and Ďp, k (with obvious notations) coincide for any p, k and that (4) holds for any element of one of these spaces. Hence we have proved the following theorem: Theorem 3.1. For any p ≥ 1 and any integer k, the spaces D p, k and Ďp, k coincide. For any F ∈ D p, k for some p, k,

∇(F • Θ T ) = τ T ∇(F • Θ T ), P a.s..
By duality, an analog result follows for divergences. Theorem 3.2. A process u belongs to the domain of δ if and only if τ T u belongs to the domain of δ and then, the following equality holds:

(5) δ(u(ω))(ω) = δ(τ T u(ω))(ω) = δ(τ T u • Θ T )(ω).
Proof. For u ∈ L 2 , for cylindrical F , we have on the one hand:

E F (ω) δu(ω) = E ( ∇F (ω), u) L 2 ,
and on the other hand,

E ( ∇F (ω), u) L 2 = E [(τ T ∇F • Θ T (ω), u) L 2 ] = E [(∇F • Θ T (ω), τ T u) L 2 ] = E [F • Θ T (ω)δ(τ T u)(ω)] = E [F (ω)δ(τ T u)(ω)] .
Since this is valid for any cylindrical F , (5) holds for u ∈ L 2 . Now, for u in the domain of divergence (see [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF][START_REF] Üstünel | An Introduction to Analysis on Wiener Space[END_REF]),

δu = i (u, h i ) L 2 δh i -(∇u, h i ⊗ h i ) L 2 ⊗L 2 , where (h i , i ∈ N) is an orthonormal basis of L 2 ([0, T ]; R n ). Thus, we have δ(u(ω))(ω) = i (u(ω), h i ) L 2 δh i (ω) -( ∇u(ω), h i ⊗ h i ) L 2 ⊗L 2 = i (u(ω), h i ) L 2 δ(τ T h i )(ω) -(∇u(ω), τ T h i ⊗ h i ) L 2 ⊗L 2 = i (τ T u(ω), τ T h i ) L 2 δ(τ T h i )(ω) -(∇τ T u(ω), τ T h i ⊗ τ T h i ) L 2 ⊗L 2 ,
where we have taken into account that τ T in an involution. Since (h i , i ∈ N) is an orthonormal basis of L 2 ([0, T ]; R n ), identity ( 5) is satisfied for any u in the domain of δ.

Causality and quasi-nilpotence.

In anticipative calculus, the notion of trace of an operator plays a crucial role, we refer to [START_REF] Dunford | Linear operators. Part II[END_REF] for more details on trace.

Definition 3.1. Let V be a bounded map from L 2 ([0, T ]; R n ) into itself. The map V is said to be trace-class whenever for one CONB (h n , n ≥ 1) of L 2 ([0, T ]; R n ), n≥1 |(V h n , h n ) L 2 | is finite.
Then, the trace of V is defined by

trace(V ) = n≥1 (V h n , h n ) L 2 .
It is easily shown that the notion of trace does not depend on the choice of the CONB.

Definition 3.2. A family E of projections (E λ , λ ∈ [0, 1]) in L 2 ([0, T ]; R n ) is called a resolution of the identity if it satisfies the conditions (1) E 0 = 0 and E 1 = Id. (2) E λ E µ = E λ∧µ . (3) lim µ↓λ E µ = E λ for any λ ∈ [0, 1) and lim µ↑1 E µ = Id .
For instance, the family

E = (e λT , λ ∈ [0, 1]) is a resolution of the identity in L 2 ([0, T ]; R n ). Definition 3.3. A partition π of [0, T ] is a sequence {0 = t 0 < t 1 < . . . < t n = T }.

Its mesh is denoted by |π| and defined by |π|

= sup i |t i+1 -t i |.
The causality plays a crucial role in what follows. The next definition is just the formalization in terms of operator of the intuitive notion of causality.

Definition 3.4. A continuous map V from L 2 ([0, T ]; R n ) into itself is said to be E-

causal if and only if the following condition holds:

E λ V E λ = E λ V for any λ ∈ [0, 1]. For instance, an operator V in integral form V f (t) = T 0 V (t, s)f (s) ds is causal if and only if V (t, s) = 0 for s ≥ t, i.e.
, computing V f (t) needs only the knowledge of f up to time t and not after. Unfortunately, this notion of causality is insufficient for our purpose and we are led to introduce the notion of strict causality as in [START_REF] Feintuch | System theory[END_REF]. Definition 3.5. Let V be a causal operator. It is a strictly causal operator whenever for any ε > 0, there exists a partition π of [0, T ] such that for any

π ′ = {0 = t 0 < t 1 < . . . < t n = T } ⊂ π, (E ti+1 -E ti )V (E ti+1 -E ti ) L 2 < ε, for i = 0, • • • , n -1.
Note carefully that the identity map is causal but not strictly causal. Indeed, if V = Id, for any s < t, 

(E t -E s )V (E t -E s ) L 2 = E t -E s L 2 = 1 since E t -E s is a projection. However, if V is hyper-contractive,
[0, 1]) or E = (Id -e (1-λ)T , λ ∈ [0, 1]). If V is an E-causal map continuous from L 2 into L p for some p > 2 then V is strictly E-causal.
Proof. Let π be any partition of [0, T ]. Assume E = (e λT , λ ∈ [0, 1]), the very same proof works for the other mentioned resolution of the identity. According to Hölder formula, we have: For any 0 ≤ s < t ≤ T ,

(E t -E s )V (E t -E s )f L 2 = t s |V (f 1 (s, t] )(u)| 2 du ≤ (t -s) 1-2/p V (f 1 (s, t] ) L p/2 ≤ c (t -s) 1-2/p f L 2 .
Then, for any ε > 0, there exists η > 0 such that |π| < η implies (E ti+1 -

E ti )V (E ti+1 -E ti )f L 2 ≤ ε for any {0 = t 0 < t 1 < . . . < t n = T } ⊂ π and any i = 0, • • • , n -1.
The importance of strict causality lies in the next theorem we borrow from [START_REF] Feintuch | System theory[END_REF].

Theorem 3.4. The set of strictly causal operators coincides with the set of quasinilpotent operators, i.e., trace-class operators such that trace(V n ) = 0 for any integer n ≥ 1.

Moreover, we have the following stability theorem.

Theorem 3.5. The set of strictly causal operators is a two-sided ideal in the set of causal operators. Definition 3.6. Let E be a resolution of the identity in L 2 ([0, T ]; R n ). Consider the filtration F E defined as

F E t = σ{δ W (E λ h), λ ≤ t, h ∈ L 2 }. An L 2 -valued random variable u is said to be F E -adapted if for any h ∈ L 2 , the real valued process < E λ u, h > is F E -adapted. We denote by D E p,k (H) the set of F E -adapted random variables belonging to D p,k (H). If E = (e λT , λ ∈ [0, 1]
), the notion of F E adapted processes coincides with the usual one for the Brownian filtration and it is well known that a process u is adapted if and only if ∇ W r u(s) = 0 for r > s. This result can be generalized to any resolution of the identity.

Theorem 3.6 (Proposition 3.1 of [42]). Let u belongs to L p,1 . Then u is F E - adapted if and only if ∇ W u is E-causal.
We then have the following key theorem: Theorem 3.7. Assume the resolution of the identity to be E = (e λT , λ ∈ [0, 1]) either E = (Id -e (1-λ)T , λ ∈ [0, 1]) and that V is an E-strictly causal continuous operator from L 2 into L p for some p > 2. Let u be an element of D E 2,1 (L 2 ). Then, V ∇ W u is of trace class and we have trace(V ∇ W u) = 0.

Proof. Since u is adapted, ∇ W u is E-causal. According to Theorem 3.5, V ∇ W u is strictly causal and the result follows by Theorem 3. [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions[END_REF].

In what follows, E 0 is the resolution of the identity in the Hilbert space L 2 defined by e λ T f = f 1 [0, λT ] and Ě0 is the resolution of the identity defined by ěλT f = f 1 [(1-λ)T,T ] . The filtration F E 0 and F Ě0 are defined accordingly. Next lemma is immediate when V is given in the form V f (t) = t 0 V (t, s)f (s) ds. Unfortunately such a representation as an integral operator is not always available. We give here an algebraic proof to emphasize the importance of causality.

Lemma 3.8. Let V be a map from L 2 ([0, T ]; R n ) into itself such that V is E 0 - causal. Let V * be the adjoint of V in L 2 ([0, T ]; R n ). Then, the map τ T V * T τ T is Ě0 -causal.
Proof. This is a purely algebraic lemma once we have noticed that [START_REF] Decreusefond | Stochastic integration with respect to Gaussian processes[END_REF] τ T e r = (Id -e T -r )τ T for any 0 ≤ r ≤ T.

For, it suffices to write

(7) τ T e r f (s) = f (T -s)1 [0, r] (T -s) = f (T -s)1 [T -r, T ] (s) = (Id -e T -r )τ T f (s), for any 0 ≤ s ≤ T.
We have to show that e r τ T V * T τ T e r = e r τ T V * T τ T or equivalently e r τ T V τ T e r = τ T V τ T e r , since e * r = e r and τ * T = τ T . Now, ( 7) yields e r τ T V τ T e r = τ T V τ T e r -e T -r V τ T e r .

Use [START_REF] Decreusefond | Stochastic integration with respect to fractional Brownian motion[END_REF] again to obtain

e T -r V τ T e r = e T -r V (Id -e T -r )τ T = (e T -r V -e T -r V e T -r )τ T = 0, since V is E-causal.

Stratonovitch integrals.

In what follows, η belongs to (0, 1] and V is a linear operator. For any p ≥ 2, we set:

Hypothesis I (p, η). The linear map V is continuous from L p ([0, T ]; R n ) into the Banach space Hol(η).
Definition 3.7. Assume that Hypothesis I(p, η) holds. The Volterra process associated to V , denoted by W V is defined by

W V (t) = δ W V (1 [0, t] ) , for all t ∈ [0, T ].
For any subdivision π of [0, T ], i.e., π = {0 = t 0 < t 1 < . . . < t n = T }, of mesh |π|, we consider the Stratonovitch sums:

(8) R π (t, u) = δ W ti∈π 1 θ i ti+1∧t ti∧t V u(r) dr 1 [ti, ti+1) + ti∈π 1 θ i [ti∧t,ti+1∧t] 2 V (∇ W
r u)(s) ds dr.

Definition 3.8. We say that u is V -Stratonovitch integrable on [0, t] whenever the family R π (t, u), defined in [START_REF] Decreusefond | Stochastic calculus with respect to Volterra processes[END_REF], converges in probability as |π| goes to 0. In this case the limit will be denoted by t 0 u(s) • dW V (s). Example 1. The first example is the so-called Lévy fractional Brownian motion of Hurst index H > 1/2, defined as

1 Γ(H + 1/2) t 0 (t -s) H-1/2 dB s = δ(I H-1/2 T - (1 [0, t] )).

This amounts to say that

V = I H-1/2 T - . Thus Hypothesis I(p, H -1/2 -1/p) holds provided p(H -1/2) > 1.

Example 2. The other classical example is the fractional Brownian motion with stationary increments of Hurst index H > 1/2, which can be written as

t 0 K H (t, s) dB(s), where (9) K H (t, r) = (t -r) H-1 2 Γ(H + 1 2 ) F ( 1 2 -H, H - 1 2 , H + 1 2 , 1 - t r )1 [0,t) (r).
The Gauss hyper-geometric function F (α, β, γ, z) (see [START_REF] Nikiforov | Special Functions of Mathematical Physics[END_REF]) is the analytic continuation on C × C × C\{-1, -2, . . .} × {z ∈ C, Arg|1 -z| < π} of the power series We know from [START_REF] Samko | Fractional Integrals and Derivatives[END_REF] that K H is an isomorphism from L p ([0, 1]) onto I + H+1/2,p and

+∞ k=0 (α) k (β) k (γ) k k! z k ,
K H f = I 1 0 + x H-1/2 I H-1/2 0 + x 1/2-H f. Consider K H = I -1 0 + • K H . Then it is clear that t 0 K H (t, s) dB(s) = t 0 (K H ) * T (1 [0,t] )(s) dB(s),
hence that we are in the framework of Definition 3.8 provided that we take V = (K H ) * T . Hypothesis I(p, H -1/2 -1/p) is satisfied provided that p(H -1/2) > 1. The next theorem then follows from [START_REF] Decreusefond | Stochastic calculus with respect to Volterra processes[END_REF]. Theorem 3.9. Assume that Hypothesis I(p, η) holds. Assume that u belongs to L p,1 . Then u is V -Stratonovitch integrable, there exists a process which we denote by D W u such that D W u belongs to L p (P ⊗ ds) and (10)

T 0 u(s) • dW V (s) = δ W (V u) + T 0 D W u(s) ds.
The so-called "trace-term" satisfies the following estimate:

(11) E T 0 |D W u(r)| p dr ≤ c T pη u p Lp, 1 ,
for some universal constant c. Moreover, for any r ≤ T , e r u is V -Stratonovitch integrable and

r 0 u(s) • dW V (s) = T 0 (e r u)(s) • dW V (s) = δ W (V e r u) + r 0 D W u(s) ds
and we have the maximal inequality:

(12) E . 0 u(s) • dW V (s) p Hol(η) ≤ c u p Lp,1 ,
where c does not depend on u.

The main result of this Section is the following theorem which states that the time reversal of a Stratonovitch integral is an adapted integral with respect to the time reversed Brownian motion. Due to its length, its proof is postponed to Section 5.1.

Theorem 3.10. Assume that Hypothesis I(p, η) holds. Let u belong to L p,1 and let

VT = τ t V τ T . Assume furthermore that V is Ě0 -causal and that ǔ = u • Θ -1 T is F Ě0 -adapted. Then, (13) T -r T -t τ T u(s) • dW V (s) = t r VT (1 [r, t] ǔ)(s) d BT (s), 0 ≤ r ≤ t ≤ T,

where the last integral is an Itô integral with respect to the time reversed Brownian motion BT (s) = B(T ) -B(T -s) = Θ T (B)(s).

Remark 3.1. Note that at a formal level, we could have an easy proof of this theorem. For instance, consider the Lévy fBm, a simple computations shows that VT = I H-1/2 0 + for any T. Thus, we are led to compute trace(I H-1/2 0 + ∇u). If we had sufficient regularity, we could write trace(I

H-1/2 0 + ∇u) = T 0 s 0 (s -r) H-3/2 ∇ s u(r) dr ds = 0,
since ∇ s u(r) = 0 for s > r for u adapted. Obviously, there are many flaws in these lines of proof: The operator I H-1/2 0 + ∇u is not regular enough for such an expression of the trace to be true. Even more, there is absolutely no reason for VT ∇u to be a kernel operator so we can't hope such a formula. These are the reasons that we need to work with operators and not with kernels.

driven SDEs

Let G the group of homeomorphisms of R n equipped with the distance: We introduce a distance d on G by

d(ϕ, φ) = ρ(ϕ, φ) + ρ(ϕ -1 , φ -1 ), where ρ(ϕ, φ) = ∞ N =1 2 -N sup |x|≤N |ϕ(x) -φ(x)| 1 + sup |x|≤N |ϕ(x) -φ(x)| • Then, G is a complete topological group. Consider the equations (A) X r, t = x + t r σ(X r, s ) • dW V (s), 0 ≤ r ≤ t ≤ T. (B) Y r, t = x - t r σ(Y s, t ) • dW V (s), 0 ≤ r ≤ t ≤ T.
As a solution of (A) is to be constructed by "inverting" a solution of (B), we need to add to the definition of a solution of (A) or (B) the requirement of being a flow of homeomorphisms. This is the meaning of the following definition.

Definition 4.1. By a solution of (A), we mean a measurable map

Ω × [0, T ] × [0, T ] -→ G (ω, r, t) -→ (x → X r,t (ω, x))
such that the following properties are satisfied :

(1) For any

0 ≤ r ≤ t ≤ T , for any x ∈ R n , X r, t (ω, x) is σ{W V (s), r ≤ s ≤ t}- measurable, (2) For any 0 ≤ r ≤ T , for any x ∈ R n , the processes (ω, t) → X r,t (ω, x) and
(ω, t) → X -1 r,t (ω, x) belong to L p,1 for some p ≥ 2.

(3) For any 0 ≤ r ≤ s ≤ t, for any x ∈ R n , the following identity is satisfied:

X r,t (ω, x) = X s,t (ω, X r,s (ω, x)).
(4) Equation (A) is satisfied for any 0 ≤ r ≤ t ≤ T P-a.s..

Definition 4.2. By a solution of (B), we mean a measurable map

Ω × [0, T ] × [0, T ] -→ G (ω, r, t) -→ (x → Y r,t (ω, x))
such that the following properties are satisfied :

(1) For any 0 ≤ r ≤ t ≤ T , for any 2) For any 0 ≤ r ≤ T , for any x ∈ R n , the processes (ω, r) → Y r,t (ω, x) and

x ∈ R n , Y r, t (ω, x) is σ{W V (s), r ≤ s ≤ t}- measurable, (
(ω, r) → Y -1 r,t (ω, x) belong to L p,1 for some p ≥ 2.

(3) Equation (B) is satisfied for any 0 ≤ r ≤ t ≤ T P-a.s.. [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions[END_REF] For any 0 ≤ r ≤ s ≤ t, for any x ∈ R n , the following identity is satisfied:

Y r,t (ω, x) = Y r,s (ω, Y s,t (ω, x)).
At last consider the equation, for any 0

≤ r ≤ t ≤ T , (C) Z r, t = x - t r VT (σ • Z .,t 1 [r,t] )(s) d BT (s)
where B is a standard n-dimensional Brownian motion.

Definition 4.3. By a solution of (C), we mean a measurable map

Ω × [0, T ] × [0, T ] -→ G (ω, r, t) -→ (x → Z r,t (ω, x))
such that the following properties are satisfied :

(1) For any 0 ≤ r ≤ t ≤ T , for any x ∈ R n , Z r, t (ω, x) is σ{ BT (s), s ≤ r ≤ t}measurable, (2) For any 0 ≤ r ≤ t ≤ T , for any x ∈ R n , the processes (ω, r) → Z r,t (ω, x) and (ω, r) → Z -1 r,t (ω, x) belong to L p,1 for some p ≥ 2.

(3) Equation (C) is satisfied for any 0 ≤ r ≤ t ≤ T P-a.s.. Theorem 4.1. Assume that VT is an E 0 causal map continuous from L p into I α,p for α > 0 and p ≥ 4 such that αp > 1. Assume σ is Lipschitz continuous and sub-linear, see Eqn. [START_REF] Hu | Differential equations driven by Hölder continuous functions of order greater than 1/2[END_REF] for the definition. Then, there exists a unique solution to equation (C). Let Z denote this solution. For any (r, r ′ ),

E [|Z r,T -Z r ′ ,T | p ] ≤ c|r -r ′ | pη . Moreover, (ω, r) → Z r,s (ω, Z s,t (ω, x)) ∈ L p,1 , for any r ≤ s ≤ t ≤ T.
Since this proof needs several lemmas, we defer it to Section 5.2. Theorem 4.2. Assume that VT is an E 0 causal map continuous from L p into I α,p for α > 0 and p ≥ 2 such that αp > 1. For fixed T , there exists a bijection between the space of solutions of Equation (B) on [0, T ] and the set of solutions of Equation (C).

Proof. Set Z r,T (ω, x) = Y T -r,T (Θ -1 T (ω), x) or equivalently (14) Y r,T (ω, x) = Z T -r,T (Θ T (ω), x).
According to Theorem 3.10, Y is satisfies (B) if and only if Z satisfies (C). The regularity properties are immediate since L p is stable by τ T .

The first part of the next result is then immediate.

Corollary 4.3. Assume that VT is an E 0 causal map continuous from L p into I α,p for α > 0 and p ≥ 2 such that αp > 1. Then Equation (B) has one and only solution and for any 0 ≤ r ≤ s ≤ t, for any x ∈ R n , the following identity is satisfied:

(15) Y r,t (ω, x) = Y r,s (ω, Y s,t (ω, x)).
Proof. According to Theorem 4.2 and 4.1, (B) has at most one solution since (C) has a unique solution. As to the existence, point (1) to (3) are immediately deduced from the corresponding properties of Z and Equation ( 14).

According to Theorem 4.1, (ω, r) → Y r,s (ω, Y s,t (ω, x)) belongs to L p,1 hence we can apply the substitution formula and we get:

(16) Y r,s (ω, Y s,t (ω, x)) = Y s,t (ω, x) - s r σ(Y τ,s (ω, x)) • dW V (τ ) x=Ys,t(ω, x) = x - t s σ(Y τ,t (ω, x) • dW V (τ ) - s r σ(Y τ,s (ω, Y s,t (ω, x))) • dW V (τ ). Set R τ,t = Y τ,t (ω, x) for s ≤ τ ≤ t Y τ,s (ω, Y s,t (ω, x)) for r ≤ τ ≤ s.
Then, in view of ( 16), R appears to be the unique solution (B) and thus R s,t (ω, x) = Y s,t (ω, x). Point (4) is thus proved. Corollary 4.4. For x fixed, the random field (Y r,t (x), 0 ≤ r ≤ t ≤ T ) admits a continuous version. Moreover,

E [|Y r,s (x) -Y r ′ ,s ′ (x)| p ] ≤ c(1 + |x| p )(|s ′ -s| pη + |r -r ′ | pη ).
We still denote by Y this continuous version.

Proof. Without loss of generality, assume that s ≤ s ′ and remark that Y s, s ′ (x) thus belongs to σ{ BT u , u ≥ s}.

E [|Y r,s (x) -Y r ′ ,s ′ (x)| p ] ≤ c (E [|Y r,s (x) -Y r ′ ,s (x)| p ] + E [|Y r ′ ,s (x) -Y r ′ ,s ′ (x)| p ]) = c (E [|Y r,s (x) -Y r ′ ,s (x)| p ] + E [|Y r ′ ,s (x) -Y r ′ ,s (Y s,s ′ (x))| p ]) = c (E [|Z s-r,s (x) -Z s-r ′ ,s (x)| p ] + E [|Z s-r ′ ,s (x) -Z s-r ′ ,s (Y s,s ′ (x))| p ]) .
According to Theorem 5.6, ( 17)

E [|Z s-r,s (x) -Z s-r ′ ,s (x)| p ] ≤ c|r -r ′ | pη (1 + |x| p ).
In view of Theorem 3.10, the stochastic integral which appears in Equation (C) is also a Stratonovitch integral hence we can apply the substitution formula and say

Z s-r ′ ,s (Y s,s ′ (x)) = Z s-r ′ ,s (y)| y=Y s,s ′ (x) .
Thus we can apply Theorem 5.6 and we obtain

E [|Z s-r ′ ,s (x) -Z s-r ′ ,s (Y s,s ′ (x))| p ] ≤ cE [|x -Y s,s ′ (x)| p ] .
The right hand side of this equation is in turn equal to

E [|Z 0,s ′ -Z s ′ -s,s ′ (x)| p ] ,
thus, we get ( 18)

E [|Z s-r ′ ,s (x) -Z s-r ′ ,s (Y s,s ′ (x))| p ] ≤ c(1 + |x| p )|s ′ -s| pη
Combining ( 17) and [START_REF] Gradinaru | m-order integrals and generalized Itô's formula: the case of a fractional Brownian motion with any Hurst index[END_REF] gives

E [|Y r,s (x) -Y r ′ ,s ′ (x)| p ] ≤ c(1 + |x| p )(|s ′ -s| pη + |r -r ′ | pη ),
hence the result.

Thus, we have the main result of this paper.

Theorem 4.5. Assume that VT is an E 0 causal map continuous from L p into I α,p for α > 0 and p ≥ 4 such that αp > 1. Then Equation (A) has one and only one solution.

Proof. Under the hypothesis, we know that Equation (B) has a unique solution which satisfies [START_REF] Friz | Approximations of the Brownian rough path with applications to stochastic analysis[END_REF]. By definition of a solution of (B), the process Y -1 : (ω, s) → Y -1 st (ω, x) belongs to L p,1 hence we can apply the substitution formula. Following the lines of proof of the previous theorem, we see that Y -1 is a solution of (A).

In the reverse direction, two distinct solutions of (A) would give raise to two solutions of (B) by the same principles. Since this is definitely impossible in view of Theorem 4.3, Equation (A) has at most one solution.

5. Technical proofs 5.1. Substitution formula. The proof of 3.10 relies on several lemmas including one known in anticipative calculus as the substitution formula, cf. [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]. Moreover,

E trace(V ∇ W u) p ≤ c u p Lp,1 . Proof. For each k, let (φ k, m , m = 1, • • • , 2 k ) be the functions φ k, m = 2 k/2 1 [(m-1)2 -k , m2 -k ) .
Let P k be the projection onto the span of the φ k, m , since ∇ W V u is of trace class, we have (see [START_REF] Simon | Trace ideals and their applications[END_REF])

trace(V ∇ W p t u) = lim k→+∞ trace(P k V ∇ W p t u P k ). Now, trace(P k V ∇ W u P k ) = k m=1 (V ∇ W p t u, φ k,m ⊗ φ k,m ) L 2 ⊗L 2 = k m=1 2 k m2 -k ∧t (m-1)2 -k ∧t m2 -k ∧t (m-1)2 -k ∧t V (∇ W r u)(s) ds dr.
According to the proof of Theorem 3.9, the first part of the theorem follows. The second part is then a rewriting of [START_REF] Dunford | Linear operators. Part II[END_REF].

For p ≥ 1, let Γ p be the set of random fields:

u : R m -→ L p,1
x -→ ((ω, s) → u(ω, s, x))

equipped with the semi-norms,

p K (u) = sup x∈K u(x) Lp,1
for any compact K of R m . 

) T 0 u(s, F ) • dW V (s) = T 0 u(s, x) • dW V s x=F . 19 
Proof. Simple random fields of the form

u(ω, s, x) = K l=1 H l (x)u l (ω, s)
with H l smooth and u l in L p,1 are dense in Γ p . In view of [START_REF] Feintuch | System theory[END_REF], it is sufficient to prove the result for such random fields. By linearity, can reduce the proof to random fields of the form H(x)u(ω, s). Now for any partition π,

δ W ti∈π 1 θ i ti+1∧t ti∧t H(F )V (u(ω, .))(r) dr 1 [ti, ti+1) = H(F )δ W ti∈π 1 θ i ti+1∧t ti∧t V (u(ω, .))(r) dr 1 [ti, ti+1) - ti∈π ti+1∧t ti∧t ti+1∧t ti∧t H ′ (F )∇ W s F V u(r) ds dr.
On the other hand,

∇ W s (H(F )u(ω, r)) = H ′ (F )∇ W s F u(r), hence ti∈π 1 θ i [ti∧t,ti+1∧t] 2 V (∇ W r H(F )u)(s) ds dr = ti∈π 1 θ i [ti∧t,ti+1∧t] 2 H ′ (F )∇ W s F V u(r) ds dr.
According to Theorem 3.9, Eqn. ( 19) is satisfied for simple random fields.

Definition 5.1. For any 0 ≤ r ≤ t ≤ T , for u in L p, 1 , we define

t r u(s) • dW V (s) as t r u(s) • dW V (s) = t 0 u(s) • dW V (s) - r 0 u(s) • dW V (s) = T 0 e t u(s) dW V (s) - T 0 e r u(s) • dW V (s) = δ W (V (e t -e r )u) + t r D W u(s) ds.
By the very definition of trace class operators, the next lemma is straightforward. 

∈ L 2,1 such that ∇ W ⊗ τ T V u and ∇ W ⊗ V τ T u are of trace class. Then, τ T ∇ W ⊗ V u and ∇ W τ T ⊗ V u are of trace class. Moreover, we have: trace(∇ W ⊗ τ T V u) = trace(τ T ∇ W ⊗ V u) and trace(∇ W ⊗ (V τ T )u) = trace(∇ W τ T ⊗ V u).
Proof of 3.10. We first study the divergence term. In view of 3.2, we have

δ B (V (e T -r -e T -t )τ T ǔ • Θ T ) = δ B (V τ T (e t -e r )ǔ • Θ T ) = δ B (τ T VT (e t -e r )ǔ • Θ T ) = δ( VT (e t -e r )ǔ)(ω) = t r VT (1 [r, t] ǔ)(s) dB T (s).
According to Theorem 3.8, ( VT ) * is Ě0 causal and according to 3.3, it is strictly Ě0 causal. Thus, Theorem 3.7 implies that ∇V (e t -e r )ǔ is of trace class and quasi-nilpotent. Hence Lemma 5.4 induces that τ T VT τ T ⊗ τ T ∇τ T (e t -e r )ǔ is trace-class and quasi-nilpotent. Now, according to Theorem 3.1, we have

τ T VT τ T ⊗ τ T ∇τ T (e t -e r )ǔ = V (∇τ T (e T -r -e T -t )ǔ • Θ T ).
According to Theorem 3.9, we have proved (13).

The forward equation. Lemma 5.5. Assume that Hypothesis I(p, η) holds and that σ is Lipschitz continuous. Then, for any

0 ≤ a ≤ b ≤ T , the map VT • σ : C([0, T ], R n ) -→ C([0, T ], R n ) φ -→ VT (σ • ψ 1 [a,b] )
is Lipschitz continuous and Gâteaux differentiable. Its differential is given by:

(20) d VT • σ(φ)[ψ] = VT (σ ′ • φ ψ).
Assume furthermore that σ is sub-linear, i.e., Then, for any

ψ ∈ C([0, T ], R n ), for any t ∈ [0, T ], | VT (σ • ψ)(t)| ≤ cT η+1/p (1 + t 0 |ψ(s)| p ds) ≤ cT η+1/p (1 + ψ ∞ ).
Proof. Let ψ and φ be two continuous functions, since

C([0, T ], R n ) is continuously embedded in L p , VT (σ • ψ -σ • φ) belongs to Hol(η). Moreover, sup t≤T | VT (σ • ψ 1 [a,b] )(t) -VT (σ • φ 1 [a,b] )(t)| ≤ c VT ((σ • ψ -σ • φ) 1 [a,b] ) Hol(η) ≤ c (σ • ψ -σ • φ) 1 [a,b] L p ≤ c φ -ψ L p ([a, b]) ≤ c sup t≤T |ψ(t) -φ(t)|, since σ is Lipschitz continuous. Let ψ and ψ two continuous functions on [0, T ]. Since σ is Lipschitz continuous, we have σ(ψ(t) + εφ(t)) = σ(ψ(t)) + ε 1 0 σ ′ (uψ(t) + (1 -u)φ(t)) du.
Moreover, since σ is Lipschitz, σ ′ is bounded and

T 0 1 0 σ ′ (uψ(t) + (1 -u)φ(t)) du p dt ≤ c T.
This means that (t → 

Thus, lim

ε→0 ε -1 ( VT (σ • (ψ + εφ)) -VT (σ • ψ)) exists,
and VT • σ is Gâteaux differentiable and its differential is given by [START_REF] Hirsch | Propriété d'absolue continuité pour les équations différentielles stochastiques dépendant du passé[END_REF]. Since σ • ψ belongs to C([0, T ], R n ), according to Hypothesis I, we have:

| VT (σ • ψ)(t)| ≤ c t 0 s ηp |σ(ψ(s))| p ds 1/p ≤ cT η t 0 (1 + |ψ(s)| p ) ds 1/p ≤ cT η+1/p (1 + ψ p ∞ ) 1/p ≤ cT η+1/p (1 + ψ ∞ ).
The proof is thus complete.

Following [START_REF] Uppman | Sur le flot d'une équation différentielle stochastique[END_REF], we then have the following non trivial result. Theorem 5.6. Assume that Hypothesis I(p, η) holds and that σ is Lipschitz continuous. Then, there exists one and only one measurable map from Ω×[0, T ]×[0, T ] into G which satisfies the first two points of Definition (C). Moreover,

E [|Z r, t (x) -Z r ′ , t (x ′ )| p ] ≤ c(1 + |x| p ∨ |x ′ | p ) (|r -r ′ | pη + |x -x ′ | p )
and for any x ∈ R n , for any 0 ≤ r ≤ t ≤ T, we have

E [|Z r,t (x)| p ] ≤ c(1 + |x| p )e cT ηp+1 .
Note even if x and x ′ are replaced by σ{ BT (u), t ≤ u} measurable random variables, the last estimates still holds.

Proof. Existence, uniqueness and homeomorphy of a solution of (C) follow from [START_REF] Uppman | Sur le flot d'une équation différentielle stochastique[END_REF]. The regularity with respect to r and x is obtained as usual by BDG inequality and Gronwall Lemma. For x or x ′ random, use the independence of σ{ BT (u), t ≤ u} and σ{ BT (u), r ∧ r ′ ≤ u ≤ t}. Theorem 5.7. Assume that Hypothesis I(p, η) holds and that σ is Lipschitz continuous and sub-linear. Then, for any x ∈ R n , for any 0 ≤ r ≤ s ≤ t ≤ T , (ω, r) → Z r,s (ω, Z s,t (x)) and (ω, r) → Z -1 r,t (ω, x) belong to L p,1 . Proof. According to [START_REF] Hirsch | Propriété d'absolue continuité pour les équations différentielles stochastiques dépendant du passé[END_REF]Theorem 3.1], the differentiability of ω → Z r,t (ω, x) is ensured. Furthermore,

∇ u Z r,t = -VT (σ • Z .,t 1 [r, t] )(u) - t r
VT (σ ′ (Z .,t ).∇ u Z .,t 1 [r, t] )(s) d B(s), where σ ′ is the differential of σ. For M > 0, let Now, since 0 ≤ r ≤ s ≤ t ≤ T , Z s,t (x) is independent of Z r,s (x), thus the previous computations still hold and (ω, r) → Z r,s (ω, Z s,t (x)) belong to L p,1 .

ξ M = inf{τ, |∇ u Z τ, t | p ≥ M }
According to [START_REF] Sugita | On a characterization of the Sobolev spaces over an abstract Wiener space[END_REF], to prove that Z -1 r,t (x) belongs to D p,1 , we need to prove (1) for every h ∈ L 2 , there exists an absolutely continuous version of the process (t → Z -1 r,t (ω + th, x)), (2) there exists DZ -1 r,t , an L 2 -valued random variable such that for every h ∈ L Let Θ v = sup u≤v |∂ x Z u, t (x)|. The same kind of computations as above entails that (for the sake of brevity, we do not detail the localisation procedure as it is similar to the previous one): Hence,

E Θ 2q v ≤ c + c E t u Θ 2(q-1)
E Θ 2q v ≤ c 1 + t v E Θ 2q s ds ,
and [START_REF] Lejay | On (p, q)-rough paths[END_REF] follows by Fatou and Gronwall lemmas. Since Z r,t (ω, Z -1 r,t (ω, x)) = x, the implicit function theorem imply that Z -1 r, t (x) satisfies the first two properties and that ∇Z r,t (ω, Z -1 r,t (x)) + ∂Z r,t ∂x (ω, Z -1 r,t (x)) ∇Z -1 r,t (ω, x). It follows by Hölder inequality and Equation ( 22) that DZ -1 r,t (x)) p,1 ≤ c Z r,t (x)) 2p,1 (∂ x Z r, t (x)) -1 2p , hence Z -1 r, t belongs to L p, 1 .

  we have the following result: Lemma 3.3. Assume the resolution of the identity to be either E = (e λT , λ ∈

and (a) 0 = 1

 1 and (a) k = Γ(a + k) Γ(a) = a(a + 1) . . . (a + k -1).
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 5354 Let A and B be two continuous maps fromL 2 ([0, T ]; R n ) into itself. Then, the map τ T A ⊗ B (resp. Aτ T ⊗ B)is of trace class if and only if the mapA ⊗ τ T B (resp. A ⊗ Bτ T ) is of trace class. Moreover, in such a situation, trace(τ T A ⊗ B) = trace(A ⊗ τ T B), resp. trace(Aτ T ⊗ B) = trace(A ⊗ Bτ T ).The next corollary follows by a classical density argument. Let u

( 21 )

 21 |σ(x)| ≤ c(1 + |x|), for any x ∈ R n .

1 0 1 0σ

 11 σ ′ (uψ(t)+(1-u)φ(t)) du) belongs to L p . Hence, according to Hypothesis I, VT ( ′ (uψ(.) + (1 -u)φ(.)) du) C ≤ cT.

  Corollary 5.2 (Substitution formula). Assume that Hypothesis I(p, η) holds. Let {u(x), , x ∈ R m } belong to Γ p . Let F be a random variable such that ((ω, s) → u(ω, s, F )) belongs to L p,1 . Then,

	(

  and Z M τ, t = Z τ ∨ξM , t . Since VT is continuous from L p in to itself and σ is Lipschitz, according to BDG inequality, for r ≤ u,E [|∇ u Z r,t | p ] ≤ c 1 + E The integrability of E [|∇ u Z r,t | p ]with respect to u follows.

	E |∇ u Z M r,t | t r	u pη	r	u	|Z τ,t | p dτ du + E	r	t	s pη	r	s	|∇ u Z M τ,t | p dτ ds
	≤ c 1 + E										
					r	t	|∇ u Z M τ,t | p dτ	.
	Then, Gronwall Lemma entails that						
		E |∇ u Z M r,t | p ≤ c 1 + E		r	t	|Z τ,t | p dτ	,
	hence by Fatou lemma,							
									t	|Z τ,t | p dτ	.
									r		

p ≤ cE | VT (σ • Z M .,t 1 [r, t] )(u)| p + c E t r | VT (σ ′ (Z M .,t ) ∇ u Z M .,t 1 [r, t] )(s)| p ds ≤ c 1 + E t r |Z τ,t | p (t pη+1 -τ pη+1 ) dτ + E t r |∇ u Z M τ,t | p (t pη+1 -τ pη+1 ) dτ ≤ ct pη+1 1 + E t r |Z τ,t | p dτ + E

  DZ -1 r,t belongs to L 2 (Ω, L 2 ).

	2 ,					
		1 t	(Z -1 r,t (ω + th, x) -Z -1 r,t (ω, x))	t→0 ---→	0	T	DZ -1 r,t (s)h(s) ds,
	where the convergence holds in probability,
	(3) We first show that		
	(22)			E	∂Z r,t ∂x	(ω, Z -1 r,t (x))	-p	is finite.
	Since	∂Z r,t ∂x	(ω, x) = Id +	

t r VT (σ ′ (Z .,t (x)) ∂Z .,t (ω, x) ∂x )(s) d B(s),