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PASSIVE AND SELF-PROPELLED LOCOMOTION OF AN ELASTIC SWIMMER
IN A PERFECT FLUID

ALEXANDRE MUNNIER∗

Abstract. In this paper we are interested in studying the free motion of a hyperelastic body (also called
swimmer) immersed in a perfect fluid. We derive the Euler-Lagrange equations from the Least Action Principle of
Lagrangian Mechanics and prove that they are well-posed when the number of elastic modes is finite. The recourse
to a strain energy density function in the modeling allows many different constitutive equations for the hyperelastic
material to be considered. We perform numerical simulations, aiming to study passive locomotion (i.e. locomotion
at zero energy cost). As a first quite surprising result, we observe that the swimmer does not even have to be elastic
to experience passive locomotion in its idealized environment. Indeed, we provide an example of deformable (but non
elastic) swimmer, for which the fluid-body system behaves as an oscillating mechanical system. The shape changes
caused solely by the hydrodynamical forces on the body’s boundary turn out to be periodic strokes resulting in
locomotion. This phenomenon can be seen as a generalization, to deformable bodies, of the famous D’Alembert’s
paradox (1752) [11], claiming that the drag force is zero on a rigid solid moving with constant velocity. Many other
examples of passive locomotion, involving different types of hyperelastic swimmers, are studied. A special interest is
devoted to the study of energy and impulse exchanges between the fluid and the body.

In the last section, we assume that the swimmer has the ability to modify its shape by means of internal forces.
We prove that in this case, the equations of motion are still well-posed and we illustrate again with numerical
simulations that, starting from rest, self-propelled locomotion can be achieved.

Key words. Passive locomotion, elastic swimmer, perfect fluid, D’Alembert’s paradox.
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1. Introduction. The study of the self-propelled locomotion in a fluid by shape changes has
been drawing the attention of mathematicians for a decade. Although, at first, most of these works
have mainly aimed to improve the academic understanding of the locomotion of fish and aquatic
mammals, a challenging application emerged and sharpened the interest of scientists: the design of
biomimetic robots. Indeed, such swimming devices propelled and steered by shape changes would
be more efficient, stealthier and more maneuverable than if propeller-driven.

From the pioneering works of Galdi [12, 13], many mathematical models have been proposed.
Besides the modeling, authors have been mainly concerned with the well-posedness of the equations
of motion. Let us mention [15] in which the authors consider the dynamics of an articulated body
in a perfect potential fluid and [26] which provides a model for a fish-like swimming body in a
viscous fluid. We refer to [21, 22] and [23] for a more comprehensive bibliography on this topic. It
is worth noticing that in all of these articles, the deformations of the swimmer do not result from
the interaction with the surrounded fluid but are prescribed as functions of time. It is also the case
in [23] and [7], although in these papers the authors prove that there is a one-to-one correspondence
between the shape changes and the internal forces, within the body, they are caused by.

Although crucial for the design of autonomous underwater vehicles, theoretical results on con-
trollability or motion-planning are rare so far. Actually, only two types of fluid are simple enough to
allow controllability results: very viscous fluids driven by steady-state Stokes equations and perfect
fluids with potential flow. Furthermore, most of the published results in this field concern so-called
articulated bodies as in the works of Alouges, DeSimone and Lefebvre [1] (dealing with a three-
sphere mechanism swimming in a high Reynolds number fluid) or those of Melli, Rowley and Rufat
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[20]. We deal with a more complex model in [7], where we prove the approximated controllability
of a amoeba-like swimming body in a perfect fluid.

These models, to be more realistic, would require being supplemented with a dynamic for the
elasticity of the body. The main reason this has not been done before is that coupling the equations
of Fluid Dynamics (usually written within the Eulerian framework) to the equations of elasticity
(expressed within the Lagrangian formalism) is a difficult task. The existence of solutions for such a
coupled system of equations has been investigated quite recently in a series of papers [2, 5, 10, 3, 8].
In all of these articles, the fluid is assumed to be viscous and incompressible; the flow being governed
by Navier-Stokes equations.

In this paper, we propose a 2D model for the dynamic interaction between an ideal fluid and
a deformable swimmer, which can be elastic or not; the fluid-body system filling the whole space.
The model of deformable body we consider is inspired by that of Shapere and Wilczek introduced
in [27] and further discussed in [9]. The Euler-Lagrange equations are obtained by applying the
least action principle of Lagrangian Mechanics to the overall fluid-body system. This idea goes
back to the works of Thomson, Tait and Kirchhoff in their studies of the motion of rigid solids in a
perfect fluid, as described in the book of Lamb [17]. The main advantage of this method is to avoid
the troublesome calculation of the pressure on the body’s surface. Furthermore, since the elastic
swimmer and the fluid are treated as forming together one dynamical system, we also avoid the
tricky task of writing the dynamic coupling conditions between the equations of Fluid Mechanics,
Solid Mechanics and Elasticity taking place on the body’s surface.

Our model of elasticity, based on the use of a strain energy density function, is simple enough to
allow locomotion properties to be investigated but still allows many different constitutive equations
for the hyperelastic material to be considered. We show that the Euler-Lagrange equations of the
system can be reduced to a system of ODEs. When the number of elastic modes is finite, the system
of ODEs is also finite and we prove that it admits a unique smooth solution, well defined for all time.
Then we show through numerical simulations that, by choosing properly the initial conditions for
the fluid-body system, passive locomotion is possible. It means than within the isolated fluid-body
system (under no external applied forces), the swimmer undergoes elastic deformations resulting in
locomotion. This motion is endless because the system is conservative. The displacement is due to
the constant exchange of momentum between the shape changes and the fluid motion. A particular
example is worth being highlighted, involving a deformable (non elastic) swimmer. Starting with
zero initial rigid velocity, the shape changes (caused solely by the hydrodynamical forces on the
body’s boundary) produce time periodic strokes making the body swim. This phenomenon can be
seen as a generalization, to deformable bodies, of the famous D’Alembert’s paradox (1752) [11],
claiming that the drag force is constantly zero on a rigid solid moving with constant velocity. In
our example, the hydrodynamical forces are not zero for all time but turn out to be zero on average,
over a stroke. Notice that examples of passive locomotion have already been obtained in [16] with
toy models consisting in one-dimensional interconnected springs and mass, submerged in a perfect
fluid.

At last, we consider that the swimmer has the ability to modify its shape under the action
of internal forces. The Euler Lagrange equations have to be modified accordingly and we prove
that they are still well-posed. We perform again numerical simulations to illustrate some self-
propelled locomotion strategies. This is, to our knowledge, the first example of elastic shape
changing swimming body.

The paper is organized as follows: in the next Section, we address the modeling of a shape
changing swimmer in a perfect fluid. The Euler-Lagrange equations are obtained in Section 3. Sec-
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tion 4 is devoted to the modeling of the elasticity and to the numerical study of passive locomotion.
Self-propelled locomotion of the elastic body is investigated in Section 5. The numerics of this
paper is supplemented with a web page containing videos and additional material. It is located at
http://www.iecn.u-nancy.fr/~munnier/passive_locomotion/index.html.

2. Modeling. Although slightly different, most of the material of this section has already
been introduced and detailed in [7]. For the sake of convenience, we will recall the definitions and
important results and refer to [7] for the proofs.

The modeling requires considering a physical space and a computational space. Both are iden-
tified either with R2 or with the complex field C. To describe 2D vectors, we will mix the complex
notation z = z1 + iz2 (i2 = −1) with the real one z = (z1, z2)T or use the polar coordinates (r, θ)
with z = reiθ when necessary.

The computational space is endowed with a frame (E1,E2), D stands for the open unit disk
and Ω := C \ D̄.

We introduce two frames in the physical space: a Galilean fixed one (e1, e2) and a moving
one (e∗1, e

∗
2), the origin of which coincides at any time with the center-of-mass of the elastic body.

Therefore, the coordinates of the center-of-mass of the body are r := (r1, r2)T in (e1, e2) and
(0, 0)T in (e∗1, e

∗
2). More generally, the quantities will be denoted with asterisks when expressed in

the moving frame: for instance, the domain occupied by the body is B in (e1, e2) and B∗ in (e∗1, e
∗
2)

while F := R2 \ B̄ and F∗ := R2 \ B̄∗ both stand for the domain of the fluid.

B∗

t > 0

B

e∗2

0

e2

e1

0

e∗1

0

t = 0

F∗
F

r

v∗
v

e∗2

r0 e∗1

θ

Fig. 2.1. The frame (e1, e2) is fixed and Galilean and the frame (e∗1, e
∗
2) is attached to the swimmer and moves

along with it. The moving frame is centered at the body’s center of mass, the coordinates of which are r = (r1, r2)T

in the Galilean frame. Quantities are denoted with an asterisk when they are expressed in the moving frame (e∗1, e
∗
2).

2.1. Shape changes. Let S be the Banach space consisting of the complex sequences1 c :=
(ck)k≤1, ck = ak + ibk, ak, bk ∈ R such that c0 = 0 and ‖c‖S :=

∑
k≤1 |k|(|ak| + |bk|) < +∞. We

will require also the classical Hilbert space `2(C), the norm of which is ‖c‖`2(C) :=
√∑

k≤1 |ck|2.

1The indices of the sequences range from −∞ to 1. It may be surprising but will be justified later on.
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The shape changes of the body are described by means of a set of C1 functions χ(c) : D̄ → B̄∗
depending on the parameter c ∈ S (c will be called in the sequel the shape variable) and defined in
complex notation by:

χ(c)(z) := c1z +
∑
k≥1

c−kz̄k, (z ∈ D̄), (2.1)

where z̄ = z1− iz2 is the complex conjugate of z = z1 + iz2. Since the domain of the body is defined
by B̄∗ := χ(c)(D̄) and even though it does not appear in the notation, B∗ depends on the shape
variable. The shape variable lives in:

D :=
{

c := (ck)k≤1 ∈ S : sup
z∈∂D

∣∣∣∑
k≥1

kc−kzk
∣∣∣ < |c1|},

which is an open subset of S, an infinite dimensional Banach space, so the number of degrees of
freedom corresponding to the body’s deformations is also infinite. We next introduce the function
φ(c) that maps Ω̄ onto F̄∗. It is defined for all c ∈ D by:

φ(c)(z) := c1z +
∑
k≤−1

ckz
k, (z ∈ Ω̄). (2.2)

Since z̄ = 1/z for all z ∈ ∂D, we deduce that χ(c)|∂D = φ(c)|∂Ω and the map defined below is
continuous in C for any c ∈ D:

Φ(c)(z) :=

{
χ(c)(z) if z ∈ D,
φ(c)(z) if z ∈ Ω̄.

The main properties of χ, φ and Φ are summarized in the following proposition whose the proof is
given in [7]:

Proposition 2.1. For all c ∈ D, χ(c) : D̄ → B̄∗ and φ(c) : Ω̄→ F̄∗ are both well-defined (the
series in (2.1) and (2.2) converge for all z) and invertible. Besides, χ(c)|D is a C1 diffeomorphism,
φ(c)|Ω is a conformal mapping and Φ(c) is an homeomorphism from C onto C.

The main interest in using the shape variable is that we can now describe the shape changes
by means of a smooth function of time t ∈ [0, T ] 7→ c(t) ∈ D (T > 0). We denote ċ = (ċk)k≤1 its
time derivative defined for all t ∈ [0, T ], with ċk := ȧk + iḃk (k ≤ 1). We denote also χ̇(c) the time
derivative of χ(c) i.e., the mapping z ∈ D̄ 7→ ċ1z +

∑
k≥1 ċ−kz̄

k ∈ C.

2.2. Physical quantities.

2.2.1. Volume, mass and inertia momentum. From the relation x∗ := χ(c)(z), (z ∈ D),
we deduce that the area elements dx∗ and dz of respectively B∗ and D can be deduced one from
the other by the identity:

dx∗ := J(c)(z)dz, (z ∈ D, x∗ := χ(c)(z)),

where J(c)(z) := |det F(c)(z)| and F(c)(z) := Dχ(c)(z) is the deformation tensor. It entails that
the density %∗ of the body B∗ can be deduced from a given constant density %0 > 0 according to
the conservation-of-mass principle:

%∗(x∗) =
%0

J(c)(χ(c)−1(x∗))
, (x∗ ∈ B∗). (2.3)
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The element of mass in D is then defined by dm0 := %0 dz, and likewise, dm∗ := %∗dx∗ is the
element of mass in B∗. The volume of the body is given by Vol(B) =

∫
D
J(c)(z)dz. We can

establish first (we refer again to [7] for details) that for all c ∈ D:

J(c)(z) = |c1|2 −
∣∣∣∑
k≥0

(k + 1)c−k−1z̄
k
∣∣∣2, (z ∈ D̄), (2.4)

and next derive the expression of the volume of the body in terms of the shape variable:

Vol(B) = π
(∑
k≤1

k|ck|2
)
. (2.5)

Due to the incompressibility, the volume of the fluid has to remain constant. We draw the same
conclusion for the volume of the swimmer because it is nothing but the complementary of the volume
of the fluid. According to (2.5), it means that the function t ∈ [0, T ] 7→ |c1(t)|2 −∑k≥1 k|c−k(t)|2
has to be constant. This observation leads us to introduce for all µ ∈ R+, the closed subsets of S:

A(µ) :=
{
c ∈ S :

∑
k≤1

k|ck|2 = µ2
}
. (2.6)

Remember that a sufficient condition for the map χ(c) to be injective is that c belongs to D. We
define then also:

A•(µ) := A(µ) ∩ D, (µ ∈ R+). (2.7)

Differentiating with respect to time identity (2.5), we get an equivalent formulation for the conser-
vation of the body’s volume: ∑

k≤1

k(ȧkak + ḃkbk) = 0, (t ≥ 0). (2.8)

The mass of the body is:

m :=
∫
B∗

dm∗ =
∫
D

dm0 = π%0. (2.9)

Notice that for a neutrally buoyant swimmer, we get the equality %fVol(B) = m where %f > 0 is
the given constant density of the fluid. In this case, the densities %f and %0 would be linked through
the relation:

%fµ
2 = %0. (2.10)

The inertia momentum depends on the shape of the body and reads I(c) :=
∫
B∗ |x∗|2 dm∗, or

equivalently upon a change of variables I(c) :=
∫
D
|χ(c)(z)|2 dm0. It can also be easily computed

in terms of the shape variable:

I(c) = π%0

(∑
k≤1

|ck|2
|k|+ 1

)
. (2.11)
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2.2.2. Physically allowable shape changes. The motion of the swimmer in the fluid is the
superimposition of the shape changes and a rigid motion. To obtain a proper decomposition, we
impose on the shape changes to let unchanged the linear and the angular momenta of the body
with respect to its attached frame (e∗1, e

∗
2). For the linear momentum, this condition reads:

d

dt

(∫
B∗
x∗ dm∗

)
= 0, (t ≥ 0),

which can be rewritten, upon a change of variables and taking into account (2.3):∫
D

χ̇(c) dm0 = 0, (t ≥ 0). (2.12)

For the angular momentum, we introduce for any x := (x1, x2)T ∈ R2 the notation x⊥ = (−x2, x1)T

and the same arguments yield: ∫
D

χ̇(c) · χ(c)⊥ dm0 = 0, (t ≥ 0). (2.13)

Condition (2.12) is actually intrinsically satisfied for any smooth shape function t ∈ [0, T ] 7→ c(t) ∈
S. Condition (2.13) can be rewritten in terms of the shape variable as:∑

k≤1

1
|k|+ 1

(ḃkak − ȧkbk) = 0, (t ≥ 0). (2.14)

This constraint together with (2.8) lead us to introduce the notion of allowable shape variable:
Definition 2.2 (Physically allowable shape variable). A continuously differentiable function

t ∈ [0, T ] 7→ c(t) ∈ S (for some real positive number T ) is said to be physically allowable when:
1. There exists µ > 0 such that c(t) ∈ A•(µ) for all t ≥ 0.
2. Constraint (2.14) is satisfied for all t ∈]0, T [.

2.3. Rigid Motion, Velocity. The (unknown) rigid motion of the swimmer is described by
elements q := (r, θ)T of Q := R2×R/2π where r := (r1, r2)T ∈ R2 is a vector giving the position of
the center-of-mass of the body and θ ∈ R/2π an angle giving its orientation with respect to (e1, e2)
(see Fig. 2.1). Denoting by R(θ) ∈SO(2) the rotation matrix of angle θ, we get the relations
R(θ)ej = e∗j (j = 1, 2).

Let the shape changes be frozen for a while and consider a physical point attached to the
body undergoing only a rigid motion. Then, there exists a smooth function t ∈ [0, T ] 7→ q(t) :=
(r(t), θ(t)) ∈ Q (T > 0) such that the coordinates of the point in (e1, e2) be given by x = R(θ)x0 +r
(x0 ∈ R2 being the coordinates at the time t = 0). Next, compute the time derivative of this
expression and denote by q̇ := (ṙ, ω) ∈ R3 the time derivative of q. From the classical identity
∂θR(θ)R(θ)Tx = x⊥ for all x = (x1, x2)T ∈ R2, we deduce that the Eulerian velocity of the point
is vr(x) = ω(x− r)⊥+ ṙ. It can also be expressed in the moving frame (e∗1, e

∗
2) and reads v∗r(x

∗) =
ω(x∗)⊥+ ṙ∗ where ṙ∗ := R(θ)T ṙ. This leads us to introduce also the notation q̇∗ := (ṙ∗, ω)T ∈ R3.

Let us go back to the general case where the shape changes are taken into account. The
coordinates in (e1, e2) of a physical point attached to the swimmer are given by: x = R(θ)χ(c)(z0)+
r, where at the time t = 0, c(0) = c0 ∈ D and x(0) = x0 = χ(c0)(z0) for some z0 ∈ D. Observe
that we can always assume that at the time t = 0, q = q0 := (0, 0)T . We deduce that the Eulerian
velocity at a point x of B is equal to:

v(x) = ω(x− r)⊥ + ṙ +R(θ)χ̇(c)
[
χ(c)−1(R(θ)T (x− r)))

]
.
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When expressed in the moving frame (e∗1, e
∗
2) it reads:

v∗(x∗) = (ω x∗⊥ + ṙ∗) + χ̇(c)(χ(c)−1(x∗)), (x∗ ∈ B∗). (2.15)

2.4. Potential flow. The fluid is assumed to be incompressible and inviscid with constant
density %f > 0. Its element of mass is dm∗f := %fdx∗ in F∗ and dm0

f := %fdz in Ω. The Eulerian
velocity of the fluid in (e∗1, e

∗
2), denoted by u∗ is equal to the gradient of a potential function ϕ i.e.

u∗ = ∇ϕ in F∗. The incompressibility of the fluid entails that ∇ · u∗ = 0 and hence that

∆ϕ = 0 in F∗. (2.16a)

The classical non-penetrating or slip boundary condition for inviscid fluids leads to the identity
u∗ · n = v∗ · n on ∂F∗ where n stands here and subsequently for the unit normal to ∂B∗ = ∂F∗
directed toward the interior of B∗. This condition yields a Neumann boundary condition for the
potential function:

∂nϕ = v∗ · n on ∂F∗. (2.16b)

The boundary value problem (2.16) admits a weak (or variational) solution in the weighted Sobolev
space H1

N (F∗) := {u ∈ D′(F∗) : u/[
√|x|2 + 1 log(2 + |x|2)] ∈ L2(F∗), ∂xj

u ∈ L2(F∗), j = 1, 2}
where D′(F∗) is the space of the distributions in F∗. This solution is unique up to an additive
constant.
Notice that the potential function depends on both ċ (linearly through its boundary data) and c
(non-linearly through the domain F∗).

2.5. Lagrangian of the fluid-swimmer system. We neglect the gravity, so the Lagrangian
function reduces to the kinetic energy of the fluid-swimmer system. Because of relations (2.12) and
(2.13), there is a decoupling between the kinetic energy of the body resulting from its rigid motion
and those resulting from its shape changes:

Kb :=
1
2
m|ṙ∗|2 +

1
2
|ω|2I(c) +

1
2

∫
B∗
|χ̇(c)(χ(c)−1(x∗))|2 dm∗,

the last term being the kinetic energy of deformation. It can be further expanded as follows:∫
B∗
|χ̇(c)(χ(c)−1(x∗))|2 dm∗ =

∫
D

|χ̇(c)(z)|2 dm0 = π%0

∑
k≤1

|ċk|2
|k|+ 1

. (2.17)

On the other hand, the kinetic energy of the fluid reads:

Kf :=
1
2

∫
F∗
|u∗|2 dm∗f =

1
2

∫
F∗
|∇ϕ|2 dm∗f . (2.18)

eventually, the Lagrangian function of the system fluid-body reduces to:

L := Kb +Kf , (2.19)

and turns out to be a function of (q̇∗, c, ċ) ∈ (R2 × R) × D × S. More precisely, for any fixed
c ∈ D, L(c) is a quadratic form in (q̇∗, ċ). It is worth remarking that it does not depend on r and
θ because of the symmetry of our model with respect to the position and orientation of the body
in the fluid.
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3. Euler-Lagrange Equations.

3.1. Elementary potentials. Using the conformal mapping φ(c) (c ∈ D), we define ξ(z) :=
ϕ(φ(c)(z)) (z ∈ Ω) where ϕ is the potential function. The function ξ is harmonic in Ω. Besides,
the properties of conformal mappings allow us to write that

Kf =
1
2

∫
F∗
|∇ϕ|2dmf =

1
2

∫
Ω

|∇ξ|2dm0
f .

So from now on we will refer to ξ as being the potential function in place of ϕ.

3.1.1. Expressions of the elementary potentials. We wish now to decompose ξ into a
linear combination of elementary potentials, each one being associated with a degree of freedom of
the system. To this purpose, we introduce the functions ξrj (c) (j = 1, 2, 3) and ξak(c), ξbk(c) (k ≤ 1,
k 6= 0) as being harmonic in Ω and satisfying the following Neumann boundary conditions:

∂nξ
r
1(c)(z) = −<(zφ′(c)(z)), (3.1a)

∂nξ
r
2(c)(z) = −=(zφ′(c)(z)), (3.1b)

∂nξ
r
3(c)(z) = −=(φ(c)(z)zφ′(c)(z)), (z ∈ ∂D), (3.1c)

and

∂nξ
a
k(c)(z) = −<(zk+1φ′(c)(z))− ka−k, (3.2a)

∂nξ
b
k(c)(z) = −=(zk+1φ′(c)(z))− kb−k, (z ∈ ∂D). (3.2b)

To simplify the notation, let us assume that ck := ak + ibk is not only defined for k ≤ 1 but for all
k ∈ Z with ck = 0 for k ≥ 2 and k = 0. After some easy algebra, we get that for all k ∈ Z and all
θ ∈ R/2π:

<(zk+1φ′(c)(eiθ)) + ka−k =
∑
j≥1

[(j − k)aj−k − (j + k)a−j−k] cos(jθ)

+[(k − j)bj−k − (j + k)b−j−k] sin(jθ), (3.3)

=(zk+1φ′(c)(eiθ)) + kb−k =
∑
j≥1

[(j − k)bj−k − (j + k)b−j−k] cos(jθ)

+[(j − k)aj−k + (j + k)a−j−k] sin(jθ), (3.4)

and

=(φ(c)(eiθ)eiθφ′(c)(eiθ)) =
∑
k≥1

k
(∑
j∈Z

[ajbj+k − bjaj+k]
)

cos(kθ)

+ k
(∑
j∈Z

[ak+jaj + bk+jbj ]
)

sin(kθ). (3.5)
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We deduce the following expressions for the elementary potentials defined in Ω := R2 \ D̄ (in polar
coordinates):

ξr1(c)(r, θ) =
∑
j≥1

(µ1
0,j cos(jθ) + µ2

0,j sin(jθ))r−j , (3.6a)

ξr2(c)(r, θ) =
∑
j≥1

(ν1
0,j cos(jθ) + ν2

0,j sin(jθ))r−j , (3.6b)

ξr3(c)(r, θ) =
∑
j≥1

(α1
j cos(jθ) + α2

j sin(jθ))r−j , (3.6c)

ξak(c)(r, θ) =
∑
j≥1

(µ1
k,j cos(jθ) + µ2

k,j sin(jθ))r−j , (3.6d)

ξbk(c)(r, θ) =
∑
j≥1

(ν1
k,j cos(jθ) + ν2

k,j sin(jθ))r−j , (3.6e)

where the sequences of real numbers (α1
k)k≥1 and (α2

k)k≥1 are defined by:

α1
k =

∑
j∈Z

bj+kaj − aj+kbj , α2
1 = −

∑
j∈Z

aj+1aj + bj+1bj , (3.7a)

α2
k =

∑
j∈Z

aj+kaj + bj+kbj , α2
k= −

∑
j∈Z

aj+kaj + bj+kbj , (3.7b)

and the sequences (µlk,j)j≥1 and (µlk,j)j≥1 (l = 1, 2, k ∈ Z, j ≥ 1) by:

µ1
k,j = (k/j + 1)ak+j + (k/j − 1)ak−j , ν1

k,j = (k/j + 1)bk+j + (k/j − 1)bk−j , (3.8a)

µ2
k,j = (k/j + 1)bk+j − (k/j − 1)bk−j , ν2

k,j= −(k/j + 1)ak+j + (k/j − 1)ak−j . (3.8b)

From now on, we will denote, for any k ∈ Z, µk := ((µ1
k,j)j≥1, (µ2

k,j)j≥1) (a pair of real sequences)
and likewise νk := ((ν1

k,j)j≥1, (ν2
k,j)j≥1) and α := ((α1

j )j≥1, (α2
j )j≥1).

3.1.2. Kirchhoff’s law. In this paragraph, we are concerned with expressing the potential ξ
as a linear combination of the elementary potentials. We wish also to prove that they are regular
with respect to the shape variable. To this purpose, we introduce ξr := ṙ∗1ξ

r
1 + ṙ∗2ξ

r
2 + ωξr3 and for

all c ∈ D and ċ ∈ S:

〈ξd(c), ċ〉 =
∑
k≤1

ȧkξ
a
k(c) + ḃkξ

b
k(c).

Observe that in this sum, ξa0 (c) = ξb0(c) = 0 for all c ∈ D. The following lemma generalizes
Kirchhoff’s law to the infinite dimensional case we are dealing with:

Lemma 3.1. For all c ∈ D and ċ ∈ S, the function 〈ξd(c), ċ〉 is well defined as element of
H1
N (Ω). It is harmonic in Ω and satisfies the Neumann boundary condition:

∂n〈ξd(c), ċ〉 =
∑
k≤1

ȧk∂nξ
a
k(c) + ḃk∂nξ

b
k(c), on ∂D.

Besides, for all c ∈ D, the linear map ċ ∈ S 7→ 〈ξd(c), ċ〉 ∈ H1
N (Ω) is continuous. For any c ∈ D,

all the elementary potentials ξrj (c) (j = 1, 2, 3) and ξak(c), ξbk(c) (k ≤ 1) are well defined as elements
9



of H1
N (Ω) so they can be considered as functions of c ∈ D valued in H1

N (Ω). The last assertion of
the lemma tells us that for all c ∈ D, ξd(c) can be seen as a linear continuous mapping from S into
H1
N (Ω). So, ξd can be seen as a function of c valued in L(S, H1

N (Ω)). Using the notation of the
Appendix B, we claim:

Theorem 3.2. The following properties hold:
1. Decomposition: For any allowable shape function t ∈ [0, T ] 7→ c(t) ∈ D:

ξ = ξr + 〈ξd(c), ċ〉 in H1
N (Ω).

2. Regularity: ξrj ∈ P(D, H1
N (Ω)) (j = 1, 2, 3), ξak , ξbk ∈ P(D, H1

N (Ω)) (k ≤ 1) and ξd ∈
P(D,L(S, H1

N (Ω))).
As already mentioned, we refer to [7] for the proofs of Lemma 3.1 and Theorem 3.2.

3.2. Mass matrices. The notion of mass matrix can be defined as the polarization of the
kinetic energy of the system, seen as a quadratic form. Remember that in our case, the kinetic
energy coincides with the Lagrangian function defined in Subsection 2.5 and that, for any fixed
c ∈ D, L(c) is a quadratic form in (q̇∗, ċ) ∈ R3 × S. We define then M(c) as being the bilinear
symmetric form on (R3 × S)× (R3 × S) such that:

L(c, q̇∗, ċ) =
1
2
〈M(c), (q̇∗, ċ), (q̇∗, ċ)〉.

Then we decompose it into Mr(c), a bilinear symmetric form on R3 ×R3 (that can be identified
with an actual 3 × 3 symmetric matrix), N(c) a bilinear form on S × R3 and Md(c) a bilinear
symmetric form on S × S such that:

〈M(c), (ċ, q̇∗), (ċ, q̇∗)〉 = 〈Mr(c), q̇∗, q̇∗〉+ 〈Md(c), ċ, ċ〉+ 2〈N(c), ċ, q̇∗〉.

We are interested in determining explicit expressions for Mr(c), N(c) and Md(c) and in studying
their dependence with respect to the control variable c.

3.2.1. Mass matrix related to the rigid motion. First, we consider Mr(c), the classical
mass matrix of the body associated to its rigid motion. The decomposition of the potential function
obtained in §3.1.2 leads us to introduce the symmetric 3× 3 matrix:

Mr(c) :=

m 0 0
0 m 0
0 0 I(c)

+


∫

Ω
∇ξr1(c) · ∇ξr1(c) dm0

f · · ·
∫

Ω
∇ξr1(c) · ∇ξr3(c) dm0

f
...

...∫
Ω
∇ξr3(c) · ∇ξr1(c) dm0

f · · ·
∫

Ω
∇ξr3(c) · ∇ξr3(c) dm0

f

 , (3.9)

where we recall that m > 0 is the constant mass of the body and I(c) is its inertia momentum given
in (2.11). The kinetic energy resulting from the rigid displacement of the body can be written as
the matrix-vectors product: (1/2)(ṙ∗, ω)Mr(c)(ṙ∗, ω)T . The latter matrix in the right hand side of
(3.9) is usually referred to as an added mass matrix, relating here to the rigid motion of the body.

We are dealing now with the kinetic energy in connexion with the shape changes, considering
separately the infinite and finite dimensional cases.

3.2.2. Infinite dimensional case. To give the expressions of the elements of the matrices
N(c) and Md(c), we define aj = (ajk)k≤1 and bj = (bjk)k≤1 ∈ `2(C) (j ≤ 1), the complex sequences
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such that ajk = δjk (the Kronecker symbol) and bjk = iδjk. Using the canonical basis {f1, f2, f3} of R3

and the Schauder basis {aj , bj , j ≤ 1} of `2(C), we can now define, for any 1 ≤ k ≤ 3 and j ≤ 1:

〈N(c),aj , fk〉 :=
∫

Ω

∇ξrk(c) · ∇ξaj (c)dm0
f , (3.10a)

〈N(c),bj , fk〉 :=
∫

Ω

∇ξrk(c) · ∇ξbj (c)dm0
f . (3.10b)

The entries of Md(c) are, for all j, k ≤ 1 and j, k 6= 0:

〈Md(c),aj ,ak〉 :=
∫

Ω

∇ξaj (c) · ∇ξak(c)dm0
f +

π%0δ
j
k

|k|+ 1
, (3.11a)

〈Md(c),bj ,bk〉 :=
∫

Ω

∇ξbj (c) · ∇ξbk(c)dm0
f +

π%0δ
j
k

|k|+ 1
, (3.11b)

〈Md(c),aj ,bk〉 :=
∫

Ω

∇ξaj (c) · ∇ξbk(c)dm0
f . (3.11c)

The elements corresponding to j = 0 or k = 0 are all equal to 0.

3.2.3. Finite dimensional case. We assume now that c and ċ have only a finite number
of (possibly) non-zero elements, say the N + 1 firsts (N ≥ 0). As explained in the Appendix A,
in this case c, ċ ∈ SN and we identify this space with R2(N+1). The bilinear mappings N(c) and
Md(c) can then be identified with actual matrices of sizes 3 × 2(N + 1) and 2(N + 1) × 2(N + 1)
respectively. Thus, we have:

N(c) :=


∫

Ω
∇ξr1(c)·∇ξa1 (c)dm0

f · · ·
∫

Ω
∇ξr1(c)·∇ξb−N (c)dm0

f∫
Ω
∇ξr2(c)·∇ξa1 (c)dm0

f · · ·
∫

Ω
∇ξr2(c)·∇ξb−N (c)dm0

f∫
Ω
∇ξr3(c)·∇ξa1 (c)dm0

f · · ·
∫

Ω
∇ξr3(c)·∇ξb−N (c)dm0

f

 , (3.12)

while Md(c) reads:

Md(c) :=



∫
Ω
∇ξa1 (c) · ∇ξa1 (c) dm0

f · · ·
∫

Ω
∇ξa1 (c) · ∇ξb−N (c) dm0

f∫
Ω
∇ξb1(c) · ∇ξa1 (c) dm0

f · · · ∫
Ω
∇ξb1(c) · ∇ξb−N (c) dm0

f
...

...∫
Ω
∇ξa−N (c) · ∇ξa1 (c) dm0

f · · ·
∫

Ω
∇ξa−N (c) · ∇ξb−N (c) dm0

f∫
Ω
∇ξb−N (c) · ∇ξa1 (c) dm0

f · · ·
∫

Ω
∇ξb−N (c) · ∇ξb−N (c) dm0

f


+

π%0diag(1/2, 1/2, 1/2, 1/2, 1/3, 1/3, 1/4, 1/4, . . . , 1/N, 1/N). (3.13)

In these definitions, the index j of ∇ξaj and ∇ξbj in the integrals ranges from 1 to −N and there is
no term corresponding to the index j = 0. Remark that in the finite dimensional case, the overall
mass matrix M(c) can also be identified with an actual (3 + 2(N + 1))× (3 + 2(N + 1)) bloc matrix
defined by:

M(c) :=
[
Mr(c) N(c)
N(c)T Md(c)

]
. (3.14)
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3.2.4. Regularity of the Mass Matrices and Lagrangian function. As a straightforward
consequence of Theorem 3.2 we get, with the notation of Appendix B (see [7] for details):

Theorem 3.3. Mr ∈ P(D,L2(R3 ×R3)), N ∈ P(D,L2(R3 ×S)) and Md ∈ P(D,L2(S × S)).
It entails that M ∈ P(D,L2((R3 × S) × (R3 × S))) and the Lagrangian function is smooth in all
of its variables. Furthermore, the mapping c ∈ D 7→Mr(c)−1 ∈ L(R3,R3) is also well-defined and
analytic.

3.2.5. Explicit computation of the mass matrices. The entries of the mass matrices
defined in Subsection 3.2 can be now easily deduced from the expressions (3.6) of the elementary
potentials. Indeed, let us consider for instance the first element of the matrix Mr(c). Applying
Green’s formula, we get:∫

Ω

∇ξr1(c) · ∇ξr1(c) dmf = −%f
∫
∂D

ξr1(c)
∂ξr1
∂r

(c) dσ,

and then: ∫
Ω

∇ξr1(c) · ∇ξr1(c) dmf = π%f
∑
j≥1

j|µ0,j |2.

For any two pair of sequences υ := ((υ1
j )j≥1, (υ2

j )j≥1) and ς := ((ς1j )j≥1, (ς2j )j≥1) of real numbers,
we introduce the notation:

υ · ς :=
∑
k≥1

k(υ1
kς

1
k + υ2

kς
2
k) and |υ|2 := υ · υ.

Taking into account the expressions (3.9), (2.11) and (3.6), we can give the expression of the mass
matrices in a convenient short form:

Mr(c) = %0π


1 0 0
0 1 0

0 0
∑
k≤1

|ck|2
|k|+ 1

+ %fπ

 |µ0|2 µ0 · ν0 µ0 ·α
µ0 · ν0 |ν0|2 ν0 ·α
µ0 ·α ν0 ·α |α|2

 , (3.15)

and likewise the elements (3.10) of the mass matrix N read, for all k ≤ 1, k 6= 0:

〈N(c),ak, f j〉 =


%fπµ0 · µk if j = 1
%fπν0 · µk if j = 2
%fπα · µk if j = 3,

(3.16)

〈N(c),bk, f j〉 =


%fπµ0 · νk if j = 1
%fπν0 · νk if j = 2
%fπα · νk if j = 3.

(3.17)

At last, the expressions of the elements (3.11) of Md(c) read, for all j, k ≤ 1 with j, k 6= 0:

〈Md(c),aj ,ak〉 = %fπµj · µk +
π%0δ

j
k

k + 1
, 〈Md(c),aj ,bk〉(c) = %fπµj · νk, (3.18a)

〈Md(c),bj ,bk〉 = %fπνj · νk +
π%0δ

j
k

k + 1
. (3.18b)
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3.3. Equation of motion. Following the method explained in [17, chap VI, pages 160-201],
we introduce P and Π the translational and angular impulses as well as L and Λ, the impulses
relating to the deformations:[

P
Π

]
:= Mr(c)

[
ṙ∗

ω

]
and

[
L
Λ

]
:= 〈N(c), ċ〉.

In these identities, both left hand side terms can be identified with elements of R3. We compute
that for all ṗ := (ċ, ω̃)T ∈ R3:

d

dt

∂

∂q̇

[
ṙ∗

ω

]
· ṗ− ∂

∂q

[
ṙ∗

ω

]
· ṗ =

[
ω̃(ṙ∗)⊥ − ω(ċ∗)⊥

0

]
.

We next easily obtain that:

d

dt

∂L

∂q̇
· ṗ− ∂L

∂q
· ṗ =

d

dt

[
P + L
Π + Λ

]
·
[
ċ∗

ω̃

]
+
[
P + L
Π + Λ

]
·
[
ω̃(ṙ∗)⊥ − ω(ċ∗)⊥

0

]
.

According to Theorem 3.3, the Lagrangian function is smooth with respect to all of its variables,
allowing all of the derivatives to be computed. Invoking the least action principle, the Euler-
Lagrange equation of motion is (see e.g. [19, Theorem 7.3.3 page 187]):

d

dt

∂L

∂q̇
· ṗ− ∂L

∂q
· ṗ = 0, ∀ ṗ ∈ R3.

In our case we get:

d

dt
(P + L) + ω(P + L)⊥ = 0, (3.19a)

d

dt
(Π + Λ)− ṙ∗ · (P + L)⊥ = 0. (3.19b)

If at the time t = 0, the impulse of the system is null:[
P + L
Π + Λ

]
= 0,

this relation remains true for all t > 0 since the Cauchy-Lipschitz Theorem ensures the uniqueness
of the solution of system (3.19). We obtain here the equation:

q̇∗ = −(Mr(c))−1〈N(c), ċ〉. (3.20)

We introduce the 3× 3 block matrix:

R(θ) :=
[
R(θ) 0

0 1

]
,

and since q̇∗ = R(θ)T q̇, we can rewrite (3.20) in the form:

q̇ = −R(θ)(Mr(c))−1〈N(c), ċ〉, (t > 0), (3.21)

which allows the rigid displacement to be computed, knowing the shape changes. From Theorem 3.3,
we deduce:

Proposition 3.4 (Well-posedness). For any µ > 0, for any physically allowable control
function c : [0, T ] → A•(µ) and for any initial condition (r0, θ0) ∈ R2 × R/2π, there exists one
unique smooth solution to Equation (3.21) defined on [0, T ].
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4. Equation of Elasticity. We assume that the swimmer is hyperelastic. A hyperelastic (or
Green elastic material) is an ideally elastic material for which the stress-strain relationship follows
from a strain energy density function. It is, for instance, the model of material most suited to the
analysis of elastomers.

In the following, we assume that there exists a scalar valued volumetric strain energy function
U(z,F(c)(z)) (recall that F(c)(z) is the deformation tensor) defined in the reference configuration
D and encapsulating all the information regarding the material behavior. From U , we can define
the potential energy of elasticity:

W (c) :=
∫

Ω

U(z,F(c)(z))dz, (c ∈ D),

which is actually the only quantity we will need to derive the equations governing the elastic
motion of the body. Classical constitutive models for 2D isotropic elastic materials are usually
expressed in terms of the invariants I1(c) and I2(c) of B(c) := F(c)F(c)T , the left Cauchy-Green
tensor. They are defined by I1(c) := Tr(B(c)) and I2(c) := det(B(c)) = J(c)2. The modified
invariants Ī1(c) := I1(c)/J(c) and Ī2(c) := J(c) can be used as well. Let us mention for instance
the Neo-Hookean hyperelastic material (from the book [18]), whose the strain energy function is
U(z, c) = aI1(c)(z) for some a > 0. The relating potential energy of elasticity would be:

W (c) = πa
(∑
k≤1

|ck|2
|k|+ 1

)
.

In the following, we will take the most of the existence of the shape variable and deal with quite
general forms for the potential energy W .

4.1. Infinite dimensional case.

4.1.1. Potential energy of elasticity. Recall that to be allowable, the shape variable c
has to remain within D. Let us give a physical interpretation of this condition: According to the
expression (2.4), we deduce that J(c)(z) > 0 for all z ∈ D̄ as long as c remains in D. The maximum
principle tells us that

min
z∈D̄

J(c)(z) = |c1|2 − max
z∈∂D

∣∣∣∑
k≥0

(k + 1)c−k−1z̄
k
∣∣∣2 = |c1|2 − max

z∈∂D

∣∣∣∑
k≥1

kc−kzk
∣∣∣2. (4.1)

So, when c → ∂D, J(c)(z) → 0 at some point z ∈ ∂D and according to (2.3), it entails that
%∗(x∗) → +∞ (x∗ = χ(c)(z) ∈ ∂B∗) (in other words, the density of the body becomes infinite).
In order to prevent this phenomenon, we wish the potential energy W to satisfy W (c) → +∞ as
c → ∂D. On the other hand, we also want the body to tend to recover a given position cref ∈ D,
so we decompose W into two parts: W = W1 +W2 where

1. W1(c) := V (c− cref) and V : S → R is a given smooth convex function, the minimum of
which is achieved for c = 0 (a simple example of such a function could be V (c) = ‖c‖2`2(C));

2. W2(c) := (ε/2α)
∫
∂D

J(c)(z)−αdσ, where ε and α are two positive constants (we will see
later on how to choose them for W2 to meet with the requirement that W2 → +∞ as c→ ∂D).
Notice that the equilibrium shape of the body corresponds to the value of c ∈ D minimizing W
and can be different from cref . Concerning W2, one can easily show the following result:

Lemma 4.1. For all ε > 0 and α > 0, the mapping c ∈ D 7→W2(c) ∈ R is analytic.
14



We can even compute the first derivative of W2 with respect to c := (ck)k≤1 ∈ D (ck := ak+ibk).
Thus, for all k ≤ 1, we get:

∂W2

∂ak
(c) = −εk

∫
∂D

<
(
zk−1

∑
j≥0

(j + 1)c−j−1z̄
j
)
J(c)(z)−1−αdσ, (4.2a)

∂W2

∂bk
(c) = −εk

∫
∂D

=
(
zk−1

∑
j≥0

(j + 1)c−j−1z̄
j
)
J(c)(z)−1−αdσ. (4.2b)

Then we have, for all c ∈ D, the following expression for the derivative in the direction of c̃ ∈ S:〈∂W2

∂c
(c), c̃

〉
=
∑
k≤1

∂W2

∂ak
(c)ãk +

∂W2

∂bk
(c)b̃k.

4.1.2. Modified Lagrangian. With the notation of Subsection 3.2, the Lagrangian function
can now be modified as follows:

L(c, ċ, q̇∗) =
1
2
〈Mr(c), q̇∗, q̇∗〉+

1
2
〈Md(c), ċ, ċ〉+ 〈N(c), ċ, q̇∗〉 −W (c). (4.3)

Notice that W does not depend on q and q̇ and hence the equation q̇∗ = −(Mr(c))−1〈N(c), ċ〉 driv-
ing the rigid motion still holds. Substituting this expression into (4.3), we obtain a new Lagrangian
function depending only on the shape variable:

L(c, ċ) := L(c, ċ,−(Mr(c))−1〈N(c), ċ〉),
or in short form:

L(c, ċ) =
1
2
〈K(c), ċ, ċ〉 −W (c),

where the mass matrix K(c) ∈ L2(S × S) is defined for all c ∈ D by:

〈K(c), c1, c2〉 := 〈Md(c), c1, c2〉 − 〈N(c), c1〉T (Mr(c))−1〈N(c), c2〉, (c1, c2 ∈ S).

According to Theorem 3.3, the mapping c ∈ D 7→ K(c) ∈ L2(S × S), like the all of the other mass
matrices in this article, is analytic.

4.1.3. Constraints. We denote (·, ·)`2(C) the scalar product in `2(C) defined for all c1 :=
(c1k)k≤1 and c2 := (c2k)k≤1 ∈ S by (c1, c2)`2(C) :=

∑
k≤1(a1

ka
2
k + b1kb

2
k). According to the Riesz

Representation theorem, we can identify `2(C) with its dual space and since the injection S ⊂ `2(C)
is continuous and dense, we can use the scalar product of `2(C) to express the duality product of
S × S ′. Via this identification, we have:

S ′ := {c := (ck)k≤1 : max
k≤1
{|kak|, |kbk|} < +∞},

and the classical inclusion chain: S ⊂ `2(C) ≡ `2(C)′ ⊂ S ′. For all c := (ck)k≤1 ∈ S, we denote
G1(c) := (čk)k≤1 and G2(c) := (ĉk)k≤1 the elements of `2(C) ⊂ S ′ such that:

čk := kck and ĉk := −i ck
|k|+ 1

, (k ≤ 1),
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and we can rewrite the constraints (2.8) and (2.14) required for a shape variable to be allowable
respectively as

(G1(c), ċ)`2(C) = 0 and (G2(c), ċ)`2(C) = 0. (4.4)

More generally, we can introduce any additional constraint on the shape variable that can be put
into the form (Gj(c), ċ)`2(C) = 0 where Gj (j ≥ 3) is a smooth function from S into `2(C). Let
us assume that there is a number N ′ of such constraints (N ′ an integer greater or equal to 2). We
assume in addition that all of the constraints satisfy:

1. Gj(c) 6= 0 for all c ∈ S (i.e. the constraint is always non-degenerated).
2. For all c ∈ S, the system {Gj(c), 1 ≤ j ≤ N ′} is free in `2(C) (the constraints are

independent).
Observe that (G1(c), G2(c))`2(C) = 0 for all c ∈ S. Actually, under hypotheses (1-2), we can assume
without loss of generality that the system {Gj(c), 1 ≤ j ≤ N ′} is orthonormal in `2(C), otherwise
we can apply a Gram-Schmidt process and redefine the functions Gj . It is worth remarking that
since the constraints are non-degenerated, such a process does not affect the regularity of the
functions Gj with respect to c, once redefined.

4.1.4. Least action principle. The Action associated with the Lagrangian L over the time
interval [0, T ] is the functional defined for all allowable shape function c : [0, T ] 7→ D by:

A(c) :=
∫ T

0

L(c(s), ċ(s))ds.

For any C1 function c : [0, T ] 7→ S, we define ‖c‖C1([0,T ],S) := ‖c‖L∞([0,T ],S) + ‖ċ‖L∞([0,T ],S). An
allowable curve c† : [0, T ] 7→ D is a critical point of A if it satisfies:

A(c† + δc†) = A(c†) + o(‖δc†‖C1([0,T ],S)),

for any perturbation δc† : [0, T ] 7→ S such that δc†(0) = δc†(T ) = 0 and c† + δc† be allowable. For
any C1 function δc : [0, T ] 7→ S such that δc(0) = δc(T ) = 0, the perturbation:

δc† := δc−
∑
j≥1

(
Gj(c†), δc

)
`2(C)

Gj(c†), (4.5)

meets with these requirements. We next compute that:

A(c† + δc†) = A(c†) +
∫ T

0

〈∂L
∂ċ

(c†), δċ†
〉

+
〈∂L
∂c

(c†), δc†
〉

ds+ o(‖δc†‖C1([0,T ],S)).

Integrating by parts the main term in the right hand side, we classically get:∫ T

0

〈 d
dt

∂L
∂ċ

(c†)− ∂L
∂c

(c†), δc†
〉

ds = 0.

Substituting the expression (4.5) of δc† into the identity above and taking into account that δc can
be any C1 function [0, T ]→ S vanishing at both extremities, we deduce the necessary condition for
c† to be a critical point of A:( d

dt

∂L
∂ċ

(c†)− ∂L
∂c

(c†)
)
−

N ′∑
j=1

λj(c†, ċ†)Gj(c†) = 0 in S ′, (4.6)
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where for any allowable shape function c, λj(c, ċ) (j ≥ 1) are Lagrange’s multipliers defined by:

λj(c, ċ) :=
〈 d
dt

∂L
∂ċ

(c)− ∂L
∂c

(c), Gj(c)
〉
.

Equation (4.6) can next be further expanded. Since K(c) ∈ L2(S×S), we deduce that, for all c ∈ D,
∂K(c)/∂c ∈ L3(S × S × S) (see Appendix B), and the Frechet derivative of K in the direction of
c̃ ∈ S at the point c ∈ D is given by:〈∂K

∂c
(c), c̃, ·, ·

〉
∈ L2(S × S).

We then define the so-called Christoffel symbol Γ(c) ∈ L3(S × S × S) by:

〈Γ(c), c̃1, c̃2, c̃3〉 :=
1
2

[〈∂K
∂c

(c), c̃2, c̃1, c̃3

〉
+
〈∂K
∂c

(c), c̃2, c̃3, c̃1

〉
−
〈∂K
∂c

(c), c̃3, c̃1, c̃2

〉]
,

for all c̃1, c̃2, c̃3 ∈ S. Notice that since the entries of the mass matrix K(c) can be explicitly
computed using the formula of Subsection 3.2.5, the expression of Γ(c), although quite complicated,
can be explicitly computed as well.

Based on the identifications L2(S × S) = L(S,S ′) and L3(S × S × S) = L2(S × S,S ′), we can
consider K(c) as an element of L(S,S ′) and Γ(c) as an element of L2(S × S,S ′). Equation (4.6)
can now be rewritten in the following form:

K(c)c̈ + 〈Γ(c), ċ, ċ〉+
∂W

∂c
(c) =

N ′∑
j=1

λj(c, ċ)Gj(c) in S ′. (4.7)

Taking into account the expressions (4.2), one notices that all of the terms of this equation can
be explicitly computed. The well-posedness of this ODE relies on the invertibility of the operator
K(c) : S → S ′ which is a quite involved question. Let us rather focus on the finite dimensional
case.

4.2. Finite dimensional case. We consider now that the shape variable c lives in the finite
(N + 1)-dimensional space SN (for some integer N ≥ 0; see Appendix A) which can be identified,
as well as its dual S ′N , with CN+1 or R2(N+1). We denote DN := D ∩ SN and for any µ > 0,
AN (µ) := {c ∈ SN :

∑1
k=−N k|ck|2 = µ2} and A•N (µ) := AN (µ) ∩ DN . The mass matrix K(c)

turns out to be the actual 2(N+1)×2(N+1) symmetric matrix K(c) := Md(c)−N(c)TMr(c)−1N(c)
(the matrices Md(c), N(c) and Mr(c) being defined in §3.2.3) and equation (4.7) is set in CN+1.

First, let us prove that for some suitable values of ε and α, W2 does the job it has been built
for, namely:

Proposition 4.2. For any integer N ≥ 1, any ε > 0, any α ≥ 1/2 and any c∗ ∈ ∂DN ,
W2(c)→ +∞ as c→ c∗.

Proof. For any c ∈ DN , the functions f(c) : θ ∈ [0, 2π[7→ |c1|2 − |
∑
k≥1 kc−ke

ikθ|2 are 2π-
periodic, analytic and non-negative. Consider a sequence (cn)n≥0 ⊂ DN such that cn → c∗ ∈ ∂DN .
The sequence of functions (f(cn))n≥0 converges uniformly to f(c∗) on [0, 2π[ and we draw the same
conclusion for the functions Fn := maxj≥n f(cj). For any α > 0 and ε > 0, the monotone
convergence Theorem applies to the sequence of functions (F−αn )n≥0 valued in [0,+∞] and tells us
that:

lim
n→+∞

∫ 2π

0

F (cn)(θ)−αdθ =
∫ 2π

0

f(c∗)(θ)−αdθ. (4.8)
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But f(c∗) is 2π-periodic, analytic and non-negative on [0, 2π[ and since c∗ /∈ DN , there exists at
least one θ0 ∈ [0, 2π[ such that f(c∗)(θ0) = 0. From the non-negativity together with the regularity
of f(c∗), we deduce that f(c∗)(θ) = C(θ− θ0)2 + o((θ− θ0)2) in a neighborhood of the point θ = θ0

for some constant C ≥ 0 and hence that if α ≥ 1/2, the right hand side term in (4.8) is equal to
+∞. The proof is completed after noticing that, for all n ≥ 1:

W2(cn) = ε

∫ 2π

0

f(cn)(θ)−αdθ ≥ ε
∫ 2π

0

F (cn)(θ)−αdθ.

Second, we want to prove that the ODE (4.7) is well posed in CN+1. We need the following
lemma:

Lemma 4.3. There exists a constant νN > 0 such that, for all c ∈ DN and all c̃ ∈ SN :

c̃TK(c)c̃ ≥ νN‖c̃‖2`2(C). (4.9)

In particular, the matrix K(c) is invertible for all c ∈ DN .
Proof. Let us set X := (−Mr(c)−1N(c)c̃, c̃)T ∈ Q× SN and observe that:

XTM(c)X = c̃TK(c)c̃,

where the matrix M(c) is defined in (3.14). We next easily get that, since Mr(c) is positive:

XTM(c)X ≥ 1
2
[
Mr(c)−1N(c)c̃

]TMr(c)
[
Mr(c)−1N(c)c̃

]
+

1
2
c̃TMd(c)c̃

≥ 1
2
c̃TMd(c)c̃ ≥ 1

2
π%0

1∑
k=−N

1
|k|+ 1

(ã2
k + b̃2k),

where c̃k = ãk + ib̃k for all k ∈ {−N, . . . ,−1, 1}. The proof is completed after setting νN :=
%0π/(2(N + 1)).

Remark 4.4. Observe that the conclusion of this lemma is no longer true in the general infinite
dimensional case since νN → 0 as N →∞.

This lemma allows us the rewrite the ODE (4.7) in the normal form:

d

dt

[
ċ
c

]
=

[
Λ(c, ċ) +

∑N ′

j=1 λj(c, ċ)K(c)−1Gj(c)
ċ

]
, (4.10a)

where

Λ(c, ċ) := −K(c)−1〈Γ(c), ċ, ċ〉 −K(c)−1 ∂W

∂c
(c). (4.10b)

The expressions of the Lagrange’s multipliers λj(c, ċ) (1 ≤ j ≤ N ′) can be somehow clarified.
Differentiating with respect to the time the identity (Gj(c), ċ)`2(C) = 0, we obtain:(〈∂Gj

∂c
, ċ
〉
, ċ
)
`2(C

+ (Gj(c), c̈)`2(C) = 0. (4.11)
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Taking into account the ODE satisfied by c̈, we obtain that, for all 1 ≤ j ≤ N ′:
(〈∂Gj

∂c
, ċ
〉
, ċ
)
`2(C)

+
N ′∑
k=1

λk(c, ċ)
(
Gj(c),K(c)−1Gk(c)

)
`2(C)

+
(
Gj(c),Λ(c, ċ)

)
`2(C)

= 0,

and this system of equations can be rewritten in the form:
(
G1(c),K(c)−1G1(c)

)
`2(C)

. . .
(
G1(c),K(c)−1GN ′(c)

)
`2(C)...

...(
GN ′(c),K(c)−1G1(c)

)
`2(C)

. . .
(
GN ′(c),K(c)−1GN ′(c)

)
`2(C)


 λ1(c, ċ)

...
λN ′(c, ċ)

 =


−(G1(c),Λ(c, ċ))`2(C) −

(〈∂G1

∂c
, ċ
〉
, ċ
)
`2(C)...

−(GN ′(c),Λ(c, ċ))`2(C) −
(〈∂GN ′

∂c
, ċ
〉
, ċ
)
`2(C)

 . (4.12)

The matrix K(c) is symmetric and according to Lemma 4.9 it is definite positive. We draw the
same conclusion first for K(c)−1 and next for the square matrix on the left hand side of (4.12).
The linear system (4.12) is hence invertible for all c ∈ S and the Lagrange’s multipliers λj(c, ċ) are
well-defined and smooth in the variables c and ċ. We can now state:

Theorem 4.5. For any integer N ≥ 1, for any µ > 0 and for any initial data (c0, ċ0) ∈
A•N (µ) × SN satisfying the compatibility conditions (Gj(c0), ċ0)`2(C) = 0 for all 1 ≤ j ≤ N ′, there
exists a unique C2 solution t ∈ [0,+∞[7→ c(t) ∈ AN (µ) to the ODE (4.10) satisfying c(0) = c0,
ċ(0) = ċ0 and for all time t ∈]0,+∞[, the constraints (Gj(c(t)), ċ(t))`2(C) = 0 for all 1 ≤ j ≤ N ′.
Besides, if ε > 0 and α ≥ 1/2 in the definition of W2 (see Proposition 4.2) the solution is allowable
(in the sense of Definition 2.2) and analytic if the functions V and Gj are.

Proof. Remark that any solution of (4.10) satisfies the identities (4.11) for all time. Hence, if
the initial data (c0, ċ0) satisfies the constraints at the initial time, the corresponding solution will
still satisfy them for all time t > 0. In particular, if c0 ∈ AN (µ), the solution will remain in AN (µ)
for all time t > 0.

All of the terms in the right hand side of equation (4.10) are analytic with respect to (c, ċ) ∈
DN × SN . The Cauchy-Lipschitz Theorem applies and ensures the existence of a unique maximal
analytic solution defined on a time interval [0, T ) for some T > 0. Recall now that an equivalent
formulation of ODE (4.10) is:

( d
dt

∂L
∂ċ

(c)− ∂L
∂c

(c)
)
−

N ′∑
j=1

λj(c, ċ)Gj(c) = 0, (4.13)

and taking the scalar product in `2(C) with ċ, we get, since (Gj(c), ċ)`2(C) = 0 for all t ∈]0, T ):( d
dt

∂L
∂ċ

(c)− ∂L
∂c

(c), ċ
)
`2(C)

= 0.

If we introduce now the overall energy E = (K(c)ċ, ċ)`2(C)/2 +W (c), we easily obtain that

d

dt
E =

d

dt

((∂L
∂ċ

, ċ
)
`2(C)

− L
)

=
( d
dt

∂L
∂ċ

(c)− ∂L
∂c

(c), ċ
)
`2(C)

= 0, (4.14)
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and not surprisingly, the energy is conserved. It entails, according to Proposition 4.2, that the
solution remains in DN for all t ∈ [0, T ) and hence in A•N (µ). According to Lemma 4.3, we
deduce also that νN‖ċ‖2`2(C) ≤ 2E(0) and the solution cannot blow up in finite time. Eventually,
classical results on the behavior of solutions of ODEs ensure us that the solution can be indefinitely
continued.

4.2.1. Damping effects. The larger N is, the higher the frequencies of the oscillatory elastic
motion of the body are, making the numerical integration of ODE (4.10) a quite stiff problem. This
problem can be overcome by adding a damping term in the right hand side of ODE (4.13), turning
it into: ( d

dt

∂L
∂ċ

(c)− ∂L
∂c

(c)
)
−

N ′∑
j=1

λj(c, ċ)Gj(c) = −D ċ, (t > 0), (4.15)

where D is a square symmetric positive matrix. Regarding the normal form (4.10) of the ODE, we
only have to modify the expression (4.10b) of Λ(c, ċ) as follows:

Λ(c, ċ) := −K(c)−1〈Γ(c), ċ, ċ〉 −K(c)−1 ∂W

∂c
(c)−K(c)−1D ċ.

Notice that the conclusion of Theorem 4.5 still holds, the only modification in the proof consisting
in replacing the equality (4.14) by the energy estimate:

d

dt
E =

( d
dt

∂L
∂ċ

(c)− ∂L
∂c

(c), ċ
)
`2(C)

= −(D ċ, ċ)`2(C) ≤ 0. (4.16)

4.2.2. Locked variables. We may wish to lock some components of the shape variable. From
a mechanical point of view, it means that the body is rigid with respect to these components. This
can be easily expressed with the constraints Gj and by choosing properly the initial conditions, as
stated in Theorem 4.5. Suppose for instance that we want the real part am of the component cm
(for some 1 ≤ m ≤ N) to remain equal to its initial value for all times. It suffices to introduce the
constant function G3 : c ∈ C(N+1) 7→ C(N+1) such that G3(c) = (0, . . . , 0, 1, 0, . . . , 0) where 1 is
at the m-th position and to set the initial velocity ċ0 := (ȧ0

k + iḃ0k)1≤k≤N such that ȧ0
m = 0 (i.e.

(G3(c0), ċ0)`2(C) = 0).

4.2.3. Degrees of freedom. The number of degrees of freedom of the overall fluid-swimmer
system is also the number of unknowns to be computed. It is equal to dfree = 2(N + 1)−N ′ + 3 =
2N −N ′ + 5. Indeed, there are 2(N + 1) degrees of freedom for the deformations of the body, N ′

is the number of independent constraints to which we add the three degrees of freedom relating to
the rigid motion of the swimmer.

4.3. Numerical simulations. The numerical scheme is straightforward. We use the explicit
expressions of the mass matrices given in Subsection 3.2.5. Although quite involved, the expression
of the Christoffel symbol Γ can be computed explicitly as well (using for instance a symbolic
calculator). To integrate the ODE (4.10), we use the built-in MATLAB solver ode113 (which is a
variable order Adams-Bashforth-Moulton PECE solver; we refer to the MATLAB documentation
for further details).

The numerics of this paper has to be read with the web page http://www.iecn.u-nancy.fr/

~munnier/passive_locomotion/index.html, which contains all of the simulations and additional
material.
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In all of the following examples, the function V in the definition of the elastic potential energy
has the form: V (c) := cTRc where R is a diagonal positive matrix, called the rigidity matrix. We
set N = 7 so c := (a1 + ib1, a−1 + ib−1, . . . , a−7 + ib−7) ∈ C8 (there are, at most, 16 degrees of
freedom relating to the deformations. Some of them can be locked in some examples).

We will mainly address the following questions:
1. How to achieve passive locomotion (i.e. locomotion at zero energy cost)?
2. The fluid-swimmer system is conservative. What is the time evolution of the distribution

of energy, within the system, between the kinetic energy of the body, the kinetic energy of the fluid
and the potential energy of elasticity?

3. Locomotion results from to the exchange of impulse between the shape changes and the
fluid. As an isolated system, the overall impulse of the fluid-swimmer system is conserved. What
is the time evolution of the distribution of impulse within the system?

Example 1: Passive locomotion of a shape changing, non-elastic swimmer. In this
first example, we show that quite surprisingly, the swimmer does not even have to be elastic to
experience passive locomotion. The body is deformable but does not tend to recover any prescribed
shape. Even without any potential energy of elasticity, the overall fluid-swimmer system still
naturally behaves like an oscillating mechanical system. With suitable initial data, the shape
variable, solution to ODE (4.10), is time-periodic and the relating shape changes are periodic
strokes that make the body swim. We will show that this phenomenon is possible even when the
initial velocity of the body is null to prove that the swimming is not a consequence of D’Alembert’s
paradox.

We first consider that all of the components of c are fixed, excepted c−1 = a−1 + ib−1 and
c−2 = a−2 + ib−2. So N ′ = 14 and dfree = 2N −N ′ + 5 = 5 (in particular, there are only 2 degrees
of freedom relating to the shape changes). All of the data are made explicit in the table below. We
use the symbol ∗ for unused quantities. The second row of the table gives the general form of the
shape variable c, and in particular the values of the locked components.

dfree = 5 %0 = 1 α = ∗ ε = 0
c = (1, 0, a−1, b−1, a−2, b−2, 0, . . . , 0)
R = 0 (no potential energy of elasticity)
D = 0 (no damping)
cref = ∗
c0 = (1, a0

−1, b
0
−1, a

0
−2, b

0
−2, 0, . . . , 0)

ċ0 = (0, ȧ0
−1, ḃ

0
−1, ȧ

0
−2, ḃ

0
−2, 0, . . . , 0)

Let us recall that the initial data have to satisfy the compatibility conditions: ȧ0
−1a

0
−1 + ḃ0−1b

0
−1 +

2ȧ0
−2a

0
−2 + 2ḃ0−2b

0
−2 = 0 (conservation of the body’s volume) and (ḃ0−1a

0
−1− ȧ0

−1b
0
−1)/2 + (ḃ0−2a

0
−2−

ȧ0
−2b

0
−2)/3 = 0 (deformations resulting from interior forces only). When ḃ0−1 = ȧ0

−2 = 0, we seek a
particular solution to ODE (4.10) in the form

c(t) := (1, γ cos(β(t)), 0, 0, γ sin(β(t))/
√

2, 0, . . . , 0). (4.17)

We obtain that the constant γ has to be equal to
√
|a0
−1|2 + 2|b0−2|2, and the function β : R→ R/2π

has to satisfy a second order autonomous ODE (see the phase portrait on Fig. 4.1) with initial data
(β0, β̇0) satisfying cos(β0) = a0

−1/γ, sin(β0) = b0−2

√
2/γ and β̇0 =

√
2(ḃ0−2a

0
−1 − ȧ0

−1b
0
−2)/γ2. One

can observe on Fig. 4.1 that any solution t 7→ β(t) ∈ R/2π is time periodic (the period depending
on the initial data) and consequently, any relating solution (4.17) is also time-periodic. We can
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next plug the function t 7→ c(t) into the ODE (3.21) to compute the rigid displacement of the body
in the fluid. We obtain that any (non-zero) solution yields a net displacement of the body along
the y-axis (see Fig. 4.2 and Fig. 4.3). For any solutions, the time evolution of the distribution of
energy is periodic (see Fig. 4.4). Moreover, there exists always an instant t† at which the kinetic
energy of the body relating to its rigid motion is null (see the dashed straight line on Fig. 4.4).
At this time, the rigid velocity of the body is null as well. If we choose the values of c(t†) and
ċ(t†) as Cauchy data for the second order ODE (4.10), we will obtain the same periodic solution
but t† time-shifted. Furthermore, the corresponding initial (rigid) velocity of the body will be zero.
This proves that passive locomotion, starting at zero velocity, is possible as well and that the net
displacement is not a pure consequence of D’Alembert’s paradox (the displacement does not result
from a non-zero initial impulse) but can be seen as a generalization, to deformable bodies, of this
phenomenon.

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 4.1. Phase portrait of the ODE solved by the function β, introduced in Example 1. The x-coordinate
is the value of β, the y-coordinate the value of β̇ and the arrows are vectors of coordinates (β̈, β̇). The lines are
some solutions (β, β̇) to the ODE (and are also some level sets of the overall energy of the fluid-swimmer system).
Although there is no elasticity in this model, the fluid-swimmer system is oscillating. Any solution β : R→ R/2π is
time periodic and ranges from −π to π. Once substituted in the ODE (3.21), any solution produces periodic strokes
and a net rigid displacement of the swimmer as pictured on Fig. 4.3.

Example 2: Passive locomotion of an elastic swimmer. We consider now that the body
is hyperelastic and tends to recover a given shape cref minimizing the potential energy W1(c) :=
(c−cref)TR(c−cref). Like in the preceding example, all of the components of c are fixed, excepted
c−1 and c−2. More precisely, we consider the following data:

dfree = 5 %0 = 1 α = ∗ ε = 0
c = (1, a−1, b−1, a−2, b−2, 0, . . . , 0)
R = diag(0, 0, κ3, κ4, κ5, κ6, 0, . . . , 0)
D = 0 (no damping)
cref = (1, ar−1, b

r
−1, a

r
−2, b

r
−2, 0, . . . , 0)

c0 = (1, a0
−1, b

0
−1, a

0
−2, b

0
−2, 0, . . . , 0)

ċ0 = (0, ȧ0
−1, ḃ

0
−1, ȧ

0
−2, ḃ

0
−2, 0, . . . , 0)

In the definition of R, the components κj (j = 3, 4, 5, 6) are non-negative real numbers. When
ḃ0−1 = ȧ0

−2 = 0, the particular form (4.17) of the shape variable still yields a particular solution to
the ODE (4.10), providing that β solves a second order autonomous ODE, of which some examples
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Fig. 4.2. The shape changes resulting from the use of the function β (from Example 1) in ODE (3.21) are
periodic strokes that produce a displacement of the body along the y-axis. In this figure is plotted the y-coordinate of
the center of mass of the body with respect to the time for different initial data. For all of the curves, γ = 0.5 and
β0 = 0. The initial velocity is, from the bottom to the top, β̇0 = 2, 1.55, 1.1, 0.65, 0.2,−0.2,−0.65,−1.1,−1.55,−2.

of phase portraits are given in Fig. 4.5, 4.6 and 4.7 for different rigidity matrices R and different
reference shapes cref . All of the solutions β : R → R/2π are still periodic but not all of them
range from −π to π. Indeed, one or several wells of potential appear. If the initial data (β0, β̇0)
is too close to such a well, the solution will remain for all times in its vicinity. The relating shape
changes turn out to be a flapping motion and when substituted into the ODE (3.21), such a trapped
solution does not result in locomotion but only in a reciprocal motion. This flapping phenomenon
is addressed in the so-called Purcell’s scallop theorem (stated primarily in [24] for low Reynolds
numbers swimmers and recently extended to high Reynolds numbers swimmers in [6]).
All of the solutions that are not trapped in a potential well are quite similar to the solutions obtained
in the first example and result in passive locomotion. Such a solution will be thoroughly studied in
the following example.

Example 3: Passive locomotion and distributions of energy and impulse. In this
example, we are interested in studying the time evolution of the distribution of energy and impulse
for a particular case of passive locomotion. The impulse is a momentum like quantity already
defined in Subsection 3.3. The impulse of the fluid-swimmer system is conserved and always finite
whereas the momentum is usually infinite. As usual, the data we chose are detailed in the table
below. As in the preceding examples, only the components a−1 and b−2 play a role. The reference
configuration (i.e. minimizing the potential energy) is an ellipse.
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(a) t = 0 (b) t = 0.9 (c) t = 1.8 (d) t = 2.7 (e) t = 3.6

(f) t = 4.5 (g) t = 5.4 (h) t = 6.3 (i) t = 7.2 (j) t = 8.1

Fig. 4.3. Screenshots of the swimmer (as described in Example 1) over a stroke. Here γ = 0.5 and the initial
data are β0 = 0 and β̇0 = −1. The black spot shows the position of the center of mass and the dashed black line
is its trajectory. The colors give the value of the internal density. As predicted by the maximum principle (see
equalities (4.1) and the explanation therein), compression occurs mainly along the boundary. At last, the arrows
represent the Eulerian velocity of the fluid (the animation can be found on the web page whose the location is given
at the beginning of this subsection).

0 5 10 15 20
0
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10

15

 

 
Kinetic energy of the fluid
Kinetic energy of the body (deformations) 
Kinetic energy of the body (rigid motion)

Fig. 4.4. Distribution of energy for the example corresponding to the data γ = 0.5, β0 = 0 and β̇0 = −1
(Example 1, screenshots on Fig. 4.3). The fluid-body system is conservative, so the overall energy is constant. It
can be decomposed at any time into the kinetic energy of the fluid and the kinetic energy of the body. The latter can
be decomposed into the kinetic energy resulting from the shape changes and the kinetic energy of the rigid motion.
In this graphic, the amount of each type of energy is proportional to the area. The dashed line corresponds to a time
at which the rigid velocity of the swimmer is null.

dfree = 5 %0 = 1 α = ∗ ε = 0
c = (1, a−1, b−1, a−2, b−2, 0, . . . , 0)
R = diag(0, 0, 1, 1, 2, 2, 0, . . . , 0)
D = 0 (no damping)
cref = (0, 0, 0.4899, 0, . . . , 0)
c0 = (0, 0, 0.4, 0, 0, 0.2, 0, . . . , 0)
ċ0 = (0, 0, 0.6, 0, 0,−0.6, 0, . . . , 0)
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Fig. 4.5. This phase portrait of the ODE solved by β (from Example 2) is obtained with γ = 0.5 and κj = 0.5
(j = 3, 4, 5, 6) (all of the the components of the rigidity matrix are equal to 0.5). The reference configuration mini-
mizing the potential energy of elasticity is an ellipse whose the shape variable is cref = (1, 0, γ, 0, . . . , 0) corresponding
to β = 0 when put in the form (4.17). So, not surprisingly, the center of the well of potential is centered at the
point β = 0, β̇ = 0.
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Fig. 4.6. One can observe two wells of potential on this phase portrait, connecting to Example 2. The
reference configuration is still an ellipse characterized by the shape variable cref = (1, 0, γ, 0, . . . , 0) as in Fig. 4.5
but the components of the rigidity matrix are here κ3 = κ4 = 0.2 and κ5 = κ6 = 2. The ellipse, the shape variable
of which is c = (1, 0,−γ, 0, . . . , 0) is also a local minimizer of the potential energy of elasticity. This configuration,
once turned into the form (4.17), corresponds to β = π. So the wells are centered at the points (0, 0) and (π, 0).

The body experiences a net displacement along the y-axis. On Fig. 4.8 are displayed some screen-
shots of the motion of the body and on Fig. 4.9 is plotted the value of the y-coordinate of its center
of mass with respect to the time. The shape changes are time periodic. On Fig. 4.10, are displayed
the phase portraits of a−1 and b−2.

This locomotion can be termed passive because the motion is done at zero energy cost. The
total energy of the system is conserved for all time. As shown on Fig. 4.11 and 4.12, there is, at
any time, some exchanges of energy and impulse between the body and the fluid causing the net
displacement.
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Fig. 4.7. To obtain this phase portrait for the second order ODE solved by β (from Example 2), we have set
γ = 0.5, κj = 0.5 (j = 3, 4, 5, 6) and we have chosen as reference configuration, that pictured on Subfigure 4.3(i) and

whose the shape variable is cref = (1, 0, 1/4, 0, 0,
√

3/(4
√

2), 0 . . . , 0). Once turned into the form (4.17), it corresponds
to β = π/3 and it can observed that the well of potential is precisely centered at the point (π/3, 0). All the trapped
solutions result in flapping motion while the others lead to a net displacement of the body along the y-axis.

Example 4: Non time periodic passive locomotion. Passive locomotion does not mean
displacement along a straight line only. In the preceding data, we modify only the initial velocity
ċ0 (as detailed in the table below), exciting now the components b−1 := =(c−1) and a−2 := <(c−2)
at the time t = 0.

dfree = 5 %0 = 1 α = 0 ε = ∗
c = (1, 0, a−1, b−1, a−2, b−2, 0, . . . , 0)
R = diag(0, 0, 1, 1, 2, 2, 0, . . . , 0)
D = 0 (no damping)
cref = (1, 0, 0.4899, 0, . . . , 0)
c0 = (1, 0, 0.4, 0, 0, 0.2, 0, . . . , 0)
ċ0 = (0, 0, 0.6, 0.0450, 0.1350,−0.6, 0, . . . , 0)

As shown on Fig. 4.13, the body follows now a curved trajectory. Neither the strokes nor the
components ak, bk (k = −1,−2) are time periodic any more (see Fig. 4.14).

Example 5: Unlocking degrees of freedom, loss of time periodicity. We now unlock
the variable c1 := a1 + ib2, adding two degrees of freedom to the body’s shape changes (the total
number of degrees of freedom for the deformations of the body is now 4). We compute the solution
to the ODE (4.10) with the following data:

dfree = 7 %0 = 1 α = 0 ε = ∗
c = (a1, b1, a−1, b−1, a−2, b−2, 0, . . . , 0)
R = diag(1, 1, 1, 1, 2, 2, 0, . . . , 0)
D = 0 (no damping)
cref = (1, 0, 0.4899, 0, . . . , 0)
c0 = (1, 0, 0.4, 0, 0, 0.2, 0, . . . , 0)
ċ0 = (0.2121, 0, 0.6152, 0, 0,−0.0848, 0, . . . , 0)

With the first three components ck (k = 1,−1,−2) of the shape-variable unlocked, it is more
complicated to find a rigidity matrix R and initial data c0 and ċ0 that produce locomotion. Although
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Max of the kinetic energy relating to the
rigid motion.
Max of the y-linear impulse of the body.

Min of the potential energy.
Min of the y-linear impulse of the body.
Max of the y-linear impulse of the fluid (de-
formations).
Min of the y-linear impulse of the fluid
(rigid motion).

Min of the kinetic energy relating to the
rigid motion.
y-linear impulse of the body equal to 0.
y-linear impulse of the fluid (deformations)
equal to 0.
y-linear impulse of the fluid (rigid motion)
equal to 0.

Max of the potential energy.
Critical point of the y-linear impulse of the
body.
Critical point of the y-linear impulse of the
fluid.

Fig. 4.8. Screenshots of the swimmer of Example 3 at the times t = 3.17, 3.95, 6.07 and 9.50 corresponding to
instants which are relevant to the energy and linear impulse distribution (see Fig. 4.10 and Fig. 4.11). The black
spot is the position of the center of mass and the colors correspond to the density of the body. The dashed line is
the trajectory of the center of mass. The Eulerian velocity field of the fluid is represented by the green arrows.

the strokes seem to be periodic on Fig. 4.15, they are actually not, as it can be observed on Fig. 4.16.
In this example, the body experiences a passive locomotion with net displacement along the y-axis.
The position of its center of mass with respect to the time is plotted on Fig. 4.17.

Example 6: Hydrodynamical coupling. The number of degrees of freedom relating to the
shape changes is the same as in the preceding example but the unlocked components are now all
of the ck for k = −1,−2,−3. The initial data and the rigidity matrix are the same as in Example
3. It means in particular that the component c−3 := a−3 + ib−3 is equal to zero and not excited at
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Fig. 4.9. y−coordinate of the center of mass of the swimmer (Example 3) with respect to time. In this case,
the strokes causing the displacement are time periodic.
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(a) The parameterized curve t ∈ [0, 30] 7→
(<(c−1(t)),<(ċ−1(t)), t) ∈ R3
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(b) The parameterized curve t ∈ [0, 30] 7→
(=(c−2(t)),=(ċ−2(t)), t) ∈ R3

Fig. 4.10. Phase portraits of the components a−1 := <(c−1) and b−2 := =(c−2) for the swimmer of Example
3. Both components are time periodic. The resulting shape changes are time periodic strokes as well, causing a net
displacement along the y-axis.

the initial time.
dfree = 7 %0 = 1 α = 0 ε = ∗

c = (1, 0, a−1, b−1, a−2, b−2, a−3, b−3, 0, . . . , 0)
R = diag(0, 0, 1, 1, 2, 2, 30, 30, 0, . . . , 0)
D = 0 (no damping)
cref = (0, 0, 0.4899, 0, . . . , 0)
c0 = (1, 0, 0.4, 0, 0, 0.2, 0, . . . , 0)
ċ0 = (0, 0, 0.6, 0, 0,−0.6, 0, . . . , 0)

Once more, we obtain an example of passive locomotion. Some screenshots of the swimming body
are displayed on Fig. 4.18. Since the rigidity matrix R is diagonal, the elastic modes corresponding
to the component c−3 would not have been excited in the absence of fluid (see Fig. 4.19). On
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Kinetic energy of the fluid
Kinetic energy of the body (deformations) 
Kinetic energy of the body (rigid motion)
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Fig. 4.11. Distribution of energy (in percents) with respect to the time for the swimmer of Example 3. The
overall energy of the fluid-swimmer system can be decomposed into the kinetic energy and the potential energy of
elasticity. The kinetic energy can be further decomposed into the kinetic energy of the fluid and the kinetic energy
of the body. Eventually, the kinetic energy of the body is the sum of the kinetic energy caused by the shape changes
and the the kinetic energy resulting from the rigid displacement. In this graphic, the amount of energy of each type
is proportional to the area. The vertical dashed straight lines highlight 4 instants of interest regarding the energy
and momentum distributions. They are detailed on Fig. 4.8.
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Linear momentum of the fluid (deformations)
linear momentum of the body

Fig. 4.12. Since the displacement of the swimmer of Example 3 is along the y-axis only and the shape changes
are symmetric with respect to this axis, the flow is also symmetric and the x-component of the linear impulse of
the fluid is equal to zero for all times. The y-linear impulse of the fluid-swimmer system can be decomposed into
the sum of the linear impulse of the fluid (caused either by the shape changes or the rigid motion of the body) and
the impulse of the body. The vertical dashed lines highlight the same instants as on Fig. 4.11, representing some
interest regarding the exchange of impulse.

Fig. 4.20, one can observe the distribution of energy during a little more than 2 strokes. The body
swims along the y-axis. The position of its center of mass with respect to the time is plotted on
Fig. 4.21.

Example 7: What happens with a even softer body?. We unlock now all of the 8
complex components of the shape variable. It means that 14 degrees of freedom are allowed in the
shape changes. Locomotion is quite hard to achieve with such a soft body. The rigidity matrix R
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Fig. 4.13. Screenshots of the motion of the swimmer (Example 4) over the time interval [0, 60]. The dashed
black line shows the trajectory of the center of mass. The colors give the value of the internal density (the animation
can be found on the web page of which the location is given at the beginning of this subsection).
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curve t ∈ [0, 60] 7→
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T
im

e

(b) The parameterized
curve t ∈ [0, 60] 7→
(=(c−1(t)),=(ċ−1(t)), t) ∈
R3

−1
−0.5

0
0.5

1

−0.4
−0.2

0
0.2

0.4
0

10

20

30

40

50

60

!(c−2)!(ċ−2)
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(c) The parameterized
curve t ∈ [0, 60] 7→
(<(c−2(t)),<(ċ−2(t)), t) ∈
R3
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(d) The parameterized
curve t ∈ [0, 60] 7→
(=(c−2(t)),=(ċ−2(t)), t) ∈
R3

Fig. 4.14. Phase portraits of the variables a−1 := <(c−1), b−1 := =(c−1), a−2 := <(c−2) and b−2 := =(c−2)
for the swimmer of Example 4. None of them seem to be time periodic.

is set in such a way that the modes ck for k = 1 and k ≤ −3 have a high stiffness coefficient (i.e. a
large amount of energy is necessary to deform the body along these modes). We have to introduce
some dissipation effects and to use the potential energy W2 to prevent infinite concentration of
material (i.e. infinite density inside the body).
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(a) t = 0 (b) t = 1.6 (c) t = 3.2

(d) t = 4.8 (e) t = 6.4 (f) t = 8.0

Fig. 4.15. Screenshots of the motion of the body described in Example 5 over the time interval [0, 8]. The colors
give the value of the internal density. The shape changes are not time periodic in this example (the animation can
be found on the web page of which the location is given at the beginning of this subsection).
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Fig. 4.16. Time evolution of the distribution of energy (in percent) for the swimmer of Example 5. Each peak
corresponds to a stroke. One can observe that the peaks are different, which means that the strokes are not time
periodic. Compared to Example 3, the percentage of the body’s kinetic energy (relating to the rigid displacement) is
smaller, making this way of swimming less efficient.

dfree = 17 %0 = 1 α = 0.5 ε = 0.03
c = (a1, b1, a−1, b−1, a−2, b−2, a−3, b−3, a−4, b−4, a−5, b−5, a−6, b−6, a−7, b−7)
R = diag(100, 100, 1, 1, 1, 1, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100)
D = diag(0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7)
cref = (0.8908, 0, 0.3984, 0, . . . , 0)
c0 = (1, 0, 0.5, 0, 0, 0.24, 0, . . . , 0)
ċ0 = (0.2026, 0, 0.4987, 0, 0,−0.0973, 0, . . . , 0)

Because of the damping effects, only three strokes are possible before the total amount of energy
becomes insufficient for the body to swim. Screenshots are displayed on Fig. 4.22 and the position of
the center of mass with respect to time is plotted on Fig. 4.23. Although only three components out
of the 16 of the shape variable are excited at the initial time, due to the hydrodynamical coupling
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Fig. 4.17. y−coordinate of the center of mass of the body (Example 5) with respect to time.

(a) t = 0 (b) t = 0.9 (c) t = 1.7 (d) t = 2.6

(e) t = 3.4 (f) t = 4.3 (g) t = 5.1 (h) t = 6.0

Fig. 4.18. Screenshots of the motion of the swimmer of Example 6 over the time interval [0, 6]. The strokes
are clearly not periodic (the animation can be found on the web page of which the location is given at the beginning
of this subsection).

and the potential energy W2, all of the modes get excited, as it can be observed on Fig. 4.24 and
4.25.

5. Self-propelled Locomotion. We consider now that the fluid-swimmer system is at rest
at the time t = 0 (the energy of the overall system is equal to 0) and that the body is able to
modify its shape by means of some internal forces (for instance, the forces could be resulting from
the work of the muscles of a fish). This new feature can easily be incorporated to our model.

5.1. Equation of motion. Equation (4.13) has to be turned into:

( d
dt

∂L
∂ċ

(c)− ∂L
∂c

(c)
)
−

N ′∑
j=1

λj(c, ċ)Gj(c) = F, (5.1)
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Fig. 4.19. Phase portrait of the component c−3 (parameterized curve t ∈ [0, 15] 7→ (<(c−3(t)),<(ċ−3(t)), t) ∈
R3) connecting to Example 6. Although not excited at the initial time, this mode gets excited because of the
hydrodynamical coupling.
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Fig. 4.20. Time evolution of the distribution of energy (in percentage) for the swimmer of Example 6. The
strokes can still be identified; they correspond to the peaks. They are clearly not time periodic.

where the function F : t ∈ R+ → CN+1 stands for the internal forces (usually called generalized
forces in Lagrangian Mechanics) exerted by the swimming body. In the normal form (4.10), we
have to modify the expression (4.10b) of Λ(c, ċ) as follows:

Λ(c, ċ) := −K(c)−1〈Γ(c), ċ, ċ〉 −K(c)−1 ∂W

∂c
(c) + K(c)−1F. (5.2)

We claim:
Theorem 5.1. For any integer N ≥ 1, for any µ > 0, for any initial data (c0, ċ0) ∈ A•N (µ)×SN

satisfying the compatibility conditions (Gj(c0), ċ0)`2(C) = 0 (j = 1, . . . , N ′) and for any Lipschitz
continuous function F : t ∈ R+ 7→ CN+1, there exists a unique C2 solution t ∈ [0,+∞[ 7→ c(t) ∈
AN (µ) to ODE (4.10a–5.2) satisfying (c(0), ċ(0)) = (c0, ċ0). Besides, if ε > 0 and α ≥ 1/2 in the
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Fig. 4.21. y−coordinates of the center of mass of the body (Example 6) with respect to the time.

Fig. 4.22. Screenshots of the motion of the swimmer (Example 7) at the times t = 0, 2.5, 5, 7.5 and 10. The
colors correspond to the density of the body (the animation can be found on the web page of which the location is
given at the beginning of this subsection).

definition of W2 (see Proposition 4.2) the solution is allowable (in the sense of Definition 2.2) and
analytic if the functions V , Gj and F are.

Proof. As in the proof of Theorem 4.5, the Cauchy-Lipschitz Theorem applies and guarantees
that there exists a unique C2 (or analytic if V , Gj and F are) solution over a time interval [0, T )
for some T > 0. The energy estimate (4.14) becomes, for all 0 < t < T :

d

dt
E =

( d
dt

∂L
∂ċ

(c)− ∂L
∂c

(c), ċ
)
`2(C)

= (F, ċ)`2(C). (5.3)

Integrating over [0, t] for any 0 < t < T and invoking the inequality (4.9) we get:

νN
2
‖ċ‖2`2(C) ≤ E(t) ≤ E(0) +

∫ t

0

‖F(s)‖`2(C)‖ċ(s)‖`2(C)ds. (5.4)

Setting then:

Υ(t) :=
∫ t

0

‖F(s)‖`2(C)‖ċ(s)‖`2(C)ds,

we obtain after some basic algebra that, for all 0 < t < T :

Υ′(t)√
Υ(t) + E(0)

≤ ‖F(t)‖`2(C)√
νN/2

.
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Fig. 4.23. y−coordinate of the center of mass of the swimmer (Example 7) with respect to the time.
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Fig. 4.24. The black, red and blue curves correspond respectively to the components |c1(t)|2, 4|c−1(t)|2 and
9|c−2(t)|2 of the shape variable (Example 7).

Integrating this inequality with respect to time, we get the estimate:

Υ(t) ≤ E(0) +
[√

E(0) +
1√
2νN

∫ t

0

‖F(s)‖`2(C)ds
]2

.

Substituting this result into (5.4), we obtain the Gronwall-type inequality:

1
2
‖ċ‖2`2(C) ≤

2
νN

E(0) +
1
νN

[√
E(0) +

1√
2νN

∫ t

0

‖F(s)‖`2(C)ds
]2

,

meaning that ċ remains bounded for all t ∈ [0, T ). We next conclude as in the proof of Theorem 4.5.

5.2. Numerical simulations: How to make a soft ball swim?. In this example, the
shape of the swimmer is a ball at the initial time. This shape is also its reference configuration
(minimizing the potential energy of elasticity). Under the action of some internal forces, the ball
undergoes shape changes that produce a net displacement along the y-axis. As usual, the data are
displayed in the table below. In the last row, we give the expression of the internal forces as a
vector of 16 time depending components. Notice that the fluid-body system is at rest at the time
t = 0.
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Fig. 4.25. The black, red, blue, magenta and green curves correspond respectively to the components 16|c−3(t)|2,
25|c−4(t)|2, 36|c−5(t)|2, 49|c−6(t)|2 and 64|c−7(t)|2 of the shape variable (Example 7). These modes are not excited
at the time t = 0. They get excited through W2 and the influence of the fluid which couples all of the modes.

dfree = 17 %0 = 1 α = 0.5 ε = 0.03
c = (a1, b1, a−1, b−1, a−2, b−2, a−3, b−3, a−4, b−4, a−5, b−5, a−6, b−6, a−7, b−7)
R = diag(10, 10, 1, 1, 1, 1, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7)
D = diag(0.2, 0.2, 0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1, 1, 1.2, 1.2, 1.4, 1.4)
cref = (1, 0, . . . , 0)
c0 = (1, 0, . . . , 0)
ċ0 = (0, . . . , 0)
F(t) = [2(4 arctan(t)2/π2) cos(t/3)](0, 0, 1, 0, 0, 1, 0, . . . , 0)

On Fig. 5.1 are displayed some screenshots of the body during its swimming. The position of its
center of mass with respect to time is plotted on Fig. 5.2 and on Fig. 5.3 is shown the distribution
of energy.

6. Conclusion. In this paper, we have presented a model to study the dynamic interaction
between a deformable body (which can be made of a hyperelastic material) and a perfect fluid.
This model has allowed us to find out some interesting properties, the most noteworthy being that
passive locomotion with zero initial velocity, is possible even when the body is not even elastic. In
this case, the swimmer is completely passive and its deformations are caused by the hydrodynamical
forces exerted by the fluid on its boundary. The fluid-swimmer system is naturally oscillating and
the body, driven by the fluid, undergoes time periodic shape changes resulting in locomotion. This
result casts a new light on some studies of swimming efficiency, such as [14] or [25], in which the
cost function involves the forces (or the torques) exerted by the swimmer. Indeed, the locomotion
strategy presented in Example 1 is optimal in terms of both the energy expanded over a stroke and
the internal force exerted by the body (the cost being zero in both cases). This result should not
be confused with D’Alambert’s paradox but rather be understood as a generalization of this quite
counterintuitive phenomenon to deformable immersed bodies.

Appendix A. Sequences of complex numbers. We recall that S is the Banach space
consisting of the complex sequences c := (ck)k≤1, ck = ak + ibk, ak, bk ∈ R such that c0 = 0 and
‖c‖S :=

∑
k≤1 |k|(|ak|+ |bk|) < +∞. The indexation of the elements ck by integers k ranging from

1 to −∞ may seem confusing but fits with the definition (2.2) of the conformal mapping φ(c).
For any N ∈ N, the (N + 1)-dimensional subspace of S for which ck = 0 if k < −N is

denoted by SN . It will be identified with CN+1 or R2(N+1) and its elements denoted respectively
by c := (c1, c−1, . . . , c−N ) ∈ CN+ or c := (a1, b1, a−1, b−1, . . . , a−N , b−N ) ∈ R2(N+1) (we drop the
element c0 := a0 + ib0, which is always equal to 0).
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(a) t = 0 (b) t = 1.7 (c) t = 3.3 (d) t = 5.0

(e) t = 6.7 (f) t = 8.3 (g) t = 10.0 (h) t = 11.7

(i) t = 13.3 (j) t = 15.0 (k) t = 16.7 (l) t = 18.3

(m) t = 20.0 (n) t = 21.7 (o) t = 23.3 (p) t = 25.0

Fig. 5.1. Screenshots of the motion of the body over the time interval [0, 25] (self-propeled swimmer). The
colors give the value of the internal density (the animation can be found on the web page of which the location is
given at the beginning of this subsection).

Appendix B. Multilinear, polynomial and analytic functions. Let E1, . . . , Ek (k ≥ 1)
be Banach spaces. The set consisting of all the continuous, k-linear mappings from E := E1×. . .×Ek
into F is denoted Lk(E,F ) (we will drop the subscript k when k = 1). It is a Banach space whose
the norm is classically defined by:

‖Λ‖Lk(E,F ) := sup
(e1,...,ek)∈E,

‖ej‖Ej
=1, (j=1,...,k)

‖〈Λ, e1, . . . , ek〉‖F , (Λ ∈ Lk(E,F )).

When F = R, we are dealing with multilinear continuous forms and we denote merely Lk(E) :=
37
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Fig. 5.2. y−coordinate of the center of mass of the self-propeled swimmer with respect to the time.
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Fig. 5.3. Time evolution of the distribution of energy for the self-propeled swimmer. Due to the action of the
internal forces, the overall energy of the fluid-body system is not constant any more. The system is at rest at the
time t = 0.

Lk(E,F ).
We call polynomial function from a Banach space E (or from only a subset of this space) into

a Banach space F any function P such that there exists an integer p ∈ N (the degree of the
polynomial), A0 ∈ F and p mappings Ak ∈ Lk(Ek, F ) (k = 1, . . . , p) such that:

P (e) := A0 +
p∑
k=1

〈Ak, e, . . . , e〉, ∀ e ∈ E.

We denote P(E,F ) the set of all the polynomial functions from E into F . Observe that in particular
L(E,F ) ⊂ P(E,F ). We easily prove that if E1, E2 and E3 are three Banach spaces and P1 ∈
P(E1, E2), P2 ∈ P(E2, E3) then P2 ◦ P1 ∈ P(E1, E3).

We call analytic function from a Banach space E into a Banach space F any function f such that
there exists R > 0 (the radius of convergence), A0 ∈ F and a sequence (Ak)k≥1 with Ak ∈ Lk(Ek, F )
satisfying: ∑

k≥1

|λ|k‖Ak‖Lk(Ek,F ) < +∞, ∀λ ∈ R, |λ| < R,
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and

f(e) := A0 +
∑
k≥1

〈Ak, e, . . . , e〉, ∀ e ∈ E, ‖e‖E < R.

We refer to the book [4, §4], for further details on analytic functions in Banach spaces.

Acknowledgments: The author is more than grateful to Pr. J.F. Ganghoffer (with LEMTA,
Nancy) for having him introduced to the theory of hyperelastic material.
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