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Abstract—Recently, there has been a lot of interest around relatedness is represented through a probabilistic m&®3! [
multi-task learning (MTL) problem with the constraints that Prior knowledge on tasks are then translated into an apipropr
tasks should share a common sparsity profile. Such a problem 4te reqularization term or into a hierarchical Bayesian ehod
can be addressed through a regularization framework wherehe that be handled b | . lgorithm 1141, 1501 [20
regularizer induces a joint-sparsity pattern between taskdecision a Can € handled by a eaming algorithm [14], [50], [20].
functions. We follow this principled framework and focus on In this work, we consider that tasks to be learned share
£, — £, (with 0 < p < 1and1 < q < 2) mixed-norms as sparsity- a common subset of features or kernel representation. This
inducing penalties. Our motivation for addressing such a leger means that while learning the tasks, we jointly look for
class of penalty is to adapt the penalty to a problem at hand tea1res or kernels that are useful for all tasks. In thisexn
leading thus to better performances and better sparsity paern. . . . .

For solving the problem in the general multiple kernel case, of joint feature selection with _multlple relat_ed tasks, el

we first derive a variational formulation of the ¢, — ¢, penalty works have already been carried out. For instance, Jebara et
which helps up in proposing an alternate optimization algoithm.  al. [22] has introduced a maximum entropy discrimination fo
Although very simple, the latter algorithm provably converges to  splving such a problem. Some other works cast the problem
the global minimum of the /1 — £, penalized problem. For the .4 5 propabilistic framework which uses automatic refee

linear case, we extend existing works considering accelesa det inati d a hi hical B . del for s t
proximal gradient to this penalty. Our contribution in this etermination and a hierarchical Bayesian model for seigc

context is to provide an efficient scheme for computing the the relevant features [5], [49]. Another trend considersgur

£1 — £, proximal operator. Then, for the more general case when larization principle and thus minimizes a regularized ainpl

0 < p <1, we solve the resulting non-convex problem through risk with a regularization term that favors a common spgrsit

a majorization-minimization approach. The resulting algaithm . gjje for all tasks. Such an approach has been investigated

is an iterative scheme which, at each iteration, solves a wgited . L
{1 — L4 sparse MTL problem. Empirical evidences from toy by Argyriou et al. [2] and Obozinski et al. [33]. In these

dataset and real-word datasets dealing with BCI single trikEEG  latter works, the authors proposé;a— ¢> regularization term
classification and protein subcellular localization showlie benefit which can be interpreted as a convex extension of the sparsit

of the proposed approaches and algorithms. inducing ¢, norm in single task learning.
Index Terms—Multi-task learning, multiple kernel learning, As made clear in the sequel, our contribution in this paper
sparsity, mixed-norm, Support Vector Machines lies in between multi-task and multiple kernel learninglded,

we provide a methodological framework for learning eack tas
decision functions while these functions use an optimal, in
some sense, linear combination of only few kernels. Thigtpoi
Multi-Task Learning (MTL) is a statistical learning frame-highlights the relation between our contribution and npueti
work which seeks at learning several models in a joint mannkernel learning. Imposing that the few selected kernels are
The idea behind this paradigm is that, when the tasks somilar across the tasks is the point that defines task'sedla
be learned are similar enough or are related in some sensess. Following Obozinski et al. [33] and Argyriou et al.,[2]
it may be advantageous to take into account these relatiams induce this sparsity in joint kernel representation tigto
between tasks. For instance, when the number of sampdesegularization principle where the regularization tesmai
for learning are small, transferring some knowledge frora omixed-norm penalty.
task to another while learning can be advantageous in termn practice and in theory as proved by the works of Lounici
of generalization performances. Several works have peavidet al. [31], a fixed non-adaptive penalty like tie — /o
empirical evidence on the benefit of such a framework [9nixed norm, is beneficial with respects to other penaltidg on
[15], [23], [35]. Application domains that have been shownnder certain situations. Hence, it seems natural thadreifft
to benefit from multi-task learning are medical diagnosis [Spenalties may suit better to different data structures.s Thi
drug therapy prediction [6], vaccine design [21] or confjoimmotivates us to investigate the use of a larger class of mixed
analysis [1]. norm penalty that can be adapted to the data at hand. We
However, the notion of relatedness between tasks is vagoeus here on the class 6f — ¢, mixed-norm penalty where
and depends on the problem at hand. For instance, one 6af p < 1 and1 < ¢ < 2. Our objective in using < 1 is to
consider that models resulting from related tasks should beake the kernel representation across tasks sparser timgn us
similar to a single model [15], [23]. In other works, task’e = 1; such an increased sparsity profile being valuable in a

I. INTRODUCTION



presence a large amount of noisy features or irrelevanekern where a functiory. ;, belongs to a Reproducing Kernel Hilbert

Furthermore, the sparser representation inducechby 1 Space (RKHS)H, of kernel Ky, b, is a bias term and/

is expected to enhance models interpretability and improigethe number ofasis kernels provided. Depending on the

evaluation computational efficiency. Varyiggbetweenl and input spaceX, #H; can take different forms. For instance, if

2 allows the task decision functions to adapt themselvesdo th' = R?, H, can be a subset dk? built from a single or

importance of the task relatedness. Indeed, it would be olea several dimensions. In some other situatichg, can be also

the following thatg = 1 makes the task learning independerdn infinite dimension space defined implicitly by its kernel

while ¢ > 1 ties them through the mixed-norm. Rationales ofe.ga Gaussian kernel).

why we have not investigated cases where ¢ < co will The objective of this work is to learn the decision function

also be discussed. f: for each task under the constraints that all these functions
Our aim in this paper is to present a simple algorithshare a common sparsity profile of their kernel represamtati

for handling the optimization problem resulting of the uge dience, the pursued hope is to build a learning algorithm able

¢, — ¢, mixed-norms regularizers in the multi-task frameworko yield many vanishing functiong; ;. for all ¢.

and to provide empirical evidences that making the choige of For achieving this goal, we cast our problem as the follow-

andq adaptive with respects to the data at hand works as gaagd optimization problem:

as or better than a fixei — ¢ penalty in various situations. .

Algorithmically, we first show that, for the general mulgpl P C- ZL(ft(Ii=t)’yivt) +Q(finfr) @)

kernel case, a variational formulation of tiie — ¢, mixed- bt

norm can be obtained. Such a novel formulation helps uswhere L(f;(z),y) is a loss functionf) a sparsity-inducing

deriving a simple alternate algorithm for solving the spargenalty term involving all functionsf; and C' a trade-off

¢1 — £, multi-task problem which provably converges towardparameter that balances both antagonist objectives. fierea

the solution of the problem. For the linear case, as such we will focus on a Hinge loss function, denotedfsf (z), y),

algorithm may not be efficient, we extend existing works [11§lthough our algorithm can be straightforwardly applied to

on accelerated proximal gradient to handle the casg ef¢, other losses.

norm. We essentially provide a novel way for computing the

proximal operator of this mixed-norm. At a second stage, W& joint sparsity-inducing penalty

addres_s th_e case of the T“?”'CO”‘@“ tg (0 <P < 1) Since few years now, there has been a large interest around
regularization term. The difficulty raised by this non-cerv

problem is tackled via a Majorization-Minimization (MM) sparse models. While different approaches are possible for

approach [19]. This leads to an iterative scheme which solv%%r:g:é'rgg asz:]S;t r?f:}tggf] [[1107]]6r[§6]r,032?tr8|tg O?rsausgizny
at each iteration, a reweighte] — ¢, multi-task learning yap y propertyp ye

problem. modeling [46], [47].

. . For a single task empirical minimization problem, sparse
In the next section, we present the general formulation of g P P » SP

. . odels are usually induced by the use @f anorm regularizer
the sparse MTL problem as well as a brief review of close )&5] For a Multi-Task Learning oroblem. this approach can
spirit-related works. Algorithmic developments are preaed : gp ’ P

in Section Ill. Then, some empirical results that illustréte be properly generalized by the use of appropriate norm. For

behavior of our algorithms are given in Section IV Whilénstance, Obozinski et al. and Argyriou et al. [2], [33] posp

some concluding remarks are drawn in Section V. For %regularlzer of the form :
sake of reproducibility, the Matlab code used for this paper M

is available at http://asi.insa-rouen.fr/enseignatskotom/ Qfr,---, fr) = Z <
code/SparseMTL.html k=1

This latter regularizer is & block-norm that tends to produce
II. MULTI-TASK FEATURE/KERNEL SELECTION sparse kernel solutions. For single task problem, such a reg
FRAMEWORK ularizer has been used for sparse kernel selection in rfeultip
) S kernel learning problem [3]. For single task linear problem
_Thls section introduces our sparse M_TL framework anghis regularizer is equivalent to @-norm penalty.
discusses related works available in the literature. In order to be more data-adaptive, this regularizer can be
generalized as :

T 1/2
z|ft,k|ak) |

t=1

A. Framework M /T p/q
Suppose we are giveR classification tasks to be learned Qoo fr) =) (Z |ft,k|g{k> 3)
from T' different dataset$z; 1,vi1);21, -, (@i,7, Yi,7) 121 s k=1 \t=1

where anyz; . € X andy, . € {+1, —1} andn; denotes thé- where typically0 < p < 1 andq > 1. For this regularizer, &,
th dataset size. For a given taiskve are looking for a decision norm is applied to the vector of all task normsfify, and then
function of the form: a ¢, norm or pseudo-norm is applied to the resulting vector.
M The ¢, norm in the regularizer controls the weights of each
filz) = th,k(x) T+ b, vte{l, -, T} (1) taskfor the spac@(, and how this kernel representation will
Pt be shared across tasks. For instance, large valyggich as



g = c0) means that as soon §g; ||%, is non-zero, another situations they may perform better than the- ¢, penalty.
task¢’ can have a non-zero norm fgy 5, without increasing

significantly the regularizef, ;. Note that forp = 1 and |||. ALGORITHMS FOR JOINTLY SPARSE MULTATASK SVM

¢ = 1, the regularizer can be decoupled and thus the leaming, s section, we propose some algorithms for solving
problem boils down to bg" mdgpendent problems. T.hg the sparse multitask SVM problem when usiflg,, as a
pseudo-norm controls the sparsny of _the kernel representa regularizer with valuew < 1 and1 < q < 2. At first, we
for all tasks. Fop < 1, regularizer (3) is expected to prOduc‘?:onsider the convex case when= 1 and then we introduce

sparser solutions than fgr = 1, hence using such a mixed-a algorithm which solves the problem for< 1
norm penalty is expected to be more efficient in presence o? '

many irrelevant variables or kernels. Note that this kind of ] ]

mixed-norm regularizer has already been proposed foresingl- A Smooth formulation of, — /, regularized problem

task learning for achieving composite absolute penatimati The algorithm we propose is based on a variational formu-

[53] or for composite kernel learning [44]. lation of the mixed-nornt2; ,(-). The following proposition
However’ in the context of multi-task |earning’ 0n|y Somgxtends the one of Michelli et al. [32] to mixed-norm. Simila

particular cases of the mixed-noi , have been considered.Propositions have been derived for multiple and composite

Obozinski et al. [33] us@ = 1 andgq = 2 while Liu et al. kernel learning [38], [44]. Here and in what follows/v is

[27], [28], Quattoni et al. [37], [36] and Chen et al. [11] leav defined asu/0 = oo if u # 0 and0/0 = 0.

considered the use @f= 1 andq = co. For all these works, ~ Proposition 1:if s > 0 and {a;x, € R : k €

the authors have focused on convex situations singg is  [1,--+ M|t € [L,--- T} such that at least onfe, x| > 0,

known to be convex whenever ¢ > 1 and non-convex for then the following minimization problem over elemerats;.

p < 1andq > 1. Recently, several works on learning singl@dmits a unique minimum

sparse models have stressed the need of non-convex pgnaltie ) s

for achieving better sparsity profile. For instance, Knighaél. min Z sl cdy >0, Z <Z d%j) <1

[25] suggested the use of the so-called Bridge penalty which  {d«.x} i dt k ' ’ el

simply consists in replacing thé norm with a/, pseudo-

norm with 0 < p < 1. In our multi-task learning framework,

this can be naturally generalized by using the regularizemg

in Equation (3) with0 < p < 1. For instance, two very

recent works have focused on theoretical properties of th@ereq = —2-. Furthermore, at optimality, we have:

2

> <Z lat-,kl“) " (4)

k t

mixed-norm¢2, ; and €, , for variable selection in multiple ot
regression problems [18], [29]. |az k|°‘% (Z | k|%+1) =z
As we can see, there are a lot of algorithmic works that dr, = i v - (5)
address the case whege = 1 and ¢ € {2,00}. These ’ 5 (Z |aw|$)7
works usually aim at developing efficient algorithms in the v v
linear decision function. The novelty of our contributiaad Proof: (Sketch) The proof proceeds by writing down

in considering a larger clas® (< 1 and1 < ¢ < 2) of the Lagrangian of the minimization problem and deriving the
mixed-norm penalties while keeping the kernel frameworloptimality condition wrt tod; ;. Then, we get

By choosingp and ¢ in these intervals, we aim a better 1o

gdap_tivity of the penalty to the datasgts at hand. However, s A~V g, [24) Zdl/s s

in this paper, we only focus on algorithms for solving the tk — t.k u,k
resulting optimization problems, while the task of effidlgn . _ SNt _
selectingp andq has been left for future works. FurthermoreWhere is the Lagrangian multiplier associated to the mixed-
although we have focused on the use of Hinge loss functidirm constraint. From these optlmallt){/gg)ndmons, we \geri
the algorithms we propose in the sequel are generic eno% d}/,j = (A1 (Zu |au7,€|2/s+1)S+1 . Then since at

to handle different type of loss functions in the optimigati optimality, the mixed-norm inequality becomes an equality
problem as well as heterogeneous loss functions. have — 2/et1) (5+1)/2) 2 Pludai ]
As we have stated, we do not consider in this paper casvé% ave B (Zk (Zt |at’k|_ ) ) - Tugging a
where 2 < ¢ < oo. There is a main reason for this [nese equations |_n.to the optimality conditionsdyf;, proves
Indeed, we believe that ag becomes greater tha®, the the above proposition. =
¢, — ¢, regularizer rapidly becomes numerically equivalent to, Hence, by settingir = ||k, the above proposition

a /1., one. This point can be made clear from the relatiofl’> & variational formulation o2, ,(-)". It is interesting
\/q N to note how the mixed-norm on function$ ; transfers to
(S lasl) /e = Jael (32,12

1/q
o q) / wheref is the index of another mixed-norm on the weights . We can see that
the largest|a;|. Hence, since there already exists efficierfor ¢ = 1, this latter mixed-norm decouples. When— 2,
method for¢; ., sparse multi-task learning [36], we have notvhich correspond to multiple kernel learning for a singlekta
addressed this case in this present work. However, we sidl, we haves — 0 and the mixed-norm on the weight
plan in a forthcoming work, to provide a better analysis & thbecomes a mixed supnorm. This means that at optimality,
use of these/; — ¢, penalties so as to understand in whiclall the weights{d. ;} associated to non-zerfu. ;} should




have similar values. Indeed, suppose that for tasked¢’, our problem, we present in the sequel a simple approach for
dy < dir anday g, ap p are non-zero, then the objectivesolving problem (8).
value can be decreased by settifig, = d; ;. For this case,

it would have been preferable to consider a single weiiht 5 A\, Jiternate optimization algorithm for the — ¢, case
associated to each RKHEB;,. ;

Now let us consider the optimization problem related to our We introduce one of our contribution of this work which is
sparse multi-task learning problem for=1 and1 < g<2: & simple iterative algorithm based on block-coordinate€des
for solving thel; —¢, problem. We show that such a coordinate
min C- > H(fi(zit) yis) +Qq(fr,- ,fr)> (6) descent approach boils down to an alternate optimization
JuoJr tyi scheme which provably converges to the minimizer of the

Since the penalty term is convex and the square functionREoblem.
strictly monotonically increasing function dk, , squaring the At first let us define the objective function of our problem
penalty term in the objective function as above, leads to 4h) as

equivalent optimization problem without the squaring. éler [Es k|2
the equivalence is understood as for any hyperparametez val ~ R(d,f) = C > H(fi(wit),yi) + Z (10)
C, there exists a hyperparamet&rrelated to the optimization by b

problem without the squaring term (as in Equation 2) so th@heref defines the set of all functior{gﬂyk} After appropriate
the solutions of both problems are equal (a more formal progftialization of the weight matrixd, our block-coordinate
of this claim is detailed in the appendix). Then, owing to thgescent algorithm consists in alternatively minimizing :

vanauo_na] formulatlon ofd o (f1,- -, fr)?, we can rewrite l\/p) problem (10) with respects t4f} while keeping the
the optimization problem related to a sparse multi-task SV matrix d fixed. This step simply consists in Solviri
as single-task SVM problems which, at step results in
, min CY i H(fe(@ie) yie) + >0k w the following decision function for task:
1, T, ? ’ t, (7) Y . _1 .
s.t Dok (Zt 1/5) <1, dix >0 Vk,t ( ) Zo‘z(t)yz ( )Kk(xz ty" )—|—b§ )

with s = 2=¢. We can note that the objective function of with
this optimization problem is smooth and convex and that the

L O N
feasible domain is convex i§ < 1. After, re-arranging the argmin 537, ; @i G = 22 Qi

sums, we have the following equivalent optimization praofile agv) = sE > iyie =0,
st >, (Zt 1/5) <1, dip >0 Vk,t whereG; ;¢ = yi Yt Y dij}k_l)Kk(Ii,taxj,t)-
. (i) problem (7) with respects tal with {f} being fixed.
with Because of the relation between tHe!”} and the
. [ fekl? (0 = 3, alyid Y Ki(wi, )}, this problem
J d. = C H f s Yi 2 | t,k 7,t k 7,t )
(@) H}%n ; (Fel@ie) yie) + Z d i is equalent to solve (4) with, at step
1
= - min —af Gy(d)ay — a1 9 Qe = ||ft H’Hk
0<a:<C,afy=0 2 (o) e
where [G; (d)]” = YitYit Zk di 1 Ky (Iz‘,t, g;j_’t) and {a;} = dt,k \/Z Qg Yi,tYj, 6 Kk (xi,h xj,t)
are the vectors of Lagrangian multipliers related to thegdin J

loss in problemJ;(d). The second equality of equation 9 is

d=1 (v)TK a(”)
due to Lagrangian duality and the strong duality of an SVM bk

t

problem. We can note from these equations that for a fixed where [f(k,t]i,j = i1y 1 Ki(xig, x;¢). According to

matrix d (matrix with entriesd; ;), each task can be trained proposition (1), we have a closed-form solutidﬁk) of

independently. this problem given by equation (5) which now writes as :
This latter formulation shows how our sparse multi-task i

SVM problem is related to Multiple Kernel Learning (MKL) (v) 20\

problem. At first, we remark that Equations (8-9) boil down to 17 ” <Z ”f“ I3 )

be the MKL problem when only one single task is considered dgk) -
[38]. When several tasks are in play, the matdxmakes >ow <Z I fuu
explicit that tasks are linked through their shared spaesadt

representation. Equations (8-9) suggest the use of similatOwing to the convexity and the smoothness of the objective
algorithms than those proposed for solving MKL problenfunction, such an algorithm should converge towards the
for instance a reduced gradient algorithm as in SimpleMKininimizer of problem (8). In what follows, we give more
[38] or a Semi-Infinite programming approach as proposed bigtails on the descent and convergence properties of this
Sonnenburg et al. [42]. Instead of adapting these methodsatgorithm.

(11)

s+1
s+1




Proposition 2: Suppose that all the Gram matricks ; (the to efficient algorithms. Here, by considering a kernelized
matrix of general ternd<,(z; ., z;,.)) for all tasks are strictly framework, our algorithm still relies on a sequence of SVM
positive definite, giverd“—1) with V¢, k, dgfk_l) # 0, at each trainings. This can be considered as very time-consuming.
iterationv > 1 of the alternate scheme, d®) # d(v—1) then However, according to very recent works on multiple kernel
the cost function strictly decreases learning [43], [24], using such a wrapper approach (which

first solves an SVM then update the weighd$ is still

R(d™, ) < min R(d“™Y,f) < R(A"“™V, £V (12) competitive compared to other algorithms. Hence, although

we have not carried out extensive comparisons, we believe
and we haveii”k) > 0. that our approach is relatively efficient (and at least is
Proof: The proof proceeds by considering that the righietter than gradient descent techniques as proved in the
and the left inequalities respectively derive from the maility experimental section). Note that in a linear framewadek
of thea(®) in step (i) and thel(® in step (i) of the alternating each#,, is associated to one dimension Bf, the kernel
scheme. The details are given in the appendix. matrix K, is a rank one matrix and our algorithm wastes
m many computational efforts in computiny, d; . K (see

The above proposition makes clear that as iteration go&tgp (i)). Hence, instead of computing these kernels, we can
the objective value decreases if the algorithm is properdjrectly compute this sum through the inner product of the
initialized to a matrix with non-zero elements Furthermorglata. We have implemented this simple trick and named this
since the objective function is bounded from below, theaites version of our approach, in the experiments, as the linear
of the objective value converge. This proposition also sstgy alternate optimization. We will see that some interestiagng
that our algorithm can get stuck into a fixed point. Howeven computational effort can be obtained.
as made clear in the following proposition, the sequence of
{f(} and {d()} also converge and eventually such a fixed Although we have focused on SVM and the Hinge loss
point would be the minimizer of our problem. function, our approach can be applied to any convex loss

Proposition 3: For v € N*, for 1 < ¢ < 2, under the function as long as the problem with fixetl can be easily
hypothesis that all Gram matricds, ; are strictly positive solved. For instance, with a square-loss function, miningz
definite andd™) # 0, the sequencéd®), f(*)} converges to problem (10) boils down to be a weighted kernel rigde

the minimizer of R(d, f) subject to the constraints ah: regression. Furthermore, our approach can handle sitigatio
s where the loss functions for each task are heterogeneous.
Z (Z d;/}:) <1, dip>0 Ykt Indeed, in such cases, we would like to solve
k t

2
| | min O Ll i), yed) + g 1l
Proof: For a sake of clarity, the proof of this proposition /i /7:d ’

has been postponed to the appendix. Globally, it follows  S:t Dok (Zt d;/;:) <1, dix >0 Vk,t
the same lines of the convergence proof of the alternate
optimization algorithm proposed by Argyriou et al. [2]. m Where each loss functiof,(-,-) depends on each task and
A key point for the convergence of the algorithm is thagan be either related to a regression or classification enobl
the weight matrix should be initialized to non-zero valuelhis framework has been very recently investigated by Yang
However, if so, as iteration goes, a given Weigﬁ"ﬁ does not €t al. and is motivated by applications in genetic assaniati
strictly vanish. This can be interpreted as a weak point for &apping [51]. Our algorithm straightforwardly applies bese
algorithm that should provide sparse solutions. Howevenga Problems. Indeed, in our alternate optimization algorithine
the iteration,dgfjk) may rapidly converge towards zero and calpss fung:'uons are taken into account only in the first step,
rapidly reach a neglectable value. Details on how we hayéered is kept fixed. Thus each task learning decouples and
evaluated solution’s sparseness are given in the expetainef’® heterogeneity of loss functions does not pose difficulty
section.
The computational complexity of this algorithm is difficult . .
to evaluate.p However, we Enow{hat at eac?h iteratibrgVM C. A proximal method for the linea; — £, case
trainings and the weight matrid computation are needed. Recently, several works have proposed efficient algorithms
Each SVM training scales i®(n} ,,) while computingd is for penalized linear multi-task learning with — ¢ or ¢; —
aboutO(T-M-nfjsv) with n, s, being the number of support/,, norms [30], [11]. These approaches are essentially based
vectors related to task In practice, we take advantage ofon accelerated proximal gradient (APG) method [4]. We have
warm-start techniques when solving the quadratic progragxtended these algorithms to the caséof ¢, norms. Since
ming associated to each SVM task, making the algorithm veme have exactly followed the same steps of Chen et al. [11], we
efficient even compared to gradient descent techniquedemunly detail how we have numerically computed the proximal
with warm-starting [13] similar to those used in SimpleMKLoperator of the/; — ¢, norm.
Numerical experiments given in the sequel will support such Let us consider each linear classifier related to a taak
a claim. fi(x) = wlz+b, and the matridV = [wy, - - ,wr] € R>T,
Many previous works on joint-sparse multi-task learningt each iteration of the AGP algorithm, one has to use the so-
have been carried to in a linear framework thus leadirgalled proximal operator which maps a matkixe R**7' to

(13)



the unique minimizer of (MM) algorithms [19] which form a general framework for
) d optimizing non-convex objective functions. For our multi-
midnT SIX - V[E + )‘Z 1% llq task problem, we propose a majorization that enables us to
XeRIxT 2 take advantage of thé — ¢, MTL solver that we proposed
above. Indeed, sinagu) is concave in its positive orthant, we
consider the following linear majorization @f(-) at a given
point ug :

1 2
s §Hx—v|\ + Allz(lq (14) Yu > 0, g(u) Sug+pu871(u—uo)

k=1

This problem can be decomposeddrindependent problems
which consist of

for each dimension of the problem. For= {1,2, 00}, this Note that this linear majorization can also be obtained from
problem has a closed-form solution which makes the glob&€ Fenchel inequality related to the Legendre-Fenchebira
APG algorithm very efficient. Unfortunately, far < ¢ < 2, formation of the differentiable functiop(u) [40]. We could

one has to numerically solve this problem. However, cofiave proposed a tighter majorization gf-) by using for
sidering a¢’ such thatl/q + 1/¢ = 1, it can still be instance a local quadratic approximation. However, thenmai
shown that if|jv]|,, < A then the solution i9). In the other advantage of a linear majorization is that it leads to a stmpl
case, we have considered subgradient descent method @l§@rithm. Indeed, at iteration, applying this linear majoriza-
iterative reweighted least-square (IRLS) [41]. Since wentd tion of g(||f..«|l,), around a| £}, yields to a majorization-
out that the latter is more efficient due to the simple stmgctuminimization algorithm for¢,, — £, multi-task learning which
of the problem, our numerical implementation uses such &Ansists at a givefz + 1)th iteration, in solving :

approach. It is simple to show by writing the optimality . £ kllq
conditions of problem 14 that the IRLS algorithm consists flf_{ﬂ__H}fTCZH(ft(xi,t)ayi,t) + ZPW

at each iteratior(z) in updatingz according to the formula o t k k1l

2(*) = [P()]~1y with This latter equation shows that, in order to solve the non-
A convex{, — ¢, problem using a MM approach, one needs to
P = diag (1 + Wkﬁ‘”ﬁ”) iteratively solve a weighted, — ¢, multi-task problem :
A
M
which is just a componentwise vector multiplication. min CS H(f (2 D+ B 16
. . . it )y Y, kS k
An important remark is that the accelerated proximal algo-  fi..fr = Ualzes), vie) ,; 17l (19)

rithm considered here present a fast convergence rate when -

the loss function is continuously differentiable with Litz where Py, are some coeff|c_|ents that de_pend_on the current
gradient (for instance logistic or square loss). In our cése functions ... They are defined at the-th iteration as:

Hinge loss is non-smooth therefore, we cannot guarantee any = b C Vk=1,---. M (17)
convergence rate. However as Chen et al. [11] also noticed, ||f,(;)|\1—1)

considering the subgradient of the Hinge loss instead of tlilﬁ _— L . . o
: . - is definition of the3;, implicitly requires the strict positivit
gradient leads to very good computational efficiency. As Wef 1/ 4]l To ensurz&zhis pcond)i/tior? 2 small ter(mis addeg

will show in the experimental section, this AGP algorithrr? : N

is indeed very fast foy = 2. For 1 < ¢ < 2, although '© If- [} in (15). Hence, we usg), = m This trick

we do not have a closed-form solution of problem (14), thétiggested as well by [8] avoids numerical instabilities and
numerical scheme we propose is still very efficient. Regaydioverall prevents from having an infinite regularizatiomtefor
sparsity, unlike the alternate optimization algorithre golu- || f-.x[|- In some other context, thisterm can play a smoothing
tion provided by this proximal approach is exactly sparse uple if chosen adaptively [12]. However, in this work, we Bav

to numerical precision. kept it fixed ate = 0.001.
Now, the equivalent optimization problem with smooth

regularization term is :
D. The non-convex, — ¢, case g
2 I fewll®

Now that we are able to solve the sparse MTL problem 1 ?flinT d CZt,iH(ft(xi,t)vyi,t) +Zt,k Bi. o 1
using a/; — ¢, mixed-norms, we propose an algorithm which s 175\
solves the non-convex case whete— ¢, (with 0 < p < 1 st 2k (Zt dtvk) <1 dip =20 kit

and1 < ¢ < 2). For this novel situation, let us rewrite the 9 o . (18).
iz ati = ==1,  Note that the optimality conditions of this
regularization term as eres p y

" problem Wiih respects tg 5 is simply given by the expression

M _ e fir() = S5 ay i Ki(wi4,-). Consequently, at each
g :Zg(llf.,kllq) with [| £ xllq = <Z|ft’k|,q“k> (15) pmm iteration, we have to solve a weighted sparse MTL

k=1 t problem, where the weights are applied to the basis kernels.
for the linear case| f il = (3, [Wk.|?)'/, and where Hence, problem (18) can be solved using the ¢, algorithm
the upper level penalty function ig(u) = w?,u > 0 with just by replacing the kernek (=, z") with Engk(w,wl).
p < 1. Clearly, this function is non-convex. To address this Details of the/,, — ¢, problem solver are g’iven in Algorithm
issue, we investigate the use of majorization-minimizatidl. About its complexity, we can state that since the- ¢,




TABLE |
COMPARING THE COMPUTATIONAL EFFICIENCY(IN SECONDS) OF

Algorithm 1 ¢, — ¢, sparse MTL solver.

Br=1fork=1,--- M DIFFERENT LINEAR APPROACHES FOR1 — {4 PENALTY. THE
ComputeK, ; kernel matrices for all tasks EXPERIMENTAL SEFUP ISd = 100, r = 4, T = 4 AND n = 100.
repeat
K? « Lt forall k fq ponaly
k.t B2 Methods q=2 q=3
Solve /s — MTL problem with kernelsKﬁ Kernel Altern. Opt| 1.02 £0.20 | 1.08 £ 0.20
d ! éq . P . k.t Linear Altern. Opt | 0.59 = 0.06 | 0.64 & 0.08
Update/3, using Equation (17) Proximal Descent | 0.06 £0.01 | 0.10 £0.20

until convergence of thg's

then to compare a; — 2 and an{, — ¢, (with p < 1)
penalties in term of classification performance.

The toy problem is the same as the one used by Obozinski
%t?fl. [33]. Each task is a binary classification problenRih

algorithm is based on;, iterations of the/; — ¢, algorithm
(after appropriate rescaling of the kernels), its compjesan
be approximated as;;., times thel; — ¢, algorithm complex-

gy' Hz)we\{er, _hre]re ggain, we can speﬁg-upéhe gcr)]nverglenc ong thesed variables, onlyr of them define a subspace
p — {q, algorithm by warm-starting thé, — £, with results ¢ pa i \which classes can be discriminated. For these

from previous itt_aration. Empirical experiments have ShOW11(1-:Ievant variables, the two classes follow a Gaussian ptif wi
that ny, are typically lower thari. mean respectively and—y and covariance matrices randomly

The local convergence of Algorithm 1 is guaranteed. I_ndee&‘awn from a Wishart distribution. has been randomly drawn
the MM programming approach proceeds by surrogating tge {=1,+1}". The otherd—r non-relevant variables follow

concave part of t_he o_bjec'uve function W't_h s affln_e M33ni.i.d Gaussian probability distribution with zero mean and
jorization at each iteration. Therefore, the minimizeddiion upit variance for both classes. In this experiment, we are

decreases until convergence to at least a local minimum [1 herested in feature selection, thus, for dnyi, is the finite

dimension subspace built from tik¢h component ofR4. We
IV. NUMERICAL EXPERIMENTS have respectively sampled n, andn; number of examples

In this section, we present some numerical experiments tfi@# training, validation and testing. For some experiments
demonstrate the utility of using & — ¢, penalty instead of IS varying, but we have always set, = n andn; = 5000.

a ¢, — > one. They have been carried out on a toy datadggfore learning, the training set has been normalized to zer
and on real datasets concerning BCI electro-encephalogrd@an and unit variance and the validation and test sets have
signals classification and protein subcellular localiati been rescaled accordingly.

Before delving into the experimental details, we provide 1) Comparing convergence féy — /> penalty: To evaluate
some remarks on how we have evaluated the sparsity of ¢{ quality of the solution provided by our alternate optiani
algorithm’s output. Let us denote the vectoof components tion algorithm when considering & — /, penalty, we have
sk = Y, dix OF s = 3, |Wi,| depending on the usedcomp_ared it to the solution obtained l_Jy a reduced gradient
algorithm. We define the s = {k € 1,--- , M : s, > v} algor!thm similar to the one gsed for _SlmpIeMKL [38]. Both
where v is a threshold that allows us to neglect non-zeralgorithms are wrapper algorithms which in a inner loop solv
components due to numerical errors (diagonal loading ggveral SVM problems with fixed kernel and in a outer loop
kernels to as to make them positive definite has been setofimize the weightsl. The main difference between the two
1e=°). For the toy problem, we have sgt= 1e~> which we approaches is the way the matdxs updated. Note that in our
believe is small enough so as to provide rather pessimisgigmparison, both methods take advantage of warm-start tech
estimation of the vector sparseness. We have also condlifiues for successive SVM retrainings. The stopping coiter
ered an heuristic for adaptively setting for our alternate We have used are the following. For our alternate optinozati
optimization algorithm which provides dense although $mdnethods, we stop whemax(|d(+! —d]) < 0.001 (where
outputs. In such a case, we have set= 0.01 - maxy(sy). the max is considered componentwisely). For the reduced
The rationale behind this heuristic is that kernels or \@ga 9radient approach, since we can check the KKT conditions
that have weights significantly smaller than the largestame Without additional computational cost [38], we also impbse
not influence the decision function. As a numerical criteriothat before stopping, the KKT conditions should be satisfied
for sparsity evaluation, for the toy problem, since we knoWP to @ tolerance 0.1 for eachd; .. Here, the comparison
the true relevant variable§*, we have considered the F-has been carried out for a hyperparametes 100 and for
measure betweef andS*. For the other problems, we havel = 4 tasks.
evaluated the cardinality o using the adaptive threshold. Figure 1 presents the results of this comparison. On the

All performances reported are evaluated based on kerndls &ft; we have plotted an example of how the objective value
variables in the ses. decreases with respects to the CPU time. All the computsition

have been carried out on a single core of a Bi-Xeon machine
with 24 Gb of memory. Source codes are in Matlab. We remark
that for a given computational time, using the update equnati
Our aim throughout this first experiment is first to analyzef d given in Equation (5) yields to a faster convergence.
the convergence of our alternate optimization algorithrd arBuch a finding is corroborated by quantitative evaluation

A. Toy dataset



. d; 1 initialization
—8— Gradient t"k
o 7 Uniform | Random

Time Grad Desc (s) | 19.8 £7.8 | 23.8£5.8
Time Altern. Opt. (s)| 1.39+0.2 | 1.5+0.2
Diff. Obj (10~ %) 1.43+0.7 | 1.3£0.8
[Ad]|o(1073) 21+15 | 21413

Objective value

CPU time (s)

Fig. 1. Comparing our block-coordinate descent algorithnits kernel version with a gradient descent approach sintvldhe one used for multiple kernel
learning in SimpleMKL. The left panel shows an example of hHbe objective value varies with respects to the CPU time. fidigt table summarizes the
time needed for the gradient descent algorithm and for ouhodebefore convergence. Relative difference of objectiie and the maximal difference
between the weights returned by the two algorithms are @ported. All the criteria are averaged ovidr different training sets and with a fixed uniform
and random non-zero initializations. The experimentalupeis d = 100, » = 4, T'= 4 andn = 100 with C = 100.

performances given in the right of Figure 1. We show iand[0.01,--- ,100]. For the/, — ¢, penalty, sparsity parameter
that table, that for very similar objective values and mxatrip has also been selected among the véiu® 0.5,0.75,0.9)].
d, our alternate optimization algorithm converges fastanth For each experimental situations, trials have been raplica
the reduced gradient approach. The gained factor is aliout 20 times.
Table | compares the computational efficiency of several
algorithms for solving a linear toy problem. We have comgare Results are summarized in Figure 2. The figure shows that
the kernelized and linear versions of our alternate optition  regardless the experimental situations considered, a /2
algorithm as well as the proximal gradient algorithm whish ipenalty leads to better performances than#he ¢; one and
stopped when the variation of its objective value is smalléne {1 separated SVM (results of the pooled models have not
than0.001. Here, we have chosen algorithm hyperparametd?gen reported since they are always worse tha0). The
so as to perfectly recover the sparsity pattern. statistical significance of this claim has been evaluatédgus
Firstly, we can see that in the linear case, the simple trigkWilcoxon signed rank test. The test shows that the diffexen
which consists in directly computing the sum), d;, K from in performance is significant at a level 6f05 except in
the examples, yields in a substantial saving of computatiorfew situations €.g first marker of the second and fourth
efforts for our algorithm (regardless af). When ¢ = 2, plots from left to right). One can also see that the alternate
the proximal algorithm is very efficient with a gain factooptimization and the proximal algorithm lead to statidtica

of about 10. For ¢ = %, the method we proposed forequivalent performances when usifig— /> penalty except
numerically computing the proximal operator still yield tdor few cases when the number of training example is small.
efficient algorithm with gain of abou. We have checked that this is due to a model selection problem :

2) Comparing performancein this experiment, we aim the proximal algorithm seems to be more sensitive to the
at showing that by using 4, — ¢» penalty which provides choice of \. Figure 3 gives a rationale on why thg — /5
a more aggressive sparsity pattern, we are able to redpemalty performs better. We have evaluated the F-measure
test error compared to & — ¢; penalty. We also provide of S compared to the true relevant variables. The— ¢,
empirical evidence that for this toy problem, the variatitet penalty does a better job in recovering relevant variatsesr(
are recovered using thig — ¢, penalty are more relevant thanwhen thel; — ¢, algorithm is our non-exactly sparse alternate
those recovered by thg — /5 one. As a baseline comparisonpptimization algorithm). The use of an adaptive threshédd a
we have also considered sparse separated SVM (each sihegel to good estimation of relevant variables. Missing niede
SVM is trained according to its task data) and a sparse pooladthe plots have F-measures always lower tiiah This
SVM (a single SVM is trained according to all task datayneans for instance that afi — ¢, penalty trained with an
Since the problem is linear, we have used the acceleratdtérnate optimization algorithm have too many weightshso t
gradient algorithm but we have also checked how the linext, d; . > le — 5. As the number of true relevant variable
version of our alternate optimization approach behaves. increases, the gap of performance betwéen ¢, and?,, — ¢,

The two penalties have been compared through differgmenalties tends to reduce. This can be easily justified since
experimental situations where we have varied some parasnetais case, thé, — ¢, penalty becomes too aggressive and tends
of the toy probleme.gthe number of tasks, the number oto discard relevant variables. We can thus conclude thaishe
training examples, the number of relevant variables. Modef an ¢, — ¢, penalty is more adapted to situations where the
selection have been included into the comparison. Henceimber of relevant variables is small compared to the proble
hyperparameters have been tuned by means of a validationdgtensionality. This point is also illustrated in Figure\We
and a validation error. For both — /¢, and/, — ¢, sparse MTL, can note there that the model selection procedure tends to
hyperparameters (proximal algorithm) and”' (alternate opti- choose larger value gi as the number of relevant variables
mization) have been respectively selected ambihgifferent increases. This clearly shows that if no prior knowledgehen t
values logarithmically sampled from the interal --- | 60] sparsity level is available, adaptive data-driven penadtyms
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Fig. 2. Performance (test error ) comparisons betw&en ¢> ( red, dash-dottedy,, — ¢> (blue, solid) multi-task models trained with proximal afgoms,
£, — £ trained with alternate optimization (black, dotted) ahdseparated models (green, dashed) for different experahsitwiations. For each experimental
situation, we have kept fixed all except one of parametersom(fleft to right) number of training examples, problem dimensiond, number of relevant
variablesr, number of tasksl". The number given next each marker represents the numbemes t(out of20) the ¢; — /2 penalty provides a better
performance than thé, — /> penalty both trained with proximal algorithms.
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Fig. 3. Evaluation of the recovered sparsity pattern thiotige F-measure of retrieved variables. (left) F-measutenwmber of training examples. (right)
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and alternate optimization with adaptive thresholdingdparsity evaluation. When an algorithm exactly recoveessit of true relevant variables, F-measure
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Fig. 4. lllustration of how when using afj, — ¢2 penalty, the learned decision functions adapt themselvabe data at handd(= 100, T' = 4 and
n = 100). The two plots show the number of times a givemas been selected by validation. On the left, the numberlefast variables- is equal to4
while on the right plot, we have = 20. We note that as the number of relevant variables increfisesnodel selection procedure tends to choose a larger

is presented a six-symbol matrix where symbols are flashed in
random order. A large P300 evoked potential can be recorded
. . in the electro-encephalogram (EEG) signals recorded ftmm t
B. BCI P300 single trial problem subject’s scalp in response to the intensification of thérelés
We also illustrate the usefulness of sparse Multi-Tasknlearsymbol. Each trial corresponds to the EEG signals related to
ing on a Brain-Computer Interface problem. Indeed, spare response of a given flash. Hence, the classification $ask i
MTL can be very relevant to BCI because of the need for chato- recognize whether this trial contains or not a P300 evoked
nel/variable selection and because of the data varialvlity potential. The datasets invol\& subjects including disabled
respects to different subjects. Our objective here is tovgdhat ones. All preprocessing steps we used are those described by
sharing information between subjects through sparse muldoffmann et al. The steps include : referencing, band-pass
task learning can lead to improvement in performance whil#tering, downsampling, single trial extraction, windsxmg,
reducing the number of variables involved in the recognitioscaling and feature vector construction. In our experigsient
task. The dataset we consider is the BCI P300 Speller datasethave restricted ourselves t&ahannel configuration (Fz,
used by Hoffmann et al. [16]. For this BCI paradigm, a subje@z, Pz, Oz, P7, P3, P4, P8) which leads after downsampling

are valuable.



AVERAGE AUC PERFORMANCES OF DIFFERENT ALGORITHMS ON THEBCI DATASET. THE NUMBER OF VARIABLES THAT HAVE BEEN KEPT IN THE
DECISION FUNCTION IS ALSO GIVEN SEPSVM AND SEP/; SVM RESPECTIVELY DENOTE ASVM AND A SPARSESVM CLASSIFIER TRAINED ON

TABLE Il

10

ISOLATED DATASETS FOR EACH SUBJECTFULL SVM AND FULL £; SVM ARE THE CLASSIFIERS TRAINED ON ALL EXAMPLES TOP) n = 300. BOTTOM)

n = 400.

MTL 2 MTL 2 MTL 4 SepSVM | Sep{; SVM Full SVM | Full ¢4 SVM
AUC 765+06 | 76.1+- 05| 765+ 06 || 756+ 0.8 734+ 1.3 67.1+ 0.6 67.0£ 0.6
# Var 191+ 26 134 £+ 33 201 £+ 23 256 118+ 30 256 238+ 7
p-val 0.00019 0.00897 0.00014 - 0.00006 0.00006 0.00006

MTL 2 MTL 2 MTL 4 SepSVM | Sep{; SVM FullsvMm Full £, SVM
AUC 782+ 06| 778+ 0.7 783+ 06 || 77409 | 751+ 1.3 67.9+ 0.6 67.9+ 0.6
# Var 205+ 18 150+ 35 209 + 16 256 149 £+ 32 256 249+ 2
p-val 0.00009 0.007 0.00009 - 0.00009 0.00009 0.00009

to a feature vector of siz856. The number of single trials C. Protein subcellular localization
available for each subject is abai00. Note that the datasets Tpjs |ast real-world experiment further highlights theityi

and the preprocessing algorithms are available on the EP§iour approach in a kernel selection context. Indeed, we
BCI group website (http://bci.epfl.ch/p300). consider here two datasets for bacterial protein locatinat
Instead of training a classifier separately on each subgectthe PSORT+ dataset contains four classes &fidexamples
in Hoffmann et al., we have trained linear classifiers, using and the other, called PSORT-, has five classes With4
alternate optimization algorithm, for all subjects alsether examples. For each datasei$, kernels have been computed
using our multi-task approach (one task = one subject). &'hrgnd they are publicly available on http://www.fml.tuebémg
types of penalty for the multi-task learning are consideredmpg.de/raetsch/suppl/protsubloc. This website also igesv
ant; — s, ant, — > and al; — ¢, penalty. As a comparison, some information about the post-processing for performanc
we have also learned a sparse and a classical SVM trairg@luations. This classification problem is actually a inlass
on a single subject, and a sparse and a classical SVM traifggblem that we address through pairwise binary classificat
on all subject data. Sparse SVM has been obtained usingnaorder to reduce the number of kernels to compute, we are
¢, multiple kernel learning approach where each feature jigterested in joint kernel selection for all pairwise preiis.
related to a kernel [38]. For selecting the hyperparamefter lgence, we have considered a one-against-all frameworkavher
all algorithms, we have considered a validation approaoh. Feach one-against-all problem is a task. Note that we could
all subjects, we have randomly split the available examipleshave also considered that each task is related to a onestgain
3 sets :n examples for training and validation and the rest fagne pairwise problem, but in order to be compliant with
testing. For the experiment, we have set the training setteiz the experimental setting of Zien and Ong and the way they

n = 300 andn = 400. C andp have been selected from theevaluate performances, we have considered the one-agélinst
same sets as the previous experiments white{3, 2, 22}.  framework.
Note that using a small part of the examples for training is In our experiments, we have compared sparse MTL with
motivated by the use of ensemble of SVM (that we do n@t — ¢, and sparse MTL witlt, — ¢, and¢; — ¢,. Due to the
consider here) [39] at a later stage of the EEG classificatigfulticlass nature of the problem, comparisons with pooled
procedure. The performance is measured by AUC, due 4ad independent models are not possible. Data permutations
the post-processing that is done throughout repetitiortsén as well as the30% — 20% splitting into training and testing
P300 : as the final decision regarding letters is taken aftsts are also provided by Zien and Ong [54]. Hyperparameters
several trials, the correct row and column should receigh hiC, p anqq have been selected through a validation method by
scores to correctly identify the letter. randomly splitting the training set then training and vatidg
Results averaged ovdl trials are presented in Table Il.on the resulting splitsC' has been selected fron0 values
The baseline performance is the one provided by a classi@jarithmically sampled from the intervél.01, 100] while
SVM trained on a single subject (SepSVM). When comparing and ¢ are respectively chosen frorf0.5,0.75,0.9} and
performance of a given approach to that baseline, a Wilcox¢g, 2, 20
sign-rank test has been evaluated and the p-value being reAveraged overl0 trials results are given in Figure 5. We
ported. We remark that training with all examples lead thave also given the performance achieved by the multiclass
significantly worse performances compared to the baselifdKL algorithm of Zien and Ong [54]. This MKL algorithm
However, when learning through a multi-task approach, wearns a linear combination of kernels that is jointly omim
achieve a slight but significant increase of performanderin for all winner-takes-all decision functions. Hence, thmithod
estingly, the three multitask approaches yield a significkn is very similar to our sparse MTL learning with @ — /5
mensionality reduction while slightly improving perfornees. penalty. Results show that our algorithms and the different
When comparing performances of the three different mshitapenalties yield to similar accuracy performances (acoayt
penalties, we see that AUC scores are equivalent but,thé, a Wilcoxon sign-rank test) and they are competitive with the
penalty need far fewer variables. multiclass MKL of Zien and Ong. However, once again using
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TABLE Il . . . .
EXAMPLES OF AVERAGE TIME NEEDED FOR OUR ALTERNATE proximal algorithm have been investigated. For the gasel,

OPTIMIZATION ALGORITHM, THE GRADIENT DESCENT APPROACHAND  We fitted the optimization problem into the Majorization-
PROXIMAL DESCENT FOR PRODUCING A SOLUTION OF &1 — £ MTL  \tinimization framework, and proposed an iterative rewéigh
PROBLEM. NOTE THAT FORPSORTPROBLEMS LINEAR ALGORITHMS . . .
ARE NOT CONSIDERED SINCE WE ARE DEALING WITH KERNELS ON version of thel; — ¢, qlgorlthm. EXpe“mental_ results on
STRUCTURED DATA FOR THE BCI PROBLEM, 7 = 300. toy data set brought evidence thgt— ¢, penalties lead to
enhanced performance and better sparsity pattern compared

to a ¢, — /> penalty especially in situations where a large

Altern. Opt . .
Data Tinear Rernel Gradient Broximal number of variables are in play. Then, results on real-world
BCl, ¢ =2 18.8+£08 71.8+£42 | 309+ 190 | 0.98+ 0.17 datasets from various domains have shown the potential ( in
BClLg=12 148+ 0.7  46.8+ 23 - 41405 t f d variabl lecti f h
PSORT 7o =3 - ET A6 0L 35 - erms of accuracy and variable selec ion) of our approach on
PSORT +,4 = % - 62.2 44 127+ 41 - applications where variable or kernel selections are ahary
PSORT -,q = 2 - 350.5+ 18 | 1450+ 400 - ;
PSORT -,q = % 364.5+ 32 | 1480+ 300 |mp0rtance.

Now we plan to extend our efforts in the following direc-
tions. While this paper is essentially a proof of concept tha
an adaptive value qf or ¢ compared to a pre-defined choice ofdapting the penalty to the problem at hand is an interesting
p=1andq = 2 leads to significantly fewer selected kernel@pproach, up to now we have dealt with this adaptivity only
(up to a level 00.05). We can also point out that the validatiorthrough validation methods and grid searchzoandq. Now,
approach tends to select a valueofind ¢ respectively of for addressing efficiently such an adaptivity, we will focus
0.9 and %. By using a value op slightly smaller thani, we algorithmic methods that would allow us to jointly selgct
thus achieve a substantial reduction of the number of ssleceind ¢. Notably, we project to investigate regularization path
kernels (compared t6, — £5). Right plot of Figure 5 gives an and continuation methods. Furthermore, we will also caersid
example of the resulting weighig ; for different penalties faster algorithms that can handle large-scale problemen;Th
for the PSORT+ problem. We remark that some kernelg ( future works will also aim at theoretically analyzing the
the third, seventh and eighthjave been selected by the—¢, consistency of ouf, — ¢, approach for variable selection.
and/¢, — ¢, penalties but have been discarded by the- ¢,

one.
VI. APPENDIX

D. Computational efficiency on the real-world problems A Equivalence between problems (2) and (6)
In order to have an idea on the computational efficiency

of our algorithms forf; — ¢, multi-task problems, we have The equivalence between these two problems comes from

two properties : i) the equivalence between constrained and

reported in Table lll, the time _they need for COIfwergmgr'ercw;ularized convex optimization problem and ii) the equiv-
we also provide results for gradient descent approach (wheI R - .
alence of optimization problems when objective functions

g = 2) and proximal gradient descent for linear problems . o

such as the BCI problem. Stopping criterion are the same constr.alnts are trapsformeq through the composition of a
as those used for the toy dataset problem. Note that the?_'noton|call)_/ mcLeasmg ]fufncuon._ | ith | f
our alternate optimization and the gradient descent alyos ere we give the prootfor a simple case_w!t O.Ut 0SS 0
solve the same problem, the proximal algorithm solves gﬁnerallty. Let us consider the following optimization pro

equivalent one. However, since it is hard to find the closek?-msdw'th F(-) and G(:) being two strictly convex functions

form relation between the hyperparameters producing time sa° '
solution, for a relatively fair comparison, we have chosese . )
hyperparameters so as to have a similar level of sparsity. THE) : e F(z) +AG(z) and (C): mRi%&)gF(I)
results we obtain are on the same lines of those obtained for
the toy problem. Regardless of the situation, gradientetgscwith A and = some parameters. These two problems are
is the less efficient approach. When compared to the kergguivalent in the sense that for any there exists a such
version of the alternate optimization algorithm, the loss ithat the minimizers of R) and (C) are the same [48]. Now,
computational effort is from 2 to 4. When comparing lineagccording to the same notion of equivalence, prob{€h is
methods, proximal descent is the most efficient method wiiso equivalent to
a gain in computation of the order 8fin the worst case.
(C?): min F(x
z€RY,G(x)2< 72
V. CONCLUSION
In this paper, we investigated the use of mixed-norms féing to the monotonically increasing transformation of th
multi-task SVM with joint sparsity constraint. We went beyb constraints [7]. SincéC?) is equivalent to
convexity and proposed a large class of mixed-norm penalty ) )
based on/, — £, norm, (withp < 1 and1 < ¢ < 2). For (R7) ireliRI}i F(z) + Xa2G(x)
solving the resulting optimization problem, we first deree
general algorithm which addresses the convex gasel and where )\, is another parameter. We thus have equivalence
the use of multiple kernels. For the linear case, a more effici between(R) and (R?).
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PSORT +|| 93.87+ 2.82| 93.62+ 3.04 | 93.88+ 2.73 93.8 S

# Kernels|| 154+ 1.17 | 7.4+ 142 | 159+ 1.05 18 g

PSORT - || 95.92+ 1.35| 95.90+ 1.12 | 96.02+ 1.33 96.1 =

# Kernels|| 129+ 031 | 7.5+ 0.85 | 12.8+ 0.42 14 o
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Fig. 5. (left) Average F1 score and number of selected kerosing our algorithms with different penalties on proteifbeellular localization problems.
Scores of the multiclass MKL of Zien and Ong. [54] have alserbeeported. (right) Example of kernel weights resultingrirthe different penalties for the
PSORT+ problem. For a sake of clarity, we have restrictedptbeto the 20 first kernels. We note that different penalties lead to diffé sets of selected
variables and for some variables that have been selectedl tiyee models, the weighting can largely differ. The numbgkernels selected by Zien and
Ong’s method has not been explicitly reported and we havegaiated them from one of their figure in [34].

B. Descent property of thé — ¢, algorithm we show in the sequel that the functigif) is continuous.

For the right strict inequality, positive definiteness @f This comes from the fact that the function :

implies strict convexity and the solution’s uniqueness haf t G(d) := min R(d, u)
minimization problem inf; related to all tasks. Besides, u
£ = £~ would imply according to Equation (11) thatis continuous and differentiable. Indeed, for a givénthe
d®) = d»=1. Hence, since by hypothesi§”) # d(*~!), we optimization problem definingz(d) is just T independent
have /(") # f{"~"). These points lead to the strict inequality SVM problems; each task being related to each SVM problem
with a kernel ), d; . K; . Results from multiple kernel
learning have shown that each SVM objective value, for a task
t, is a continuous and differentiable function [38] with rests
to {d: x}. From this point, we can conclude thatd) is also
continuous and differentiable. Thugf) is continuous as a
composition of continuous functions.

Now let us show that the sequend€(f(*)) : v € N}
converges. We can observe that sirfti¢) = R(d(f),f) and
d(f) minimizesR(-,f), we have the following inequalities :

min RV f) < R(d®~) £v—1)

Before showing the left strict inequality, the propertiekating
d®) andd~" are proved. We can first note thatdf’, " =

0 thend,") = 0. Butif d*, ) > 0 then strict positivity ofd")

stems from the positive definiteness of matriéés;. Indeed,
since we have

AP = [ Paf™ Kot > 0
SECTY) < g(f) < S(EW).
which, according to Equation (11) yields d{)”,z > 0.
Now, sincedgfk_l) > 0, the left strict inequality of equa-
tion (12) naturally comes from the strict convexity and th
solution’s uniqueness of problem (4).

Hence, the sequencgS(f(*)) : v € N} is not increasing
gnd since the loss functiod/ is bounded from below, it

Is bounded. Thus as goes tooo, the sequences(f(*))
converges to a valug*. From the continuity and boundedness
of S(f(*)), we can also deduce that the mixed-norm regularizer
and the sequencff(®)} are bounded where boundedness of
ﬁ@)} is understood according to some normg(the norm
induced by the inner produdf, £) = >, , (fix, fr.e)n,)- AS

a consequence, there exists a subsequéfite : i € N} that
converges towards*.

Now, we show thaf™* is a minimizer ofR(-,-). Consider
any convergent subsequend’?) : i € N} of {f(*) : v € N}.
Since S(fvit) < g(F)) < S(F4)), g(f*)) converges
towardsS*. By the continuity of functionsS(f) andg(f), we
The second equality in the definition 61f) naturally stems thus havey(f*) = S(f*). This implies thatf* is a minimizer
from Proposition 1 sincd") # 0. Forg so thatl < ¢ < 2,the of R(d(f*), ) becauseR(d(f*),f*) = S(f*). Furthermore,
mixed-norm regularizer terfv, (3, ||ft,k||§_[k)1/q is convex d(f*) is the minimizer ofR(-, f*) subject to constraints od.
as a sum of convex functions. The composition with a strictlfhus, since the objective functid®(-, -) is smooth and strictly
increasing and strictly convex function (the square term) @onvex, the pai(d(f*), f*) is a stationary point oR(, -) and
R, makes the overall regularizer strictly convex. Thus, eveahus its unique minimizer.
though the loss functio (-, -) is just convex,S(f) is still At this point, we have shown that any convergent subsequent
strictly convex and admits an unique minimizer. of {f(*) : v € N} converges to the minimizer a&(-,-). Then

Now let us introduce since S(f) is continuous andf(® : v € N} is bounded,

it follows that the whole sequence converges towards the
9(f) := min{R(d(f), u)} (19)  minimizer of R(-,-).

C. Convergence of thg — ¢, algorithm

Here we present the proof of convergence of our algorith

which follows the lines of the one of Argyriou et al. [2].
Let us define

S(f) = R(d(f),f)

1/q\ 2
= C’Z H(fe(wit),vi,e) + (Z <Z ||ftk||;k> )
k

t,i t
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