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Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop family of 

neurotransmitter-gated ion channels, a family that also includes receptors for γ-

aminobutyric acid, glycine and 5-hydroxytryptamine. In humans, nAChRs have been 

implicated in several neurological and psychiatric disorders and are major targets for 

pharmaceutical drug discovery. In addition, nAChRs are important targets for 

neuroactive pesticides in insects and in other invertebrates. Historically, nAChRs have 

been one of the most intensively studied families of neurotransmitter receptors. They 

were the first neurotransmitter receptors to be biochemically purified and the first to be 

characterized by molecular cloning and heterologous expression. Although much has 

been learnt from studies of native nAChRs, the expression of recombinant nAChRs has 

provided dramatic advances in the characterization of these important receptors. This 

review will provide a brief history of the characterization of nAChRs by heterologous 

expression. It will focus, in particular, upon studies of recombinant nAChRs, work that 

has been conducted by many hundreds of scientists during a period of almost 30 years 

since the molecular cloning of nAChR subunits in the early 1980’s. 

Keywords:

Nicotinic acetylcholine receptor

Heterologous expression
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1. Introduction

Nicotinic acetylcholine receptors (nAChRs) are neurotransmitter-gated ion channels 

containing five polypeptide subunits that are arranged around a central transmembrane 

pore [1]. As has been reviewed elsewhere, nAChRs have been implicated in several 

human neurological and psychiatric disorders [2-4] and are also an important target site 

for insecticides [5, 6]. In both vertebrate and invertebrate species, nAChRs form a 

diverse family of receptors assembled from a wide range of subunit combinations [6, 7]. 

For example, 17 different nAChR subunits (α1-α10, β1-β4, γ, δ and ε) have been 

identified in higher vertebrate species and are known to assemble into a diverse family 

of receptors with distinct subunit compositions [7]. Invertebrate species express a 

similarly diverse population of nAChRs, although less is know about their subunit 

composition [6, 8]. 

Whilst studies conducted with endogenously expressed nAChRs continue to provide 

invaluable information, the impact of studies performed with heterologously expressed 

nAChRs has been enormous. As will be discussed in this review, such studies have led to 

dramatic advances in our understanding of the structural, pharmacological and 

biophysical properties of nAChRs. In addition, studies with recombinant nAChRs have 

had clear practical benefits, for example in the identification of a large number of 

subtype-selective small molecules (agonists, antagonists and allosteric potentiators), 

some of which have great potential as either research tools or as lead compounds in 

therapeutic drug discovery [9].
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For many years, nAChRs were the best characterized of any neurotransmitter receptors. 

To a large extent, this was due to the availability of a highly abundant source of the

receptor: the electric organ of fish such as the freshwater eel Electrophorus (the 'electric 

eel') and the marine ray Torpedo (reviewed in [10]). As a consequence, the electric 

organ nAChR, was the first nAChR to be biochemically purified and the first to be cloned 

and expressed. The electric organ has also provided an excellent source of material for 

studies aimed at elucidating the structure of the nAChR. Over a period of several years, 

the three-dimensional structure of the electric organ nAChR has been revealed at 

increasingly high resolution (most recently at a resolution of 4Å) by electron microscopy 

[11]. As a result of these studies, the nAChR remains one of relatively few 

transmembrane proteins for which high-resolution three-dimensional structural data is 

available. 

In mammals and other higher vertebrates, nAChRs are expressed at the neuromuscular 

junction ('muscle-type' nAChRs) and also in the nervous system, for example in the 

brain and autonomic ganglia ('neuronal' nAChRs). In terms of subunit composition and 

pharmacological properties, the electric organ nAChR is most closely related to muscle-

type nAChR. Vertebrate muscle-type nAChRs have a subunit composition of either 

(α1)2β1γδ or (α1)2β1δε in fetal and adult muscle, respectively, whereas vertebrate 

neuronal nAChRs comprise a heterogeneous population of receptors of diverse subunit 

composition, assembled from α2-α10 and β2-β4 subunits [7] (note; the α8 subunit has 

been identified in avian but not in mammalian species). 

2. Early (pre-molecular cloning) expression studies 



Page 5 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5

Prior to the molecular cloning of nAChRs, functional reconstitution of the receptor was

achieved by the introduction of purified electric organ nAChRs into both lipid vesicles 

[12-14] and planar lipid bilayers [15, 16]. Such techniques have been used subsequently 

to characterize nAChRs purified from a variety of sources including chick optic lobe [17, 

18], cerebellum [19] and insect tissue [20, 21]. Other expression studies conducted prior 

to the molecular cloning of nAChRs have used mRNA purified from Torpedo electric 

organ. This has included in vitro translation, both in cell-free systems [22-24] and in the 

presence of cell microsomes (to permit protein glycosylation) [24]. In addition, mRNA 

purified from Torpedo electric organ has been expressed successfully by injection into 

Xenopus oocytes [23, 25]. Importantly, these early oocyte expression studies provided 

evidence that injection of heterologous mRNA enabled the expression of functional 

nAChRs that could be activated by acetylcholine [25]. Subsequently, further studies have 

been conducted in oocytes using mRNA isolated from a variety of other species and 

tissues. These include studies with mRNA preparations isolated from vertebrate tissues

[26-28], cultured cell lines [29] and from invertebrate species [30-33].

Another technique developed for expression of nAChRs in Xenopus oocytes, which does 

not require molecular cloning of the gene of interest, involves the transplantation of 

membranes from other cells or tissues. This has been applied successfully to 

membranes isolated from Torpedo electric organ [34] and from cultured mammalian 

cells [35]. 

3. Molecular cloning of nAChRs

Over a two-year period in the early 1980's (1982-1983), several papers were published 

that described the isolation of cDNAs encoding the four subunits of the Torpedo electric 
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organ nAChR (the α [36-38], β [39], γ [40, 41] and δ [39] subunits). Following the 

cloning of Torpedo nAChRs, nAChR subunit cDNAs have been cloned from numerous 

other species, including the vertebrate muscle-type nAChR subunits (α1, β1, γ, δ and ε) 

[42-47] and the vertebrate neuronal subunits (α2-α10 and β2-β4) [48-58]. In addition, 

nAChRs have been cloned from numerous invertebrate species [6, 59-61]. For example, 

ten nAChR subunits (Dα1-Dα7 and Dβ1-Dβ3) have been cloned from the model insect 

species Drosophila melanogaster [62-70]. In general there is relatively high conservation 

of amino acid sequence between nAChR subunits from different species. For example, 

some insect nAChR subunits share 30-45% amino acid sequence identity to their closest 

human homolog, whereas some other subunits have very much greater sequence 

diversity [71].  

4. Expression of recombinant nAChRs in vitro and in bacteria and yeast cells

In addition to in vitro translation studies using tissue-purified mRNAs, in vitro

translation has also been used to express cRNAs encoding nAChR subunits, for example 

to examine subunit transmembrane topology [72]. Bacteria have also been used to 

express recombinant nAChR subunits, despite bacterial cells lacking the machinery for 

appropriate post-translational processing. Indeed, specific binding of nicotinic 

radioligands such as [125I]-α-bungarotoxin has been reported with bacterial-expressed 

subunit proteins [55, 73, 74]. Yeast cells have also been used as an expression system for 

nAChRs and have been shown to produce subunit proteins with molecular weights

similar to those of native nAChRs, suggesting that nAChR subunits expressed in yeast 

undergo glycosylation and signal-sequence cleavage [75-77]. More recently, purification 

and crystallization of the N-terminal domain of the mouse nAChR α1 subunit expressed 
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in yeast has enabled its three-dimensional structure to be determined at atomic 

resolution [78].

5. Expression of recombinant nAChRs in Xenopus oocytes

Just as the Torpedo nAChR was the first neurotransmitter receptor to be expressed in 

Xenopus oocytes from tissue-purified mRNA (as discussed above), it was also the first 

recombinant neurotransmitter receptor to be expressed in oocytes. In 1984, the 

successful functional expression of a recombinant nAChR was reported, using cDNAs 

encoding the Torpedo α, β, γ and δ subunits [79]. This was achieved by a somewhat 

indirect route: cultured mammalian (COS) cells were first transfected with nAChR 

subunit cDNA constructs, after which the transcribed cRNAs were then isolated from 

COS cells and microinjected into Xenopus oocytes. In later studies, functional expression 

was achieved in Xenopus oocytes using cRNA that had been transcribed in vitro from 

nAChR subunit cDNAs, using purified RNA polymerase [80]. In addition, a more direct 

approach of injecting cDNA directly into the oocyte nucleus has also been used 

successfully for the functional expression of nAChRs, first being used to characterize the 

neuronal α4β2 nAChR [81]. An approach that has been used extensively to increase 

expression levels of nAChRs (and of other recombinant proteins) in Xenopus oocytes is 

to replace the 5' untranslated region (UTR) of the cDNA/cRNA with the corresponding 

UTR of a gene such as Xenopus β-globin [82]. There is also evidence that the presence or 

absence of 5' UTRs can influence the stoichiometry of oocyte-expressed nAChRs such as 

α4β2 [83].  

Following these early studies, hetrologous expression in Xenopus oocytes is now used 

extensively to characterize recombinant nAChRs and has been used very productively 
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for numerous combinations of vertebrate nAChR subunits, including α1β1γδ [84], 

α1β1δε [84], α2β2 [50, 51], α2β4 [85], α3β2 [86], α3β4 [85], α4β2 [86], α4β4 [85], α6β4 

[87], α7 [55], α8 [18, 88], α9 [57] (for a more extensive list of recombinant and native 

nAChR subtypes, see [7]). In addition, Xenopus oocytes have been used successfully to 

examine nAChR subunits cloned from several invertebrate species, including the aphid 

Myzus persicae [89], the brown planthopper Nilaparvata lugens [90], the fruit fly 

Drosophila melanogaster [69, 91], the locust Schistocerca gregaria [92] and the 

nematode Caenorhabditis elegans [93, 94]. Frustratingly, the heterologous expression of 

invertebrate nAChRs has proved to be extremely difficult [59, 95] and, in several 

instances, this has often been achieved only by co-expression with vertebrate nAChR 

subunits [65, 91, 96, 97]. More recently, expression studies in Xenopus oocytes have 

identified a family of anion-selective nAChRs, cloned from both the nematode 

Caenorhabditis elegans [98] and the mollusc Lymnaea stagnalis [99, 100].

Although there is evidence to suggest that, in some cases, ion channel properties of 

nAChRs expressed in oocytes may differ from those of expressed in mammalian cells 

[29, 101, 102], Xenopus oocytes have proved to be an extremely useful tool for the 

heterologous expression of nAChRs. In addition, despite oocyte expression being a 

single-cell technique, methods have been developed in recent years to permit higher-

throughput screening of ion channels, such as the nAChRs, expressed in Xenopus

oocytes. This has been possible due to the development of automated systems for both 

oocyte injection and for electrophysiological recording [103, 104].

6. Expression of recombinant nAChRs in cultured cell lines
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Although functional expression of recombinant nAChRs in Xenopus oocytes was first 

demonstrated in 1984 [79], it was not until 1987 that successful functional expression of 

nAChRs was achieved in a cultured mammalian cell line [105]. As with the early 

expression studies in Xenopus oocytes, the first functional expression of a nAChR a 

cultured cell line was of the electric organ nAChR from Torpedo [105]. However, 

following on from this success, there have been numerous heterologous expression 

studies in cultured cell lines with vertebrate muscle and neuronal nAChR subunit 

combinations, for example α1β1γδ [106, 107], α1β1δε [107], α2β2 [108], α3β2 [109], 

α3β4 [110], α4β2 [111], α4β4 [109], α6β2 [112], α6β4 [112], α7 [113], α8 [109] (for a 

more extensive list of recombinant and native nAChR subtypes, see [7]). In many cases 

these studies have relied upon expression of nAChR subunits cloned downstream from 

consititutive viral promoters but several inducible promoters have also been used 

successfully for the expression of nAChRs, including those induced with sodium butyrate 

[105], dexamethasone [111], tetracycline [114] and heavy metals [96].

Interestingly, the functional expression of Torpedo nAChRs in mammalian cells requires

incubation of the transfected cells at temperatures lower than 37°C (e.g. 20-28°C) [105, 

115]. The shift to a lower temperature is necessary to allow appropriate folding of 

Torpedo nAChR subunit proteins prior to receptor assembly [115], presumably a 

consequence of nAChRs from species such as Torpedo being adapted to fold efficiently at 

temperatures lower than 37°C. Similarly, insect nAChR subunits, when expressed in 

mammalian cell lines, also require incubation at a temperature lower than 37°C for 

efficient subunit folding and assembly [96, 116, 117]. To an extent, these problems with 

insect nAChRs can be avoided by expression in insect cell lines [62, 96, 116, 118], which 

are typically maintained at 20-25°C (although difficulties remain with the expression of 
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10

some invertebrate nAChRs, as will be discussed in more detail below). In addition, 

although mammalian nAChRs generally fold efficiently in cells maintained at 37°C (as 

would be expected), there have been reports of enhanced levels of folding, assembly and 

functional expression of mammalian nAChRs in cells cultured at temperatures lower 

than 37°C [119-121]. 

More recently, the availability of cell lines expressing recombinant nAChRs, combined 

with the use of calcium-sensitive fluorescent dyes, has enabled the development of high-

throughput screening assays that are now widely used in drug discovery applications 

[122-124].

7. Expression of recombinant nAChRs in whole animal models

In addition to studies conducted in expression systems such as cultured cells and the 

Xenopus oocytes (discussed above), a variety of techniques have been developed that 

enable recombinant nAChRs to be examined in whole animal models. In addition to 

studies in mice (which will be discussed in more detail below), expression studies have 

also been conducted in invertebrate animal models such as Caenorhabditis elegans [125, 

126] and Drosophila melanogaster [127], for example to examine receptor distribution 

[125, 126] or to rescue mutant receptor phenotypes [127]. 

In addition to the construction of knockout mice in which the expression of individual 

nAChR subunits has been disrupted (reviewed in [128, 129]), several studies have 

exploited transgenic knockin techniques as a means to studying the expression of 

recombinant nAChRs in a whole animal model. Several nAChR gain-of-function and 

disease-associated mutations have been examined by knockin approaches in mice. 
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Knockin mouse models that contain a gain-of-function mutation in the 9' position of the 

M2 domain include those for nAChR subunits α4 [130, 131], α6 [132], α7 [133] and α9 

[134]. Transgenic approaches have also been used to study mutations associated with 

congenital myasthenic syndromes (in the α1, δ and ε subunit) [135, 136] and mutations 

associated with nocturnal frontal lobe epilepsy (in the α4 subunit) [137-139]. A 

particularly powerful approach is the targeted re-expression of nAChR subunits in 

knockout mice by viral-based gene delivery [140], a technique that has been used 

successfully to examine neuronal nAChR α4 [141], α6 [141], α7 [142], and β2 [143]

subunits. 

8. The influence of subunit composition

The ability to control subunit composition in heterologous expression studies (by the 

selection of subunit cDNAs or cRNAs) has helped to establish the influence of subunit 

composition upon ligand-binding and functional properties of nAChRs. For example, 

early studies with muscle-type nAChRs containing either the γ or ε subunits helped to 

explain differences between the ion channel properties of receptors found in embryonic 

and adult muscle [84]. Similar approaches with neuronal nAChRs have helped to 

demonstrate that both α and non-α subunits can influence ligand-binding and ion 

channel properties [144-146]. 

Studies with hybrid nAChRs (i.e. recombinant receptors containing subunits co-

assembled from two or more different species) have helped to establish the contribution 

of individual subunits to receptor properties [115, 147-149]. Hybrid nAChRs that 

contain both insect and vertebrate nAChR subunits have also been used extensively in 

an attempt to circumvent problems encountered with the inefficient heterologous 



Page 12 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

12

expression of insect nAChRs [59, 95]. This approach has been adopted for studies of 

nAChRs cloned from insect species, including the aphid Myzus persicae [150, 151], the 

brown planthopper Nilaparvata lugens [90, 97], the cat flea Ctenocephalides felis [152]

and the fruit fly Drosophila melanogaster [91, 96, 118, 153].

Expression studies with partial combinations of nAChR subunits (for example 

containing fewer than the four subunits required to form a fully-assembled pentameric 

(α1)2β1γδ muscle-type nAChR) have been used to investigate the influence of subunit 

composition upon pharmacological and functional expression [154-159]. Similarly, 

studies conducted with partial subunit combinations have been used to investigate the 

order of nAChR subunit assembly and to identify possible assembly intermediates [160-

164]. In addition, altering subunit cDNA or cRNA ratios for the heterologous expression 

of neuronal nAChRs such as α4β2 has provided evidence that changes in subunit ratios 

can influence subunit stoichiometry [165, 166]. This has provided evidence indicating 

that receptors with alternative subunit stoichiometries, for example (α4)2(β2)3 and 

(α4)3(β2)2 nAChRs, can have significant differences in their agonist sensitivities.  

9. Expression of nAChR subunit chimeras

A paper published in 1986 described a series of artificial subunit chimeras combining 

regions of the Torpedo and bovine δ subunits [167]. This study, which identified the 

importance of the M2 transmembrane domain in determining ion permeation, was the 

forerunner of many subsequent studies that have employed subunit chimeras to 

examine the properties of nAChRs. A selection of these studies is discussed below.
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Despite the successful functional expression of the nAChR α7 subunit in Xenopus oocytes 

[55], considerable problems have been encountered in its efficient expression in some 

cultured cell lines (reviewed in [95]). An imaginative strategy to circumvent this 

problem has been the construction of an artificial chimera comprising the N-terminal 

domain of the α7 subunit fused to the transmembrane and C-terminal region of the 5-

HT3A subunit [168]. This α7/5-HT3A subunit chimera generates a functional ion channel 

in cultured cell lines that fail to express α7 efficiently [168]. The construction of nAChR 

chimeras containing the C-terminal region of the 5-HT3A subunit has proved to be a 

powerful experimental technique and one that has been used subsequently with several 

other nAChR subunits including α1 [169], α4 [119], α8 [170] α9 [171], α10 [171] and β2 

[119], as well as with insect nAChR subunits [116]. Other studies have exploited 

chimeras containing domains from two different nAChR subunits to overcome 

inefficient functional expression of, for example, the α6 subunit [172-174]. 

Construction of a more extensive series of α7/5-HT3A subunit chimeras has helped to 

identify subunit domains that are responsible for influencing folding of the α7 subunit in 

non-neuronal cell lines [175, 176]. Subunit chimeras have also helped to identify 

domains that are important in the folding and assembly of muscle-type [163, 177-181]

and neuronal [182, 183] nAChRs and to identify domains involved in receptor targeting 

and trafficking [184-187]. Other studies involving the use of subunit chimeras have 

helped to investigate receptor properties such as agonist sensitivity [188-195], 

antagonist sensitivity [190, 192, 196-198], modulation by allosteric modulators [199, 

200], desensitization [188], inactivation [201] and channel gating [202-204].
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Fusion proteins, in which nAChR subunits are linked to proteins such as GFP (green 

fluorescent protein) have been useful in detecting recombinant subunits expressed in 

either cells or tissues [205-208]. In addition, by using fluorescence resonance energy 

transfer (FRET) methods it has been possible to examine assembly, trafficking and 

subunit stoichiometry of nAChRs in cultured neuronal cells [209, 210]. 

Expression of nAChR subunits in which selected domains have been deleted is a further 

approach that has been used in a number of heterologous expression studies aimed at 

identifying regions involved in assembly [211-213], subunit topology [72] and cell-

surface expression [214, 215]. 

10. Expression of nAChRs altered by site-directed mutagenesis 

In 1985, the use of site-directed mutagenesis combined with heterologous expression 

enabled the identification of regions and individual amino acids within the Torpedo α 

subunit that influence ligand binding and functional expression [80]. This was the first 

of many hundreds of studies that have employed site-directed mutagenesis to 

characterize nAChRs. Other such early studies employing site-directed mutagenesis 

were aimed at identifying amino acids influencing ion channel properties [216, 217]. It 

would be impractical to attempt to provide a comprehensive review of all mutagenesis 

studies conducted with nAChRs. Nevertheless, some examples are discussed below.  

Mutations at the 9' position within the nAChR subunit M2 domain (such as the L247T

mutation in the α7 subunit [218]) have particularly dramatic effects. Mutations at this 

position in α7 alter receptor desensitization, rectification, agonist potency, and 

antagonist effects [218-222]. Similarly complex effects have been reported for 
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mutations at other positions within the M2 domain of α7 (for example, the 6' position 

[223, 224]). 

An exhaustive list of nAChR amino acids examined by site-directed mutagenesis would 

be prohibitively long. Site-directed mutagenesis, in combination with heterologous 

expression, has however been used successfully to examine phenomena such as, subunit 

glycosylation [225-227], the role of disulfide-linked cysteines [80, 228], cell surface 

receptor trafficking [214, 229, 230], interactions with agonists and antagonists [231-

233], modulation by zinc [234, 235] and by other allosteric modulators [199, 200], 

calcium permeability [236] and channel gating [202, 237-241]. Analysis of mutated 

nAChRs has also provided insights into how subunit domains may move during receptor 

activation [241, 242]. In addition, analysis of double mutations by mutant cycle analysis 

is a powerful approach by which to investigate protein interactions, such as those 

between nAChR subunits and peptide ligands (see, for example, [243, 244]). Another 

dramatic example of the application of site-directed mutagenesis is illustrated by the 

ability to convert the α7 nAChR into an anion-selective channel [245, 246]. Reporter 

mutations, introduced by site-directed mutagenesis, have been used to examine subunit 

stoichiometry of heteromeric nAChRs [247-250]. Heterologous expression studies have 

also helped to identify the consequences of naturally occurring nAChR mutations 

associated with human disorders such as congenital myasthenic syndrome and epilepsy 

(see, for example [2, 4, 251, 252]). 

Cysteine-scanning mutagenesis, combined with cysteine-reactive compounds, has been

a powerful and extensively used technique to examine nAChRs [253-255]. Another 

powerful experimental approach is the incorporation of unnatural amino acids into 
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recombinant nAChRs. This has been achieved by means of site-directed mutagenesis 

combined with nonsense codon suppression (i.e. modified tRNAs containing unnatural 

amino acids) [256]. This is an approach that has been used successfully to examine the 

role of amino acids located at the agonist binding site [256, 257] and within the ion 

channel pore [258].

11. Expression of nAChR subunit concatemers

Artificial subunit concatemers (containing two nAChR subunits fused into a single 

'tandem' polypeptide) have been used to examine issues such as subunit stoichiometry 

[259-261], although there have been reports that, in some cases, their incorporation into 

assembled nAChRs may not always occur as might be expected [260, 262]. A more 

ambitious recent approach aimed at constraining subunit stoichiometry has been the 

generation of five-subunit concatemers [263, 264]. Studies such as these have helped to 

confirm that differences in pharmacological properties (such as high and low agonist 

sensitivity, as discussed above) can be a consequence of alternative subunit 

stoichiometries, for example (α4)2(β2)3 and (α4)3(β2)2. 

12. Nicotine-induced up-regulation examined with recombinant nAChRs

Chronic exposure to nicotine, as occurs during tobacco smoking causes an upregulation 

of nAChRs in the brain [265, 266]. In addition to numerous studies conducted with 

native nAChRs, nicotine-induced upregulation has also been examined extensively in 

heterologous expression systems, including both Xenopus oocytes [267, 268] and 

cultured cell lines [267, 269-275]. Such studies have helped to confirm that nicotine-

induced upregulation is a post-transcriptional event and that it may occur by a 

mechanism consistent with nicotine acting as a molecular chaperone [276]. 
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13. Co-expression with chaperones and interacting proteins

Studies in transfected cells have helped in characterizing the interaction of nAChRs with 

chaperone proteins such as BiP [277, 278] and calnexin [279-281]. Such studies have 

also helped to reveal the role of nAChR-interacting proteins such as 14-3-3 [282, 283]

and VILIP-1 [284] in regulating cell-surface expression of α4β2 nAChRs. Co-expression 

studies of muscle nAChRs with the cytoplasmic receptor-associated protein rapsyn (also 

referred to as ‘43K protein’) have helped to establish the role of rapsyn in nAChR 

clustering by means of expression studies in both Xenopus oocytes [285] and in 

transfected cell lines [286].

More recently, the role of an ER-resident transmembrane chaperone protein, RIC-3, has 

been examined and found to exert a dramatic effect on the maturation of several nAChRs 

(reviewed in [287]). RIC-3 was originally cloned from C. elegans [288] but has been 

cloned subsequently from both mammalian and insect species [289, 290]. Co-expression 

of RIC-3 in Xenopus oocytes or cultured cell lines results in enhanced levels of functional 

expression of several nAChRs subtypes [289, 290], but has a particularly profound effect 

on nAChRs such as α7. As has been discussed elsewhere [95, 287], severe difficulties 

have been encountered in obtaining functional expression of recombinant α7 nAChRs in 

several cultured mammalian cell lines [291-296]. Recent studies have revealed that co-

expression of α7 with RIC-3 in such non-permissive cells facilitates appropriate folding 

and functional expression of α7 nAChRs [290, 297, 298]. In addition, it has been 

reported that co-expression of α4β2 nAChRs with UNCL, a mammalian homologue of the 

C. elegans transmembrane protein UNC-50, results in increased nAChR functional 

expression [299], although it has been suggested that this may be due to an RNA-binding 
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activity rather than to a chaperone-like effect on the receptor protein. Interestingly, a 

recent study has demonstrated that successful functional expression in Xenopus oocytes 

of a levamisole-sensitive nAChR from C. elegans requires the co-expression of five 

different nAChR subunits, together with three different chaperone or enhancer proteins 

(RIC-3, UNC-50 and UNC-74) [300].

14. Conclusion

The aim of this review has been to give a brief overview of the variety of heterologous 

expression strategies that have been used to examine nAChRs. In addition, some 

examples of how these approaches have provided information concerning the structural 

and functional properties of nAChRs have been discussed. Clearly, an enormous amount 

has been achieved in the 30-years that have elapsed since the description in 1979 of the 

functional reconstitution of nAChRs in lipid vesicles. As a consequence, it is impractical 

for a short review such as this to provide a comprehensive account of all nAChR 

expression studies. The choice of examples selected for inclusion has, inevitably, been 

somewhat subjective as well as being subject to length constraints (300 references). 

Nevertheless, it is hoped that this review provides a useful summary of the huge amount 

that has been achieved by a large number of scientists over the past three decades. 
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Figure 1 Nicotinic acetylcholine receptors structure and subunit topology.

A) Diagrammatic representation of a nicotinic acetylcholine receptor (nAChR), 

illustrating the pentameric arrangement of subunits arranged around a central cation-

selective pore. The five subunits traverse the plasma membrane, with the agonist 

binding domain located on the extracellular face of the membrane.  B) Three 

dimensional structure of an individual nAChR subunit illustrating the topology of the 

polypeptide backbone. The image is derived from the 4Å resolution structure (Protein 

Data Bank accession number 2BG9) of the Torpedo nAChR [11]. Each subunit contains 

an extracellular agonist-binding domain, four α-helical transmembrane domains and a 

large intracellular domain (located between the third and fourth transmembrane 

domains). This intracellular domain contains the greatest sequence diversity between 

subunits but is not well resolved in the 4Å Torpedo nAChR structure and, as a 

consequence, only the short amphipathic α-helical domain is illustrated.
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