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Université Grenoble I, BP74, 38402 Saint Martin d’Hères, Cedex, France and
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We investigate the origin of quantum geometric phases, gauge fields and forces beyond the adia-

batic regime. In particular, we extend the notions of geometric magnetic and electric forces discov-

ered in studies of the Born-Oppenheimer approximation to arbitrary quantum systems described

by matrix valued quantum Hamiltonians. The results are illustrated by several physical relevant

examples.

PACS numbers:

I. INTRODUCTION

A physical system can never be considered as completely isolated from the rest of the universe. For a slow (adiabatic)

cyclic variation of its environment, the wave function of the quantum system gets an additional geometric phase factor,

known as the Berry phase [1]. In fact, the driving environment, the ’heavy’ or ’slow’ system, is also subject to back

reaction from the ’light’ or ’fast’ system. In the context of the Born-Oppenheimer (BO) theory of molecules, the

back reaction of the light system leads to the appearance of a gauge field in the effective Hamiltonian for the slow

one (the environment) [2][3][4]. The gauge field consists of a vector and a scalar potential and turns out to depend

on a quantum geometric tensor [5]. It can both induce interference phenomena and modify the dynamics through

geometric Lorentz and electric forces [6][7]. The first measurements of geometric Berry forces were done, on the one

hand in the coordinate space for the evolution of trapped particles [8] and on the other hand in the momentum space

for the evolution of relativistic particles [9] (see also the comment in [10] which contains related discussion on the

geometric forces and fast-slow motion decoupling in physical systems).

Many physical systems, as discussed in this paper, display a separation of scales in terms of slow and fast degrees

and thus share a very similar mathematical structure with molecular systems. Actually all these systems have a

space-time evolution governed by a multicomponent Schrödinger-like equation, whose Hamiltonian is a matrix valued

operator. It is therefore the purpose of the present note to investigate the origin of quantum gauge fields and forces

in a more general context than the BO theory, by considering the diagonalization of an arbitrary matrix valued

quantum Hamiltonian. To be precise, by diagonalization we mean the derivation of an effective in-band Hamiltonian

made of block-diagonal energy subspaces. For that purpose we use the results of a method developed recently [11].

This approach, based on a new differential calculus on a non-commutative space where ~ plays the role of running

parameter, leads to an in-band energy operator that can be obtained systematically up to arbitrary order in ~. Note

that there exists other totally different methods of diagonalization in a formal series expansion in ~ which uses symbols

of operators via Weyl calculus [12][13]. Particularly important for our purpose, it has been possible, for an arbitrary

Hamiltonian H(K,Q) with the canonical coordinates and momentum [Qi,Kj] = i~δij , to obtain the corresponding

diagonal representation ε (k,q) to order ~2, in terms of non-canonical coordinates and momentum (k,q) defined later

and commutators between gauge fields. The method is quite involved for an arbitrary Hamiltonian, but simplifies

greatly for systems whose Hamiltonian has the simple form H = T (K) + V (Q).

This kind of Hamiltonian that we are considering in this paper allows us to discuss how geometric gauge fields and

geometric forces arise at order ~
2 in physical situations as various as Dirac and Bloch electrons in electric fields or

Born-Oppenheimer theory. Note that first order ~ corrections (semi-classical) were first treated for Bloch electrons in

[14] and for Dirac electrons in [15][16] (see [17] for a review and also [18] which contains an overview of the first-order

Berry-phase effects and forces in 4-D space times).
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Our approach reveals the appearance at order ~
2 of a scalar gauge potential expressed in terms of two tensors.

One is the quantum metric tensor [5][19], and the other one is a new tensor generalizing an additional term found in

[12] for the Born-Oppenheimer case. Another very important consequence of the Hamiltonian diagonalization is the

appearance of gauge invariant intraband coordinates. The advantage of using these coordinates is that the diagonal

Hamiltonian is also gauge invariant. Moreover, these coordinates fulfill a non-commutative algebra which strongly

affects the dynamics through a Lorentz term and the gradient of a new scalar potential, generalizing thus the dynamics

of the Born-Oppenheimer theory.

II. HAMILTONIAN DIAGONALIZATION.

Consider the Schrödinger equation

i~
∂ |Ψ〉
∂t

= H |Ψ〉 (1)

where for the sake of completeness the Hamiltonian is supposed time dependent and of the form

H = T (K,t) + V (Q,t) (2)

where it is assumed that T (K, t) is a matrix valued operator while V (Q, t) is a scalar valued one. We aim to diagonalize

the full differential operator D = H −K0 where K0 ≡ i~∂/∂t is the conjugate operator of the time [K0, t] = i~.

The mathematical difficulty in performing the diagonalization of D comes from the intricate entanglement of

noncommuting operators due to the canonical relation [Qi,Kj ] = i~δij . In [11] starting with a very general but time

independent H(K,Q) and by considering ~ as a running parameter, we related the in-band Hamiltonian UHU+ =

ε (X) and the unitary transforming matrix U (X) (where X ≡ (Q,K)) to their classical expressions through integro-

differential operators, i.e. ε (X) = Ô
(
ε(X̃)

)
and U (X) = N̂

(
U(X̃)

)
, where in the matrices ε(X̃) and U(X̃), the

dynamical operators X are replaced by classical commuting variables X̃ = (Q̃, K̃).

The only requirement of the method is therefore the knowledge of U(X̃) which gives the diagonal form ε(X̃).

Generally, these equations do not allow to find directly ε (X), U (X), however, they allow us to produce the solution

recursively in a series expansion in ~. With this assumption that both ε and U can be expanded in power series of

~, we determined in [11], the explicit diagonalization of an arbitrary Hamiltonian to order ~2. The expression of the

effective n-th in-band energy εn greatly simplifies for Hamiltonian given by Eq. (2) and the result is given by Eq. (3).

But, for this simplified problem, it is interesting to give the principal steps leading to this result. In the first step,

assuming that the unitary matrix U0(K̃,t) diagonalizing T (K̃,t) only, that is U0TU
+
0 = ε0(K̃,t), is known (ε0(K̃,t) is

the matrix of the eigenvalues of T (K̃,t)), we obtain the semiclassical expression

U0DU+
0 = ε0(K,t) + V (Q+ ~A,t)−K0 + ~A0

with A(K,t) = iU0∇KU+
0 and A0(K,t) = −iU0

∂
∂t
U+
0 two non diagonal matrices. The diagonalization at the next

order (~2) is done by an unitary transformation matrix U = U0+ ~U1U0. The general method of [11] gives an explicit

procedure to determine the antihermitian matrix (U1)mn = (1−δmn)
εm(t)−εn(t)

(A)mn.∇V, which removes the off-diagonal

elements of A and A0, so that Eq. (1) becomes i~
∂|Ψ′〉
∂t

= ε |Ψ′〉 with |Ψ′〉 = U |Ψ〉 with the diagonal energy matrix ε

whose elements εn to order ~2 are

εn (K,qn, t) = ε0,n (K,t) + V (qn, t) + ~A0
n + ~

2Φn (3)

where the geometric scalar potential is

Φn(Q,K, t) =
Gij

n

2
∂i∂jV+M ij

n ∂iV ∂jV+
(
M0i

n +M i0
n

)
∂iV +M00

n (4)
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with two gauge invariant tensors Gij
n and Mµν

n defined as

Gij
n (K,t) =

1

2

∑
m 6=n

(
(Ai)nm(Aj)mn + h.c.

)
(5)

and

Mµν
n (K,t) =

1

2

∑
m 6=n

(
(Aµ)nm(Aν)mn

ε0,m − ε0,n
+ h.c.) (6)

Indices µ corresponding to µ = 0, 1, 2, 3, such that µ = 0 is the temporal variable and µ = i = 1, 2, 3 the spatial ones.

The tensor Gij
n is known as the quantum metric tensor [5][19] and Mµν

n is a new tensor generalizing an additional

term found in [12] for the Born-Oppenheimer theory.

In Eq. (3) the operator q ≡ Q+ ~A which is non diagonal has been replaced after application of U by the

intraband coordinate qn = Q + ~an where an is a gauge connection usually called the Berry connection defined as

the projection of A ≡ iU0∇KU+
0 on the n-th eigenstate an(K, t) ≡ (A)nn = i 〈n |∇Kn〉. Here |n〉 are the eigenstates

of the non-diagonal part of H, i.e., T (K, t) |n〉 = ε0,n(K, t) |n〉. In the same manner a0n ≡ (A0)nn = −i 〈n
∣∣∣ ·n
〉

is

the scalar gauge potential. Note that even though it is formally indifferent to express Φn in terms of Q or qn the

difference being of higher order in ~, the introduction of the non-canonical coordinate qn is essential to maintain the

gauge invariance of the Hamiltonian. The formal similarity with gauge theories is evident as we can define a Berry

curvature the n-th eigenstate (which can be degenerate)

Θij
n (K) =

∂ajn
∂Ki

− ∂ain
∂Kj

+
[
ain, a

j
n

]
(7)

leading to the following non-canonical commutation relations

[
qin, q

j
n

]
= i~2Θij

n (8)

As usual, the curvature leads to introduce a magnetic-type vector field Θn(K, t) whose components are defined as

Θi
n = εijkΘ

jk
n /2 and in the same manner from the temporal component a0n(K, t) an electric-type field is defined as

En(K,t)= −∂an
∂t

−∇a0n (9)

Note that extension of the first-order (~) Berry adiabatic formalism to the 4D space-time evolution with the “magnetic”

and “electric” geometric fields and the corresponding Hamiltonian approach has been made in [16][18].

For certain systems, like spinning particles in ferromagnets, the electric-type field leads to spin motive forces

(Faraday law of spin) [20]. Here the motive force is given by

ξ = −
∮

C

En.dK =
∂

∂t

∫

S

Θn·dSK =
∂φ

∂t

where C is a closed curve in K space, and S the surface delimited by C (dSK being the infinitesimal surface vector

orthogonal to S), and φ the magnetic type flux through S. The motive force is independent of the charge of the

particle and requires only a time dependent Berry curvature.

The Heisenberg equations of motion
·
qn = −i~ [qn, εn] +

∂qn

∂t
et

·

K = −i~ [K, εn] to the second order in ~ are

·
qn = ∇Kε0,n − ~En − ~

2
(

·

K×Θn −Θn ×
·

K) + ~
2∇KΦn,

·

K = −∇qnV (10)

The dynamics of the intraband operators leads directly to a Lorentz-type term. The scalar potential is a consequence

of transitions between eigenstates |n〉 of T and impacts the dynamics through its gradient. Working with the non-

canonical coordinates is a short-cut to determine the dynamics of a system prepared in a second order in ~ eigenstate of

the diagonalized Hamiltonian Eq. (3). This state will evolve in the same energy subspace n, as there are no transitions

between these eigenlevels as far as we can neglect higher contributions in the expansion in ~. In comparison, the
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equations of motion derived from the Hamiltonian H do not seem to include a Lorentz force, and the determination

of the ”eigendynamics” can be a very difficult to achieve. An appealing example is given in [6][7] where the ”exact”

slow motion of a massive neutral particle coupled to a spin is compared with the Born-Oppenheimer theory.

We underline that the expansion in ~ breaks down in regions of mode conversion where ε0,m − ε0,n << ~ or for

large values of 〈m |∂µn〉 . In a mode conversion region, one can easily generalize the diagonalization of H to a block-

diagonalization where transitions between states inside the block are allowed (off-diagonal elements), but there are

no transitions between different blocks. The expansion in ~ is consistent with the adiabatic approximation (see [13]

and related discussion in [18]). Indeed, the semiclassical order (~) where the potential Φn is absent corresponds to

a situation of no-transitions between the states |n〉 (or between states in different blocks) whereas the expansion to

second order in ~ corresponds to post-adiabatic corrections [21] where there is no transition of higher order between

eigenlevels and eigenstates of the diagonalized Hamiltonian Eq. (3).

The virtue of our approach is its full generality which sheds a new light and provides an unified description of

several phenomena which were considered case by case. We are now going to illustrate the results by several physical

examples.

III. BORN-OPPENHEIMER APPROXIMATION.

Consider the following Hamiltonian describing a fast system in interaction with an external environment

H =
1

2
BijP

iP j +
p2

2m
+ ϕ(R, r) (11)

where the fast system is described by a set of dynamical variables (r,p) (not to be confused with the non-canonical

coordinate and momentum operators) and the slow one (the environment) by coordinates (R,P). As in [5] we consider

a general kinetic energy with B, a positive definite inverse mass tensor. Applying the previous results with the

mapping Q → P, K → R (and i∇K → −i∇R) we have V (Q) → BijPiPj/2 and we can check that the operator

T (R) corresponds to T (R) = p2

2m + ϕ(R, r). We assume that its eigenvalues En(R) are known (or equivalently the

matrix U0 diagonalizing T ). This eigenvalues are the energy levels of the fast system for given position R of the slow

one, such that the matrix elements in this representation reads 〈m|T (R) |n〉 = δm,nEn(R). In this representation the

Hamiltonian of the slow part is non-diagonal but we can now directly apply formula Eq. (3) to obtain the following

eigenvalues of H to order ~2 in terms of the slow variables (assuming a non-degenerate spectrum for the fast system)

:

εn (pn,R) =
1

2
Bijp

i
np

j
n + ~

2Φn + En(R) (12)

where pn = P− i~ 〈n |∇Rn〉 is the gauge invariant momentum of the slow system. The scalar potential Eq. (4) then

becomes

Φn(R,P) =
Gij

n (R)

2
Bij+M ij

n (R)BilBjkP
lP k (13)

with the quantum metric tensor Gij
n (R) = Re

∑
m 6=n 〈∂in |m〉 〈m |∂jn〉 and M ij

n (R) = Re
∑

m 6=n
〈∂in |m〉〈m |∂jn〉

ε0,m−ε0,n
.

The term Gij
n (R)Bij is the usual part of the scalar potential discussed in several circumstances [5][6][7], whereas

the term M ij
n (R)BilBjkP

lP k was found in [12]. Here we see that the Born-Oppenheimer theory can be obtained

straightforwardly from our Hamiltonian diagonalization to order ~2. In the same manner from Eq.(10) we immediately

get the Born-Oppenheimer equations of motion
·
pn = −∇REn − ~

2 (
·

R×Θn −Θn ×
·

R)− ~
2∇RΦn with

·

Ri = Bijp
j
n.

Similar equations of motion for a classical system consisting of a classical magnetic moment interacting with an

inhomogeneous magnetic field [6][7] were studied in details. It was found that the Lorentz force results from a

slight misalignment of the magnetic moment relative to the magnetic field. This corresponds to the semi-classical

approximation. The electric force is a time average of a strong oscillatory force induced by the precession of the

magnetic moment. This is a kind of zitterbewegung effect.
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IV. PARTICLE IN A LINEAR EXTERNAL POTENTIAL.

Another interesting relevant situation concerns a particle in a linear potential exemplified here by a Bloch electron

in a constant external electric field (see also [22] and for the first semi-classical treatment see [14]). Consider H =

H0(P,R) + ϕ(R) with H0 the energy of a particle in a periodic potential and ϕ(R) = −eE.R the external electric

perturbation (and e < 0 the charge). Again assuming that one knows U0 diagonalizing H0 we then have U0H0U
+
0 =

ε0,n (k) with ε0,n (k) the n-th energy band and k the pseudo-momentum in the absence of the external field. Or, we

can also write 〈um(k)|H0(P,R) |un(k)〉 = δm,nε0,n (k) with |un(k)〉 the periodic part of the Bloch wave function (for

a more detailed discussion see also [23]).

Then, for the determination of the full eigenvalues of H we use formula (3) with the mapping Q → R, so that the

scalar gauge potential reduces to Φn(k) = e2T ij
n EiEj , and the energy eigenvalues are

εn = ε0,n (k)− eE.rn+e2~2M ij
n (k)EiEj (14)

with the covariant coordinate rn = R + i~ 〈un |∇kun〉 and M ij
n (k) = Re

∑
m 6=n

〈∂iun |um〉〈um |∂jun〉
ε0,m−ε0,n

. Introducing the

”magnetic field” ωn (k) =
~

eE2E×∇kΦn and χn (k) =
1

eE2E.∇kΦn the equations of motion are

·
rn = ∇kε0,n − ~

2
(
·

k× Ωn − Ωn ×
·

k) + ~
2χn

·

k,
·

k = eE

where Ωn (k) = Θn (k)+~ωn (k) . This shows that Φn contributes to the Lorentz term ~

·

k×Ωn known as the anomalous

velocity which is orthogonal to the applied electric field. This anomalous velocity is at the center of many recent

experimental and theoretical works and led to the discovery the magnetic-type monopole in solids [24]. The scalar

potential Φn contributes also to the velocity in the direction of E, through the term ~
2χn

·

k.

V. BEYOND THE BERRY PHASE.

The linear potential case has another interest. It allows us to also consider the fast system to derive the Berry

phase in a different way and to get a correction term to the phase of the wave function.

A. General results

Indeed, consider a time dependent Hamiltonian H(t) and introduce the differential operator D = H (t)− P0 where

P0 ≡ i~∂/∂t is the conjugate of time which is treated formally as an operator such that [P0, t] = i~. The time

dependence is due to the time evolution of some parameters x(t) describing the environment. Assuming that we

know εn (t) and n(t) the instantaneous eigenvalues and eigenstates of H , i.e., H(t) |n(t)〉 = εn (t) |n(t)〉 , then D is a

non-diagonal matrix in this representation because of the presence of the time derivative operator P0. To transform

the system of differential equations (Schrödinger equation) D |Ψ(t)〉 = 0, which couples all components of |Ψ(t)〉
into a decoupled set of differential equations, we introduce a unitary transformation |Ψ′ (t)〉 = U(t) |Ψ(t)〉 such that

U(t)D (t, P0)U
+(t) = Λ̃(t, P0) is a diagonal differential operator and Λ̃(t, P0) |Ψ′ (t)〉 = 0. Therefore the time evolution

is given by |Ψ′ (t)〉 = e
−i
~

∫

t
0
Λ(t)dt |Ψ′ (0)〉 . Since Λ(t) = Λ̃(t) + P0 is diagonal, no time ordered product is required.

Returning back to the initial state we have

|Ψ(t)〉 = U+(t)e
−i
~

∫

t
0
Λ(t)dtU(0) |Ψ(0)〉 (15)

A system prepared in a state |Λn(0)〉 which is an eigenstate of D, i.e., D(0) |Λn(0)〉 = Λ̃n(0) |Λn(0)〉 will evolve

with Λ(t) and thus stays in the instantaneous eigenstates |Λn(t)〉 of D(t) (for simplicity we assume non degenerate

eigenvalues). In this case the wave function becomes |Ψ(t)〉 = e
−i
~

∫

t
0
Λn(t)dt |Λn(t)〉. Since eigenstates of D instead

of H are considered, the time evolution Eq. (15) is exact and thus valid for adiabatic as well as for nonadiabatic
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evolution. Therefore for a periodic motion of period T , such that |Λn(T )〉 = |Λn(0)〉 (single valued eigenstates), we

have, if |Ψ(0)〉 = |Λn(0)〉

|Ψ(T )〉 = e
−i
~

∫

T
0

εn(t)dte−iβn |Ψ(0)〉 (16)

with βn = 1
~

∫ t

0 Λn(t)dt − 1
~

∫ T

0 εn (t) dt the exact geometric phase of the system without any approximation which

corresponds to the Aharonov-Anandan phase [25]. Indeed, these authors extended the notion of Berry geometric

phase for cyclic adiabatic evolutions to nonadiabatic cyclic evolutions (see also [26] and references therein).

But, in general we need an approximation scheme for the diagonalization of D and we will use the expansion to

order ~
2. The problem of finding Λn = Λ̃n(t) + P0 is formally equivalent to the Bloch electron example discussed

above with K → t, Q ≡ R → P0 and eE = 1. We obtain from Eq.(14)

Λn = εn (t)− i~
〈
n
∣∣∣ ·n
〉
+~

2Mn (t) (17)

with Mn (t) = Re
∑

m 6=n

〈

·

n |m〉〈m
∣

∣

∣

·

n
〉

εm−εn
. Therefore for a periodic motion of period T , Eq. (16) becomes

|Ψ(T )〉 = e−iγn |Ψ(0)〉 (18)

with

γn =
1

~

∫ T

0

εn(t)dt + i

∫ T

0

〈
n
∣∣∣ ·n
〉
dt +~

∫ T

0

Mn (t) dt

The phase γn appears as an expansion in power of ~. The first term is the usual dynamical phase and the second one

the geometric Berry phase independent of ~ and of the velocity of parameters
·
x(t). The additional phase ~

∫ T

0
Mn (t) dt

of order ~ is apparently non-geometric as it depends on
·
x. It cancels in the infinitely slow

·
x → 0 adiabatic regime,

which thus coincides with the semiclassical approximation. Nevertheless, it is worth noticing that the higher order

phase corrections can also be seen as geometric in the Aharonov-Anandan meaning [27][28], since
∫ T

0 Mn (t) dt can

also be presented as a contour integral in a generalized parameter space [27].

Quantitatively, if the system is prepared in an eigenstate |n(0)〉 of H(0), then |Ψ(t)〉 is given by Eq. (15) with

U = U0 + ~U1U0 where U1 (t)mn = i
(1−δmn)

〈

m
∣

∣

∣

·

n
〉

εm(t)−εn(t)
, so that we have the following expansion up to order ~:

|Ψ(t)〉 = e
−i
~

∫

t
0
Λn(t)dt |n(t)〉+ ~

∑

m 6=n

(
e

−i
~

∫

t
0
Λn(t)dtAmn(t)

− e
−i
~

∫

t
0
Λm(t)dtAmn(0)

)
|m(t)〉+O(~2)

The magnitude of transitions is then controlled by the term Amn =
i
〈

m(t)
∣

∣

∣

·

n(t)
〉

εn(t)−εm(t) which is neglected in the strict

adiabatic limit
〈
m(t)

∣∣∣ ·n(t)
〉

→ 0.

In principle deviation from adiabaticity at the semi-classical level could be measured by interferometry. Consider

a periodic two states system, and write the initial state in the eigenbase |n(0)〉 = |Λn(0)〉+ ~Amn(0) |Λm(0)〉 . Then,
after one cycle |Ψ(T )〉 = e−iγn |Λn(0)〉+~e−iγmAmn(0) |Λm(0)〉 . For an observable O which does not commute with H

one will find in the average 〈Ψ(T )|O |Ψ(T )〉 an interference term 2~Re
(
Amn(0) 〈Λn(0)|O |Λm(0)〉 e−i(γn−γm)

)
which

is formally equivalent to the zitterbewegung of Dirac particles.

Note that |Ψ(t)〉 is normalized to unity at order ~ only; i.e. 〈Ψ(t) |Ψ(t)〉 = 1 + O(~2) so that a normalization at

a higher order needs an expansion of U to the same order. To second order, the diagonalizing matrix U2 (t) is given

by the procedure described in [11] leading to U2 (t)mn = −∑
k 6=n,m

<m|
·

k><k|
·

n>

(εm(t)−εk(t))(εk(t)−εn(t))
so that the wave function
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reads

|Ψ(t)〉 =


e

−i
~

∫

t
0
Λn(t)dt − ~

2
∑

m 6=n

e
−i
~

∫

t
0
Λm(t)dtAnm(t)Amn(0) + ~

2e
−i
~

∫

t
0
Λn(t)dt

(
U+
2 (t)nn + U2 (0)nn

)

 |n(t)〉


~

∑

m 6=n

(
e

−i
~

∫

t
0
Λn(t)dtAmn(t)− e

−i
~

∫

t
0
Λm(t)dtAmn(0)

)
+ ~

2
∑

m 6=n

(
e

−i
~

∫

t
0
Λn(t)dtU+

2 (t)mn + e
−i
~

∫

t
0
Λm(t)dtU2 (0)mn

)

−~
2

∑

p,m 6=n

e
−i
~

∫ t
0
Λp(t)dtAmp(t)Apn(0)


 |m(t)〉 (19)

From this result we can compute the so called fidelity defined as |〈Ψad(t)| |Ψ(t)〉|2 where |Ψad(t)〉 correspond to the

wave function in the adiabatic limit. Using Eq. (19) we obtain

|〈Ψad(t)| |Ψ(t)〉|2 = 1− ~
2
∑

k 6=n


 |< n |

·

k >|2

(εn (t)− εk (t))
2 +

|< n |
·

k >|20
(εn (0)− εk (0))

2




− ~
2
∑

k 6=n

e−i(γk−γn) < n |
·

k >< k | ·
n >0 +ei(γk−γn)

(
< n |

·

k >< k | ·
n >0

)∗

(εn (t)− εk (t)) (εn (0)− εk (0))
(20)

with e−i(γk−γn) = e
−i

∫

[

εk−εn
~

+(φk−φn)+~(Mk−Mn)
]

dt
with φn =

〈
n
∣∣∣ ·n
〉
.

B. Example

As a physical illustration let consider the Hamiltonian

H = B (t) · σ

corresponding to the paradigmatic example of a spin coupled to a magnetic field. The eigenvalues ofD = H (t)−i~∂/∂t

at order ~2 are given by Eq. (17)

Λl = εl (t) + ~a0l+~
2Ml (t) (21)

The Hamiltonian being diagonalized by the matrix U0 = (n·σ+σz)√
2(1+nz)

with n = B/B, we have the two level eigenvalues

εl (t) = B(t) (σz)ll with l = 1, 2, and the matrix A0 = −i~U0
∂
∂t
U+
0 is thus given

A0 = −~




(
(n+ k)× ·

n
)
.σ

2 (1 + nz)




As a consequence the scalar gauge potential a0l = −i < l |
·

l >= −i~
(
U0

∂
∂t
U+
0

)
ll
reads a0l = −

~

(

(n+k)×
·

n
)

·k

2(1+nz)
(σz)ll and

Ml (t) = M00
l = 1

2

∑
m 6=l(

(A0)lm(A0)ml

ε,m−ε0,l
+ h.c.) can therefore be written

Ml = −
2 (1 + nz)

·
n
2
− ·
nz

2
−

((
n× ·

n
)
· k

)2

8 (1 + nz)
2
εl(t)

(22)
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The Berry phase can thus be cast in the form

φl,B = − (σz)ll

∫ T

0

dt

(
n× ·

n
)
.k

2 (1 + nz)
(23)

It is interesting to introduce the Euler angles n = ( sin θ cosϕ, sin θ sinϕ, cos θ), so that the Berry phase reads φl,B =

(σz)ll
1
2

∫
L
(1− cos θ) dϕ and the correction of higher order to the phase γl is thus

~

∫ T

0

Ml (t) dt =
~

8B

∫ T

0

(sin2 θ
·
ϕ
2
+

·

θ
2

)dt. (24)

We retrieve the result of [27] for ϕ = 0. Note that, it was shown in [27], this higher order contribution to the geometric

phase is a part of the non-adiabatic Aharonov-Anandan geometric phase.

Let compute the fidelity in the simple case θ = const and ϕ = ωt. A direct application of Eq. (20) gives

|〈Ψad(t)| |Ψ(t)〉|2 = 1− ω2 sin2 θ

4ω2
0

sin2 (ω0 − ω) t+ ... (25)

where we introduced the notation B = ~ω0. The usual criteria for adiabaticity is given by the condition sin2 θω2

4ω2

0

<< 1.

At the resonance ω0

ω
= 1 fidelity is always one at this order of the expansion.

VI. DIRAC PARTICLE IN AN EXTERNAL POTENTIAL.

We will now show that our formalism can also be used for relativistic Dirac particles, which are usually treated

with the Foldy Wouthuysen approach [29]. The semiclassical treatment of the problem was first considered in [15]

and [16]. The direct second order in ~ diagonalization being done in [11], we can now fully appreciate how simple and

straightforward is the application of the formalism presented here.

The Hamiltonian is (with c = 1)

H = α.p+ βm+ V (R) (26)

where α and β are the usual (4× 4) Dirac matrices and V (R) is the external potential. The matrix diagonalizing

the free part of the Hamiltonian U0 (α.p+ βm)U+
0 = βE with E =

√
p2 +m2 is the usual Foldy Wouthuysen

unitary transformation U0 = E+m+βαP

(2E(E+m))1/2
. For the Dirac particles we have two energy subspaces ε± of dimension 2

corresponding to the positive and negative energy. Now with the correspondence Q → R, K → p and formula Eq.

(3) , one easily sees that the diagonal matrix can be written

ε (p, r) = βE (p) + V (r) + βΦ (27)

The position operator is given by the (4× 4) matrix r = R+ ~p×Σ

2E(E+m) with Σ = 1⊗ σ where σ are the Pauli matrices.

The band index of the scalar potential has been transferred to the matrix β, and we have Gij = 1
4E2 g

ij and M ij =
1

8E3 g
ij with the notation gij = δij − pipj

E2 , so that finally we can write

Φ =
~
2

8E2
gij(∂i∂jV+

1

E
∂iV ∂jV ) (28)

Note the presence of a new term not presented in other considerations of the Dirac equation (see for instance [30]),

which is nonlinear in scalar potential and which stems from the new tensor M ij . If for central potential one can

neglect this new contribution 1
E
∂iV ∂jV , this is not always true and for some potentials both terms in Eq. (28) can

be of the same magnitude. In fact for constant electric field V = −eE .R, the first term vanishes and Φ = e2~2

8E2 g
ijEiEj .

In the non-relativistic limit p << m, Φ becomes Φ ≈ ~
2

8m2

(
∆V+ 1

m
(∇V )2)

)
+O(~2p2/m4) which gives two contri-

butions. The first one is the usual Darwin term ~
2

8m2∆V traditionally obtained as the result of the Foldy Wouthuysen
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transformation expanded in power of 1/m. The second term ~
2

8m3 (∇V )2 of higher order in 1/m is usually not consid-

ered in the Foldy Wouthuysen approach. It is also interesting to note that the external potential in the non relativistic

limit can be expanded as V (r) ≈ V (R) + ~

4m2Σ. (∇V × p) + O(~2p2/m4) where ~

4m2Σ. (∇V × p) is the spin-orbit

coupling term. Therefore the Hamiltonian can be approximated as

ε ≈ β

(
m+

P2

2m
− P4

8m3

)
+ V (R) +

~

4m2
Σ. (∇V × p)

+
~
2

8m2
β

(
∆V+

1

m
(∇V )2

)
(29)

A Born-Oppenheimer treatment of the Dirac equation where the spin is the fast variable and the momentum the

slow one has led to the same Hamiltonian Eq. (29) but without the scalar potential [31]. This corresponds to

the semiclassical approximation. The additional electric-type potential Φ is a consequence of transitions between

energy levels. This is in agreement with the usual interpretation of the physical origin of the Darwin term, the

zitterbewegung phenomenon, whereby the electron does not move smoothly but instead undergoes extremely rapid

small-scale fluctuations due to an interference between positive and negative energy states.

VII. CONCLUSION.

In this paper we investigated the origin of quantum geometric phases, gauge fields and forces beyond the adiabatic

approximation for physical systems displaying a separation of scales in terms of slow and fast degrees. In particular

we extended the notions of geometric magnetic and electric forces discovered in studies of the Born-Oppenheimer

approximation. Our approach is very general and results found here have been straightforwardly applied to several

physical systems.
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