

Small Ruminant Lentivirus genotype E is widespread in Sarda Goat

Reina Ramsés, Bertolotti Luigi, Dei Giudici Silvia, Puggioni Giantonella, Ponti Nicoletta, Profiti Margherita, Patta Cristiana, Rosati Sergio

▶ To cite this version:

Reina Ramsés, Bertolotti Luigi, Dei Giudici Silvia, Puggioni Giantonella, Ponti Nicoletta, et al.. Small Ruminant Lentivirus genotype E is widespread in Sarda Goat. Veterinary Microbiology, 2009, 144 (1-2), pp.24. 10.1016/j.vetmic.2009.12.020 . hal-00509366

HAL Id: hal-00509366 https://hal.science/hal-00509366v1

Submitted on 12 Aug 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Small Ruminant Lentivirus genotype E is widespread in Sarda Goat

Authors: Reina Ramsés, Bertolotti Luigi, Dei Giudici Silvia, Puggioni Giantonella, Ponti Nicoletta, Profiti Margherita, Patta Cristiana, Rosati Sergio

PII: \$0378-1135(09)00611-7

DOI: doi:10.1016/j.vetmic.2009.12.020

Reference: VETMIC 4717

To appear in: VETMIC

Received date: 24-9-2009 Revised date: 10-12-2009 Accepted date: 11-12-2009

Please cite this article as: Ramsés, R., Luigi, B., Silvia, D.G., Giantonella, P., Nicoletta, P., Margherita, P., Cristiana, P., Sergio, R., Small Ruminant Lentivirus genotype E is widespread in Sarda Goat, *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2009.12.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Small Ruminant Lentivirus genotype E is widespread in Sarda C	Foat
---	-------------

2

- 3 Reina Ramsés^{1,2}, Bertolotti Luigi¹, Dei Giudici Silvia³, Puggioni Giantonella³,
- 4 Ponti Nicoletta³, Profiti Margherita¹, Patta Cristiana³, Rosati Sergio¹*

5

- 6 ¹ Dipartimento di Produzioni Animali, Epidemiologia, Ecologia, Facoltà di
- 7 Medicina Veterinaria, Università degli Studi di Torino, Via Leonardo da Vinci 44,
- 8 10095 Grugliasco (TO), Italy
- 9 ² Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Ctra.
- 10 Mutilva Baja, 31192 Mutilva Baja, Navarra, Spain
- ³ Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- 12 *Corresponding author:
- 13 Rosati Sergio, Dipartimento di Produzioni Animali, Epidemiologia ed Ecologia,
- via Loenardo da Vinci, 44, 10095, Grugliasco (TO), Italy. Phone 0039 011
- 15 6709187, fax 00390116709196.

18	The highly divergent SRLV genotype E has recently been characterized in Italy as
19	a low pathogenic caprine lentivirus in the Roccaverano breed. The availability of
20	a genotype specific diagnostic test based on a comparative assay, using a
21	combination of genotype specific recombinant antigens allows a wide serosurvey
22	in other goat populations. The island of Sardinia still has the highest small
23	ruminant population of any Italian region and crossbreeding has been limited to
24	goats, mainly with the Maltese breed.
25	A serological survey was carried out on sheep flocks and goat herds, using
26	individual sera as well as a bulk milk-adapted procedure. Genotype E was
27	identified in more than 50% of goat herds and none of the sheep flocks thus
28	supporting the idea that this genotype is specifically associated with the goat
29	species. The full length proviral sequence of a Sardinian isolate revealed and
30	confirmed the deletion of dUTPase subunit and the absence of both <i>vpr</i> gene and
31	the 71 bp repeat of the LTR. Genetic similarity of this isolate with the prototype
32	strain Roccaverano was no more than 84%, supporting the designation of two
33	subtypes within genotype E. Nevertheless, in vitro properties of the Sardinian
34	strain were different from those of the Roccaverano strain in terms of ability to
35	infect synovial membrane and produce syncitia. Remarkable differences in the
36	HV1 and HV2 of the env gene were recorded, with the Sardinian isolate
37	displaying sequence motif more similar to arthritic strains. Data presented suggest
38	diffusion of genotype E is wider than previously thought.

- 40 Keywords: small ruminant lentivirus / genotype e / pathogenic subtype / sarda
- 41 **goat.**

Introduction

44	Small ruminant lentiviruses (SRLV) are a group of viruses displaying different
45	genetic, antigenic and biological properties in their natural hosts. These viruses
46	cause slow progressive multi systemic diseases involving joints, mammary
47	glands, brain and lungs. Beside the Maedi Visna Virus (MVV) and Caprine
48	Arthritis Encephalitis Virus (CAEV), prototypes of genotype A and B
49	respectively, additional genotypes C, D and E have been described (Reina et al.,
50	2009a; Shah et al., 2004). The latter has so far been identified in the Roccaverano
51	goat, an endangered Italian breed. Full length genome analysis of the prototype
52	strain Roccaverano revealed unusual genetic organization with natural deletions
53	of the dUTPase subunit of the <i>pol</i> gene and the absence of <i>vpr</i> gene (previously
54	characterized as tat gene) (Reina et al., 2009a). We proposed the designation of
55	low pathogenic caprine lentivirus to characterize this viral cluster for two main
56	reasons: i) reduced viral load and disease progression have been observed using
57	CAEV molecular clones artificially deleted for the same gene or gene subunit; ii)
58	the arthritic clinical index in a Roccaverano flock infected with genotype B is
59	significantly higher than that found in a flock infected with genotype E (personal
60	observations). A recent study has indicated that, due to antigenic diversity of gag
61	encoded proteins among genotypes A, B or E, distribution of E-like infection in
62	other small ruminant population would require a specific antigen design. To
63	address this problem a comparative assay was proposed using the recombinant
64	P16 (matrix) and P25 (capsid antigen) fusion protein from both B and E
65	genotypes. This test was able to selectively detect genotype E infected animals,

66	based on different reactivity against homologous antigen (Reina et al., 2009b).
67	Since only few infected flocks have been recorded to date in the Piedmont region
68	(North-West Italy), it is difficult both to speculate on the distribution of genotype
69	E infection in other countries and to assess if genotype E might be present in other
70	goat populations displaying different biological behaviour (i.e. virulence). In Italy
71	several local goat populations have been subjected to unplanned crossbreeding
72	with imported breeds to increase milk production. The introduction of B1 subtype
73	(CAEV-like strains), especially from France, is commonly believed to have
74	occurred through importation of French Alpine and Saanen breeds in the early
75	eighties (Grego et al., 2007). Pathogenic strains such as those belonging to
76	subtype B1, tend to spread horizontally among adult animals. For this reason,
77	even if more than 50 goat breeds are currently farmed, B1 strains appeared to be
78	widespread in many regions. Local breeds with limited crossbreeding or
79	introduction represent a good starting point to investigate the presence of
80	genotype E. The Sarda goat lives only in Sardinia and represents more than 20%
81	of the Italian goat population (about 300,000 heads). Crossbreeding has mainly
82	occurred in the past with the Maltese breed, while introduction of B1 infected
83	goats has been limited (Ajmone-Marsan et al., 2001; Sechi et al., 2007). In the
84	present study, a large number of small ruminant flocks were tested using genotype
85	E and B comparative ELISA assay. While sheep flocks were negative to genotype
86	E, surprisingly, more than 50% of the goat herds resulted positive, suggesting that
87	genotype E infection is widespread in the Sarda goat. Genome analysis of a
88	Sardinian viral isolate revealed a similar genome organization within genotype

89	and moderate pathogenic behaviour in vitro. Different viral evolutionary strategies
90	in the two different sized populations and potential genotype E reservoir in other
91	countries are also discussed.
92	
93	Materials and Methods
94	Blood (serum and DNA) and milk samples
95	Caprine herds or ovine flocks were selected randomly among the Sardinian
96	population, involving the most populated areas on the island.
97	Individual whole blood from 20 ovine flocks and from 30 caprine herds were
98	initially collected and serum was stored at -20°C until ELISA testing. Buffy coats
99	and milk were obtained from 21 samples belonging to three of the caprine herds
100	and DNA was extracted using DNA blood minikit (Qiagen). Following this
101	preliminary serological survey, 186 bulk milk samples were collected from
102	additional caprine or mixed herds and subjected to milk-adapted ELISA (Fig. 1).
103	For both sera and bulk milk, appropriate positive and negative controls were
104	included in each test, including samples from three caprine herds characterized in
105	a previous study and known to be infected with genotype B, genotype E and both
106	genotypes (Reina et al., 2009b).
107	
108	ELISA comparative assays
109	A previously described ELISA test was used to serotype samples, consisting of
110	P16-25 recombinant antigen derived from genotypes B (strain IT-Pi1) and E
111	(strain Roccaverano) (Reina et al., 2009a). Briefly, ELISA microplates

112	(Immunomaxi TPP) were coated with 100 ng of each recombinant antigen and
113	water as negative control. After drying and blocking steps, serum samples were
114	applied at 1/20 dilution and plates incubated at 37° for 1h. Following the washing
115	step, peroxidase labelled Mab anti-sheep/goat IgG was applied and plates
116	incubated as above. After the final wash, development was carried out using
117	ABTS and plates were read at 405 nm. Net absorbances were obtained by
118	subtracting the absorbance of negative antigen from the absorbance of each
119	recombinant antigen. Cut-off value was defined as percentage of reactivity $\geq 20\%$
120	of the absorbance of positive control included in each plate.
121	Bulk milk samples were tested using the same P16-25 ELISA and a previously
122	described subunit ELISA (sub-ELISA) (Reina et al., 2009b) in which microplates
123	were coated with 200 ng/well of the immunodominant epitope of capsid antigen
124	derived from genotype B (sequence KLNEEAERWRRNNPPPP) and E (sequence
125	KLNKEAETWMRQNPQPP). Since both peptides were expressed as GST fusion
126	protein, an equimolar amount of GST was used as negative control. Net
127	absorbances were obtained by subtracting the absorbance against GST antigen
128	from that of each recombinant subunit. Milk samples were used at 1/2 dilution in
129	both assays and procedures were carried out as above. For P16-25 ELISA, a
130	standard curve was generated using two fold dilutions of bulk milk sample into
131	negative bulk milk, the former obtained from a caprine herd with known
132	seroprevalence and known to be infected only with E genotype. Cut off was
133	defined as the absorbance level of the dilution corresponding to 20% prevalence
134	and included in each plate.

135	
136	PCR, sequencing and phylogenetic analysis
137	DNA was extracted from individual blood and milk samples and used to amplify a
138	partial region of the gag gene (Grego et al., 2007). Briefly, DNA was analyzed by
139	a nested PCR designed to amplify a 1.3 kb fragment in the first round and a 0.8 kb
140	fragment in the second one. The result of the nested amplification was sequenced
141	directly using an ABI PRISM 310 Genetic Analyzer (Applied Biosystem, Monza,
142	Italy). Nucleotide sequences were aligned using Clustal X algorithm, in respect of
143	the amino acidic coding frame and were compared to SRLV homologous
144	sequences available on GenBank.
145	Genetic similarity was expressed as nucleotide and aminoacid diversity (Nei,
146	1987), or mean proportion of differences among sequences. Taken into account
147	the peculiar genomic organization of isolates within genotype E, the amount of G
148	to A transitions was analyzed to investigate the possible role of genome deletions
149	on the viral mutation rate. The evaluation of the amount of G-to-A substitutions
150	was carried out using hand made functions in R computer software (R
151	Development Core Team 2007), available upon request.
152	Selective pressure was evaluated calculating the ratio (ω) of non synonymous
153	substitutions per non synonymous sites (d_N) and the number of synonymous
154	substitutions per synonymous sites (d_s) ; evaluation of selective pressure was
155	performed considering the overall number of substitutions and analyzing
156	mutations at site-specific level (SNAP www.hiv.lanl.gov).

157	In order to describe the phylogenetic relationships among new and SRLV
158	reference sequences, we created a dataset including samples belonging to the
159	genotype E published previously (Grego et al., 2007) and sequences from A, B
160	and C genotypes as outgroups. The phylogenetic tree was created evaluating the
161	best model of molecular evolution (ModelTest software, (Posada and Crandall,
162	1998)) and using Bayesian heuristic approaches (MrBayes software, (Ronquist
163	and Huelsenbeck, 2003)).
164	
165	Virus isolation and genome sequencing
166	An uncharacterized viral isolate, which had been previously obtained by co-
167	culture of the buffy coat with a primary culture of choroid plexus cells, was traced
168	back in our laboratory as a frozen supernatant. It had been isolated in a Sardinian
169	caprine herd, found reactive against genotype E antigen in the present study, from
170	an adult animal suffering unspecific arthritis. DNA extracted from the buffy coat
171	of the same animal was also available. Viral isolate (hereafter named Seui) was
172	cultured on caprine foetal synovial membrane (CFSM) and analyzed for syncitia
173	formation, immunocytochemistry, RT activity (Cavidi) and PCR. DNA from
174	infected cells was used to obtain the complete genome sequence of the Seui
175	isolate using primers described in Table 1. Rev transcripts analysis was carried
176	out by RT-PCR with primers already described (Gjerset et al., 2006).
177	
178	Nucleotide accession numbers

179	Nucleotide sequences of partial gag fragments and the complete genome of strain
180	Seui were submitted to the GenBank database and given accession numbers
181	GQ428519-36 and GQ381130 respectively.
182	
183	Results
184	P16-25 ELISA and sub-ELISA
185	Serological test was conducted on a total of 504 animals from 19 goat herds
186	(n=309) and 19 sheep flocks (n=195) and only goats showed the presence of
187	genotype E infection in Sardinia, reaching absorbance values comparable to those
188	of the positive controls used. Serum P16-25 ELISA was able to serotype the
189	infection and although some animals reacted against both antigens (genotype B
190	and E), most reacted in a type specific manner against genotype E antigen (Fig
191	2A).
192	Following this preliminary screening, we used bulk milk from a total of 186 goat
193	herds to estimate the real prevalence of genotype E within the Sarda goat
194	population. Based on milk adapted P16-25 ELISA, serotyping was not always
195	possible due to highly reactive samples, which reached a saturation level against
196	both B and E derived antigens. Although titration of highly reactive samples may
197	has overcome this drawback, subunit-ELISA was able to serotype most milk
198	samples but sensitivity was obviously lower than that obtained by P16-25 ELISA.
199	When both methods were merged, the estimation of 74% of SRLV
200	seroprevalence was found in the Sardinian goat herds. Among these, 19.41% were
201	infected with genotype B, 44.12% with genotype E and 10.59% were infected by

202	both genotypes or not characterised. Finally, 18.24% of the flocks were found
203	negative by both assays. Results clearly indicate that genotype E is widely
204	distributed on the island of Sardinia, reaching a prevalence twice the levels found
205	for genotype B.
206	
207	PCR sequencing and phylogenetic analysis
208	A total of 18 partial sequences (0.8 Kb) of the gag gene were obtained and
209	analyzed. The mean nucleotide diversity among Sardinian samples was 9.915%
210	(standard error of the mean 1.105%). Analyses on G to A transitions showed that
211	the amount of this specific mutation was 24.75% (standard error of the mean =
212	0.60%) of the total number of substitutions and it is similar to that of Roccaverano
213	cluster in Piedmont (Reina et al., 2009a). The evaluation of selective pressure
214	showed the presence of purifying selection ($\omega = 0.032$).
215	Phylogenetic relationships among new Sardinian samples, sequences from
216	Piedmont belonging to genotype E and reference sequences are described in the
217	phylogenetic tree reported in Figure 3. Tree topology clearly indicates the
218	divergence between Roccaverano and Sardinian clusters.
219	
220	Complete genome sequencing and in vitro properties
221	Sardinian genotype E (strain Seui) was able to infect synovial membrane as
222	assessed by the presence of characteristic CPE, immunocytochemistry, RT
223	activity and PCR.

224	DNA extracted from infected CFSM with Seui strain was used to amplify the
225	complete proviral genome in six steps (LTR, LTR-gag, gag, gag-pol, pol, and
226	env). Rev transcripts were successfully generated by RT-PCR. Since the complete
227	sequence was obtained by overlapping PCR fragments, it may not reflect the
228	sequence of a single provirus. However <i>env</i> sequences obtained from PBMC,
229	coculture and milk from the isolation's animal presented a divergence less than
230	1%. Furhermore, Rev sequences presented a divergence of 0.14% compared with
231	env sequence obtained from DNA indicating that the provirus sequence is
232	representative of a replication competent virus.
233	The mean nucleotide diversity between Seui and Roccaverano strain was 14.643%
234	(SEM: 1.104%). This result supports the definition of two different subtypes
235	within the genotype E, according to the previously proposed criteria (Shah et al.,
236	2004).
237	Proviral sequence revealed that the hallmarks of genotype E were confirmed in
238	the Sardinian isolate. Residual dUTPase subunit presented additional four amino
239	acids respect to Roccaverano strain. Differences were also observed in the hyper
240	variable regions of env gene (HV1 and HV2), the Sardinian isolate displaying
241	sequence motifs more similar to arthritic strains (Table 2). Long terminal repeats
242	included all the described enhancer elements already present in the Roccaverano
243	strain, except for the AP-4 site tandem repeat, a common feature of CAEV
244	isolates.
245	

246

Discussion

247	As hypothesised in the previous study, the lack of a specific serological tool
248	allowed no speculation as to the distribution of genotype E in geographical
249	locations different from the one where it was initially described (Reina et al.,
250	2009b). Serological data from different goat herds, sequence analysis of specific
251	PCR products from three infected flocks and the full length proviral genome
252	sequence of a local strain demonstrate that genotype E infection is associated and
253	widely distributed in the Sarda goat, while Sarda sheep seems to harbour a
254	genotype B (CAEV-like) lentivirus, a common feature in Italian sheep population
255	(Grego et al., 2002).
256	Sarda goat, unlike the Roccaverano breed, represents an important goat population
257	with economic significance at a local and national level. Moreover, since the
258	population size of the Sarda goat is not comparable to the Roccaverano breed, in
259	terms of average number of head per flock, farming system, management and
260	productive levels, the biological significance of genotype E as low pathogenic
261	caprine lentivirus needs to be redefined. The tree topology indicates a clear
262	divergence between Roccaverano and Seui strains, showing quite different clade
263	structures and features. These differences in the evolutionary pathway can be
264	justified by epidemiological and historical data. In fact, Roccaverano goats were
265	at risk of extinction in the early sixties, when people abandoned rural areas in
266	favour to towns, following industrial development. This social behaviour forced
267	the goat breed to pass through a bottleneck, and drove viral evolution to take
268	advantage, on one hand of reducing virulence and on the other hand of persisting
269	in a small population, limiting the transmission to lactogenic route. In Sardinia,

270	viral evolution might have displayed a different behaviour, increasing or
271	maintaining a certain degree of both virulence and horizontal transmission. To
272	date it is difficult to speculate about the pathogenic role of genotype E for several
273	reasons. First of all, the genomic organization of the Sardinian isolate is similar to
274	the Roccaverano strain, lacking both dUTPase subunit and vpr gene. In other
275	SRLV models, dUTPase and vpr were specifically associated with an increased
276	viral load, tissue distribution and lesion severity, compared to the deleted
277	counterpart (Harmache et al., 1998). In addition, the presence of other pathogens,
278	such as Mycoplasma spp, Fusobacterium necrophorum, Bacteroides nodosus,
279	which had consistently been reported in the Sarda goat, could lead to lentivirus-
280	induced overlapping clinical signs. Finally, the viral isolate used in this study had
281	originally been obtained from co-cultivation of peripheral blood mononuclear
282	cells with choroid plexus or synovial membrane cells, while viral isolates from
283	direct explantation of synovial membrane of arthritic goats are still unavailable for
284	genotype E. In vitro study, however, seems to attribute to the Seui strain a certain
285	degree of cytopathogenicity at least in terms of ability to infect synovial
286	membrane and syncithia formation, while replication of the Roccaverano isolate
287	in the same cell system is greatly reduced (personal observation; manuscript in
288	preparation). Cell tropism has been attributed to sequence variation in U3 region
289	of LTR, related to specific transcription factor binding sites, as well as variation in
290	the hyper variable (HV) regions of the env gene. We first analysed the structure of
291	viral enhancer elements and significant similarity was found between the two
292	strains, except for a genuine AP4 tandem repeat which is present in Seui as well as

293	several CAEV isolates, while a point mutation is present in one of the two
294	repetitions in the Roccaverano strain. In the env gene, amino acid motif in the
295	HV1 and HV2 regions were clearly different between strains, the Seui being more
296	similar to arthritic isolates. It should be noted that compartmentalization studies of
297	viral quasispecies revealed that different motifs in the HV1-2 regions of CAEV
298	are a normal finding in the same animal (Hotzel et al., 2002) and arthritic related
299	sequences might have resulted from an in vitro adaptation of Seui isolate to
300	synovial membrane cells. For this reason we sequenced a PCR fragment
301	encompassing the HV region from PBMC of the same animal from which the
302	Seui strain was isolated and identical amino acid sequence was obtained.
303	Therefore, we suppose that higher, if any, in vivo virulence of the Seui strain
304	could be attributable to different cell tropism related to U3 and/or HV sequences.
305	Sequence analysis of the Sardinian strain Seui revealed 84% similarity with the
306	Roccaverano strain supporting the definition of the genotype E and, possibly two
307	subtypes, following the criteria recommended in the HIV field, where at least two
308	epidemiologically unlinked isolates should be sequenced in their entirety
309	(Robertson et al., 2000). Divergence between genomes was not clearly
310	attributable to specific gene or gene fragment. Interestingly, a certain degree of
311	variability was found in the <i>pol</i> gene corresponding to residual dUTPase subunits.
312	This seems to confirm that dUTPase was lost during evolution and residual
313	sequence is not subjected to functional constrain except for frame conservation
314	and spacer function between RNAseH and Integrase subunits. On the contrary, the

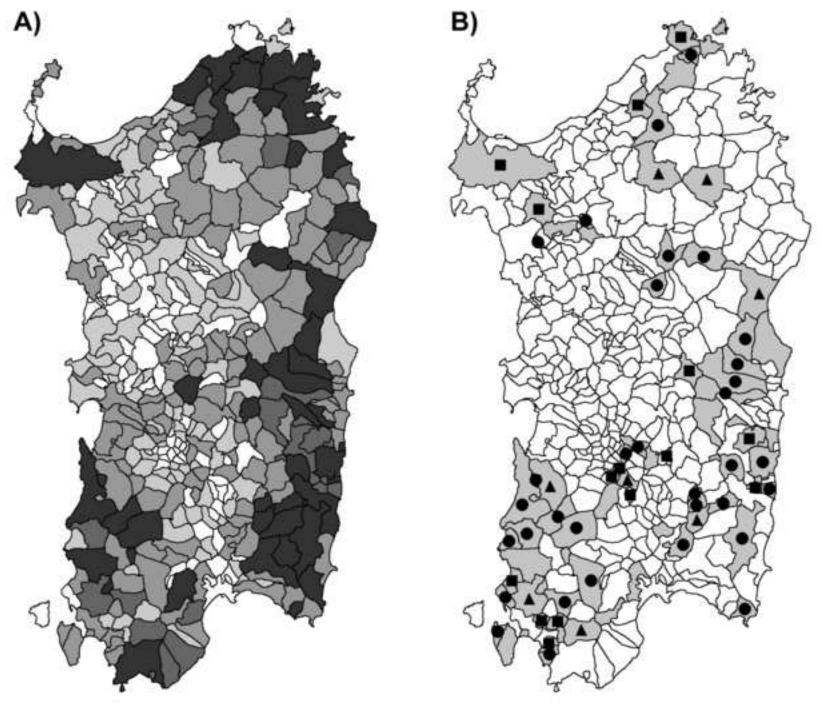
315	entire ORF of vpr was absent in both strains and it is difficult to speculate if <i>vpr</i>
316	gene has ever been present in genotype E.
317	If we assume that the Sarda goat is an ancient breed which came to Sardinia
318	during the Mediterranean colonization of navigators from Middle East and, to the
319	best of our knowledge, there has been limited introduction of improved breeds,
320	we may also assume that SRLV genotype E has strictly been associated with the
321	Sarda goat population, representing an excellent model to study a long lasting
322	host-pathogen interaction and co-evolution. Moreover, phylogeographical
323	partitioning of goat breeds suggests that the Sarda goat belongs to a West
324	Mediterranean cluster, including French (Corse, Rove, Pyreneene) and Spanish
325	(Brava, Verata, Payoya, Florida, Malagueña, Guadarrama) breeds (Canon et al.,
326	2006). Since serological tools adapted to bulk milk in this study proved to be very
327	sensitive and dependable for the detection of the genotype E, a wider serological
328	survey including these populations would be essential, in order to identify
329	additional infection foci and evaluate more accurately the biological significance
330	and impact of genotype E in SRLV control programs.
331	
332	Acknowledgements
333	This work has been partially funded by the Italian Ministry of Health, "Ricerca
334	Corrente" program id IZSSA/03.
335	

336	References
337	
338	Ajmone-Marsan, P., Negrini, R., Crepaldi, P., Milanesi, E., Gorni, C., Valentini,
339	A., Cicogna, M., 2001, Assessing genetic diversity in Italian goat populations
340	using AFLP markers. Anim Genet 32, 281-288.
341	Canon, J., Garcia, D., Garcia-Atance, M.A., Obexer-Ruff, G., Lenstra, J.A.,
342	Ajmone-Marsan, P., Dunner, S., 2006, Geographical partitioning of goat
343	diversity in Europe and the Middle East. Anim Genet 37, 327-334.
344	Gjerset, B., Storset, A.K., Rimstad, E., 2006, Genetic diversity of small-ruminant
345	lentiviruses: characterization of Norwegian isolates of Caprine arthritis
346	encephalitis virus. J Gen Virol 87, 573-580.
347	Glaria I, Reina R, Crespo H, de Andrés X, Ramírez H, Biescas E, Pérez MM,
348	Badiola J, Luján L, Amorena B, de Andrés D., 2009, Phylogenetic analysis of
349	SRLV sequences from an arthritic sheep outbreak demonstrates the
350	introduction of CAEV-like viruses among Spanish sheep. Vet Microbiol Jul
351	2;138(1-2):156-62. Epub 2009 Mar 13.
352	Grego E, Profiti M, Giammarioli M, Giannino L, Rutili D, Woodall C, Rosati S.,
353	2002, Genetic heterogeneity of small ruminant lentiviruses involves
354	immunodominant epitope of capsid antigen and affects sensitivity of single-
355	strain-based immunoassay. Clin Diagn Lab Immunol Jul;9(4):828-32.
356	Grego, E., Bertolotti, L., Quasso, A., Profiti, M., Lacerenza, D., Muz, D., Rosati,
357	S., 2007, Genetic characterization of small ruminant lentivirus in Italian mixed
358	flocks: evidence for a novel genotype circulating in a local goat population. J
359	Gen Virol 88, 3423-3427.
360	Harmache, A., Vitu, C., Guiguen, F., Russo, P., Bertoni, G., Pepin, M., Vigne, R.,
361	Suzan, M., 1998, Priming with tat-deleted caprine arthritis encephalitis virus
362	(CAEV) proviral DNA or live virus protects goats from challenge with
363	pathogenic CAEV. J Virol 72, 6796-6804.
364	Hotzel, I., Kumpula-McWhirter, N., Cheevers, W.P., 2002, Rapid evolution of
365	two discrete regions of the caprine arthritis-encephalitis virus envelope surface
366	glycoprotein during persistent infection. Virus Res 84, 17-25.
367	Nei, M., 1987, Molecular Evolutionary Genetics. Columbia University Press,
368	New York, NY.
369	Posada, D., Crandall, K.A., 1998, MODELTEST: testing the model of DNA
370	substitution. Bioinformatics 14, 817-818.
371	Reina, R., Grego, E., Bertolotti, L., De Meneghi, D., Rosati, S., 2009a, Genome
372	analysis of small ruminant lentivirus genotype E: a caprine lentivirus naturally
373	deleted for dUTPase subunit, vpr-like accessory gene and the 70 bp repeat of
374	U3 region. J Virol 83, 1152-1555.
375	Reina, R., Grego, E., Profiti, M., Glaria, I., Robino, P., Quasso, A., Amorena, B.,
376	Rosati, S., 2009b, Development of specific diagnostic test for small ruminant
377	lentivirus genotype E. Vet Microbiol.
378	Robertson, D.L., Anderson, J.P., Bradac, J.A., Carr, J.K., Foley, B., Funkhouser,
379	R.K., Gao, F., Hahn, B.H., Kalish, M.L., Kuiken, C., Learn, G.H., Leitner, T.,
380	McCutchan, F., Osmanov, S., Peeters, M., Pieniazek, D., Salminen, M., Sharp,

381	P.M., Wolinsky, S., Korber, B., 2000, HIV-1 nomenclature proposal. Science
382	288, 55-56.
383	Ronquist, F., Huelsenbeck, J.P., 2003, MrBayes 3: Bayesian phylogenetic
384	inference under mixed models. Bioinformatics 19, 1572-1574.
385	Saltarelli, M., Querat, G., Konings, D.A., Vigne, R., Clements, J.E., 1990,
386	Nucleotide sequence and transcriptional analysis of molecular clones of CAEV
387	which generate infectious virus. Virology 179, 347-364.
388	Sechi, T., Usai, M.G., Miari, S., Mura, L., Casu, S., Carta, A., 2007, Identifying
389	native animals in crossbred populations: the case of the Sardinian goat
390	population. Anim Genet 38, 614-620.
391	Shah, C., Boni, J., Huder, J.B., Vogt, H.R., Muhlherr, J., Zanoni, R., Miserez, R.,
392	Lutz, H., Schupbach, J., 2004, Phylogenetic analysis and reclassification of
393	caprine and ovine lentiviruses based on 104 new isolates: evidence for regular
394	sheep-to-goat transmission and worldwide propagation through livestock trade
395	Virology 319, 12-26.
396	Staskus KA, Retzel EF, Lewis ED, Silsby JL, St Cyr S, Rank JM, Wietgrefe SW,
397	Haase AT, Cook R, Fast D, et al., 1991, Isolation of replication-competent
398	molecular clones of visna virus, Virology Mar;181(1):228-40.
399	

401	Figure 1. Map of the Sardinia island, divided in municipalities. A) goat herds
402	density. Grey level indicates goat herd density within the municipality: white =
403	less than 1 st quartile (3 herds); light grey = between 1 st and 2 nd quartile (11 herds);
404	grey = between 2^{nd} and 3^{rd} quartile (15 herds); dark grey = more than the 3^{rd}
405	quartile. B) Municipalities including flocks tested with bulk milk analysis (grey).
406	Circles = E positive flocks; squares = B positive flocks; triangles = coinfected (or
407	uncharacterised) flocks.
408	
409	Figure 2. Net absorbance against E (x axis) and B (y axis) antigens. Dashed
410	diagonal line represents equal reactivity versus both antigens. Vertical and
411	horizontal dotted lines represent ELISA E and B cut-offs respectively.
412	A) Data from 19 ovine flocks and from 19 caprine herds. White circles: median
413	absorbance of samples belonging to goat herds. White triangles: median
414	absorbance of samples belonging to sheep flocks. Black squares: reactivity
415	detected in herds previously characterized (Reina et al., 2009b) infected with B
416	(a), E (c) or both strains (b). Vertical and horizontal bars represent the variation
417	(interquartile range) in the distribution of absorbances within flock against B and
418	E antigens respectively.
419	B) Data from 186 goat herds tested using bulk milk sub-ELISA. Dots represent
420	tested flocks.
421	
422	Figure 3 . Phylogenetic tree constructed by Bayesian analysis of 33 partial <i>gag</i>
423	gene sequences (consensus alignment length: 525 bp). New sequences are

- reported in bold. Genbank accession numbers are reported within brackets.
- 425 Posterior probabilities of clades are indicated above branches.


1 **Table 1**. Nucleotide sequence of primer pairs.

Amplicon	Length (Kb)	Primer forward $(5'\rightarrow 3')$	Primer reverse $(3' \rightarrow 5')$
LTR	0.3	TGACACAGCAAATGTAACCGCAAG	CCACGTTGGGCGCCAGCTGCGAGA
LTR-GAG	0.8	TGACACAGCAAATGTAACCGCAAG	CCCTGGGGGCTGTGGATTCTG
GAG	1.3	TGGTGARKCTAGMTAGAGACATGG	CATAGGRGGHGCGGACGGCASCA
GAG-POL	2.6	AACCGGGTCATCTAGCAAGAC	CTATCCAGAGAATTTGCACGTCTTG
POL	0.8	GGTGCCTGGACATAAAGGGATTC	GCCACTCTCCTGRATGTCCTCT
ENV	3.0	ATGGACAAGAAGGACGGG	GTGGTTACATTTGCTATGTC
REV	0.5	TGCGGTCCTCGCAGGTGGC	TGAGGCGATCTCCACTCCATC

- 2
- 3 **Table 2**. Comparison of HV1 and HV2 *env* protein aminoacidic motifs between
- 4 Seui strain, different SRLV genotypes and the Roccaverano strain. Dots indicate
- 5 identity. HV1 and HV2 regions are highlighted in grey (Hotzel et al., 2002).

Strain	Genotype	Ref	HV1	HV2
Seui strain	E2	This work	I-GNNTVIGNCSAQK	GHWTCKPRTKEGKTDSLYI-GGKK
PBMC colture	E2	This work		
SM colture	E2	This work		
CAEV Cork	B1	(Saltarelli et al., 1990)	VG.ITTTN	NKAQRDA
CAEV-63	B1	(Hotzel et al., 2002)	VDR.Q.ITVTN	NKAQRA
Ov496	B2	(Glaria et al., 2009)	VG.ITVTN	NKAWRG.MSAQ
K1514	A	(Staskus et al. 1991)	VG.ITVTN	NKAA.R.GSRRARD
1GA	C	(Gjerset et al., 2006)	IS.LQ.Q.NRSN	R.YVND
Roccaverano	E1	(Reina et al., 2009a)	L.DAQGKEN	NQQRGNRVGA-RR

Figure1
Click here to download high resolution image

Page 22 of 24

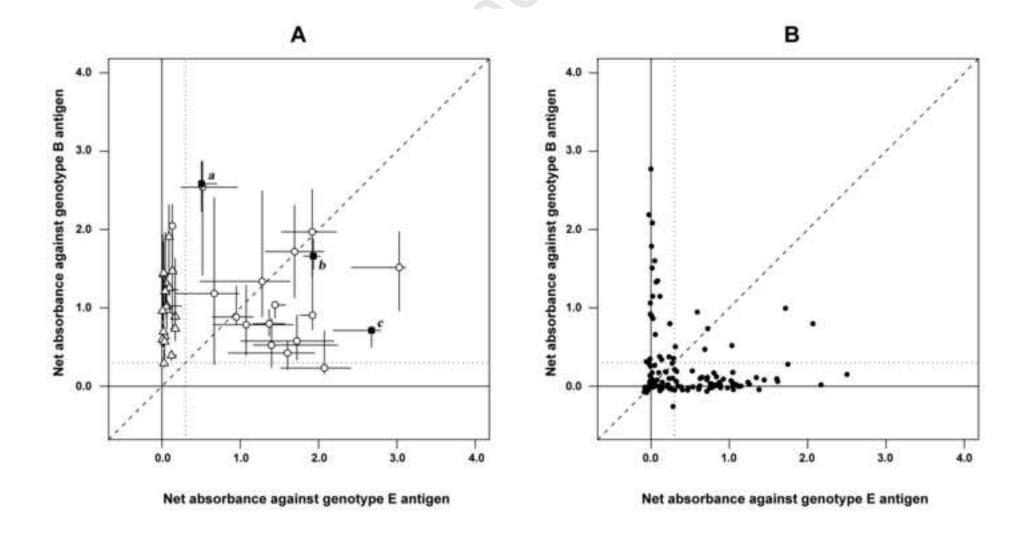
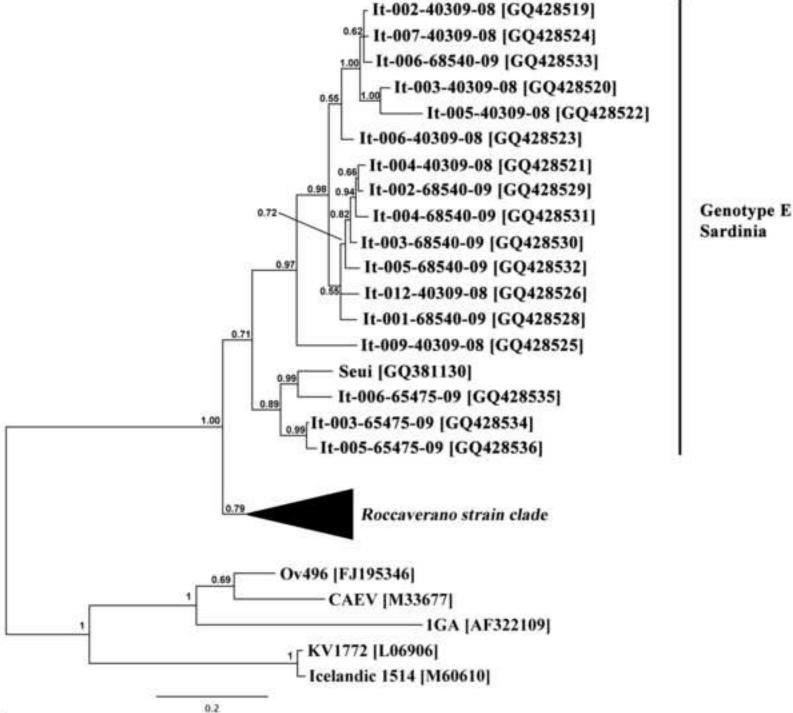



Figure 3
Click here to download high resolution image

