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Abstract

Europa, the smallest of the Galilean satellites, has a young icy surface and most

likely contains an internal ocean. The primary objective of possible future missions

to Europa is the unambiguous detection and characterization of a subsurface ocean.

The thickness of the overlying icy shell provides important information on the ther-

mal evolution of the satellite and on the interaction between the ocean and the

surface, the latter being fundamental for astrobiology. However, the thickness is not

well known, and estimates range from several hundred of meters to some ten of kilo-

meters. Here, we investigate the use of libration (rotation variation) observations to

study the interior structure of Europa and in particular its icy shell. A dynamical

libration model is developed, which includes gravitational coupling between the icy

shell and the heavy solid interior. The amplitude of the main libration signal at

3.55 days (the orbital period) is shown to depend on Europa’s shape and struc-

ture. Models of the interior structure of Europa are constructed and the equatorial

flattening of the internal layers, which are key parameters for the libration, are cal-

culated by assuming that Europa is in hydrostatic equilibrium. Europa’s flattened

shape is assumed to be due to rotation and permanent tides, and we extend the

classical Radau equation for rotationally flattened bodies to include also tidal defor-

mation. We show that the presence of an ocean increases the amplitude of libration

by about 10%, depending mainly on the thickness of the icy shell. Therefore, libra-

tion observations offer possibility of detection of a subsurface ocean in Europa and

estimation of the thickness of its overlying icy shell.

Key words: Europa, interiors, rotational dynamics, solid body tides, spin-orbit

resonances
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1 Introduction

Voyager and Galileo images provided the first indications for an internal ocean

in Europa (Squyres et al. 1983, Carr et al. 1998, Pappalardo et al. 1999), but

the most robust evidence for a subsurface ocean is the detection of an induced

magnetic field in the vicinity of Europa by the Galileo mission (Kivelson et

al. 2001). This field implies the presence of an electrically conducting internal

layer several tens of kilometers thick, which could consist of salty liquid water.

A subsurface ocean is also in agreement with theoretical models of the interior

structure and thermal evolution of Europa (Ross and Schubert 1987, Spohn

and Schubert 2003, Sotin et al. 2002, Hussmann et al. 2006).

To unambiguously prove the existence of a subsurface ocean and to charac-

terize its depth and the thickness of the overlying icy shell, several measure-

ment techniques have been proposed. Measurements of the time-variable tidal

gravity variations through the dynamic effect of Europa’s gravity field on the

trajectory of an orbiter (Wu et al. 2001), preferably combined with altimetry

measurements of the tidal surface displacements (Wahr et al. 2006, Castillo

et al. 2000), as well as extensive characterization of the magnetic field in the

neigborhood of Europa by a magnetometer on board of a low-flying orbiter

(Khurana et al. 1998, Kivelson et al. 1999, 2000) can provide conclusive in-

formation for the detection of an ocean. However, tidal measurements may

not be sufficient to determine accurately the depth and thickness mainly be-

cause of the poorly known composition and rheological characteristics of the

icy shell (Wahr et al. 2006), and in interpretations of magnetic data the depth

of the ocean may be difficult to separate from the ocean conductivity. A clear

picture of Europa’s interior could be obtained from seismic sounding (Kovach
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and Chyba 2001, Lee et al. 2003), but that would require a lander.

Measurements of the librations (rotation variations) of Europa to characterize

the putative ocean have been studied by Wu et al. (2001). However, published

models of the librations of Europa assume that Europa responds as a rigid

body to the gravitational torque exerted by Jupiter and offer no possiblity to

deduce information on the ocean (Comstock and Bills 2003, Henrard 2005).

Here, we take into account that Europa has a differentiated structure with

a possible internal ocean and develop a model of libration that includes dy-

namical coupling between different internal layers. In particular, gravitational

coupling (Xu and Szeto 1997, Buffett 1996) between the icy shell and the

solid interior, which contains most of Europa’s mass, is studied and shown

to alter significantly the libration amplitude. Our objective is to investigate

whether libration observations can be used to determine the existence of a

subsurface ocean and the thickness of the icy shell. Provided that the ampli-

tude is large enough, the librational response of Europa can be characterized

efficiently from orbit using remote sensing techniques such as a camera and an

altimeter. Furthermore, the librations can be obtained as a part of the global

time-variable gravity solution of a spacecraft in orbit around Europa (Wu et

al. 2001).

The paper is organized as follows. In Section 2, we develop a new model for the

libration of Europa that includes the gravitational coupling between the icy

shell and the solid interior. The layered internal structure of Europa as well

as the surface and internal flattenings necessary for the characterization of

the librational response and gravitational coupling are discussed in Section 3.

For the construction of the models of interior structure of Europa, we extend

the classical Radau equation, which relates the rotational polar flattening to
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the mean moment of inertia, to synchronously rotating satellites flattened by

rotation and permanent tides. The interior structure models are constrained by

the total mass, radius, and mean moment of inertia of Europa. The flattenings

of the internal layers are calculated by using Clairaut theory. The differences in

the librational response of Europa as a function of the presence of a subsurface

ocean, the thickness of the icy shell, and the internal coupling are studied in

Section 4. Section 5 presents a discussion and conclusion.

2 Librations

2.1 Rigid librations

Since the synchronously rotating Europa is not spherically symmetric, gravita-

tional torques by other Solar System bodies are exerted on it and can change

its rotation. We only consider the gravitational interaction between Jupiter

and Europa since the torque of Jupiter is at least three orders of magnitude

larger than the torque of any other body (the second-largest torque is due to

Io). For the torque calculation, Jupiter is assumed to be spherically symmetric.

We also take the orbital motion of Europa to be Keplerian and Europa’s spin

axis normal to the orbital plane (obliquity equal to zero). Since Europa’s or-

bit around Jupiter is eccentric (eccentricity e = 0.0094, see Table 1), Europa’s

orbital speed is variable and Europa does not always show exactly the same

face to its central planet. As a consequence, Jupiter exerts a time-variable

gravitational torque on Europa that tends to modify the satellite’s rotation

rate. The corresponding changes in the rotation angle are called longitudinal

librations.

6



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
Librations can most easily be calculated for a satellite that responds rigidly to

an external gravitational force (e.g. Comstock and Bills 2003). In this case, the

angular momentum H of Europa can be written as H = Cθ̇, where C is the

largest (polar) principal moment of inertia and θ the angle of rotation between

the long axis of Europa and the major axis of the orbit (see Fig. 1). Conser-

vation of angular momentum then shows that the librations are governed by

(e.g. Goldreich and Peale 1966)

Cθ̈ +
3

2
n2(B − A)

(
a

r

)3

sin 2(θ − f) = 0. (1)

Here, A < B are the two equatorial principal moments of inertia of Europa, n

the mean motion of Europa, a the semi-major axis, f the true anomaly, and

r the distance between the mass centers of Jupiter and Europa (see Fig. 1).

The second term in Eq. (1) represents the opposite of the gravitational torque

of Jupiter on Europa.

The rigid rotational response is a good approximation for an entirely solid

Europa without internal ocean. The solidity ensures that there will be no

relative rotation of the different internal layers and the elastic deformation

effect is small. Deformation influences libration by changing the polar moment

of inertia of Europa and hence also the angular momentum H = (C +δC(t))θ̇,

where δC(t) is the time-variable part of the polar moment of inertia. The

deformation is itself a result of the libration since the changes in the rotation

rate lead to a changing centrifugal potential and therefore to a time-variable

polar flattening. The associated time-variable part of the polar moment of

inertia can be expressed as (see e.g. Moritz and Mueller 1987)

δC = k2
4R5ω

9G
(θ̇ − ω), (2)
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where G is the gravitational constant and R the mean radius, ω the mean

rotation rate, and k2 the degree-two potential Love number of Europa. The

effect of deformation can be included by adding a term

ω
dδC

dt
= k2

4R5ω2

9G
θ̈ (3)

to the left-hand member of Eq. (1). This term is more than a factor 1000

smaller than the main term Cθ̈ in Eq. (1), even with the large value of

k2 = 0.26 for a model with a subsurface ocean (e.g. Wahr et al. 2006), and

will therefore be neglected in this study. We here also neglect the effect of

zonal tides on rotation. Zonal tides change the polar flattening of Europa and

therefore also the polar moment of inertia. In Section 5, we show that the

relative effect of tides on the libration of Europa could be a few percent.

Eq. (1) leads to two distinct periodic components for the librations: (i) a

libration with natural frequency ωf and arbitrary amplitude, and (ii) forced

librations. By averaging Eq. (1) over an orbital period, the free frequency ωf

can be obtained as (e.g. Comstock and Bills 2003)

ωf = n

√
3(B − A)

C
. (4)

It is much smaller than the mean motion n since B−A is much smaller than C

(the ratio (B−A)/C is of the order of C22 = 131.5±2.5 10−6, which has been

determined from Galileo flybys, Anderson et al. 1998). Dissipation processes

due to tides and libration damp the long-periodic free libration, and we will

assume its amplitude to be (almost) zero.

The periods of the forced librations are equal to the periods of the Jupiter

torque. The main libration term has a period of 3.55 days (the orbital period)

and is therefore short-periodic with respect to the free libration. We do not
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consider the much smaller forced librations with sub-harmonic periods here.

Our main goal is to study whether the amplitude of the forced libration at

3.55 days can be used to determine properties of the interior of Europa. Below,

without explicit mention, libration refers to the forced libration in longitude

of 3.55 days. For small librations, the amplitude of the forced libration can be

approximated up to first order in eccentricity e by (e.g. Murray and Dermott

2000)

Aθ = −
2ω2

fe

n2 − ω2
f

= −6
(B − A)

C

n2e

n2 − ω2
f

. (5)

The principal moments of inertia are the only interior structure parameters

involved in the amplitude of the rigid librations of Europa, and Eq. (5) shows

that the libration amplitude is proportional to (B −A)/C. The proportional-

ity to the moment of inertia difference B − A stems from the proportionality

of the gravitational torque to that difference. Since C is the inertia for rota-

tional motion, the librations are inversely proportional to the polar moment

of inertia. The principal moments of inertia of Europa will be determined in

the Section 3.

2.2 Shell librations

2.2.1 Decoupled shell

In the case that Europa has a subsurface ocean beneath an icy shell, the solid

interior, ocean, and outer shell librate differentially, and the surface libration

corresponds to the libration of the icy shell. If it can be assumed that Europa’s

interior is spherically symmetric, that the ocean is inviscid, and that there is

no electromagnetic field, the icy shell would be rotationally decoupled from

the deeper interior of Europa. Under these hypotheses, only the shell librates,
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and the libration can be expressed as Eq. (1) for a rigid Europa by replacing

the moments of inertia A, B, and C by the shell moments of inertia As, Bs,

and Cs:

Csθ̈s +
3

2
(Bs − As)n

2
(

a

r

)3

sin 2(θs − f) = 0. (6)

Here, the angle θs is the angle of rotation of the icy shell. As the interior is

assumed to be spherically symmetric, it does not contribute to the moment

of inertia difference, and the equatorial shell moment of inertia difference is

equal to the total Europa B − A. As a consequence, the libration amplitude

for a decoupled shell is given by

Aθs = −
2ω2

fse

n2 − ω2
fs

= −6
(B − A)

Cs

n2e

n2 − ω2
fs

, (7)

where the free shell libration frequency ωfs is given by

ωfs = n

√
3(B − A)

Cs

= ωf

√
C

Cs

. (8)

Eq. (7) shows that, far from resonance with the free libration, the libration

amplitude for the decoupled shell is a factor C/Cs larger than the libration

amplitude of the corresponding solid model. The free period is a factor
√

Cs/C

shorter than the free period of a completely solid Europa, and can be close to

the period of the forced libration.

2.2.2 Gravitational coupling

More generally, the librations of the different layers are coupled through grav-

itational, viscous, and electromagnetic forces, and also through the effect of

ocean fluid pressure on the non-spherical surfaces of the ocean. Effects of

couplings between different layers on rotation variations have been studied

extensively for terrestrial planets. For the study of librations of Europa, the
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best comparison is with the librations of Mercury. The main effect of pressure

and gravitational coupling between the solid mantle and an ellipsoidal liquid

(outer) core of Mercury is that the mantle libration is larger by the ratio

C/Cm, where Cm is the polar moment of inertia of the mantle, and the core

does not follow the librations of the mantle (e.g. Van Hoolst 2007). Deviations

due to other core-mantle couplings, including viscous coupling, electromag-

netic coupling, and gravitational coupling between a solid inner core and the

mantle, are below 1% of the libration signal (Peale et al. 2002, Rambaux et

al. 2007). These findings suggest that the libration of the icy shell can be as-

sumed to be rotationally decoupled from the deeper interior of the satellite.

However, a main difference with respect to rotation variations of terrestrial

planets is that the outer solid layer has a small moment of inertia compared to

the moment of inertia of the whole body, in contrast to the mantle and crust

of terrestrial planets. Furthermore, the solid interior contributes most to the

moment of inertia, also in strong contrast to the terrestrial planets, for which

the solid inner core, if it exists, has a much smaller moment of inertia than

the moment of inertia of the whole planet. As an example, for the Earth, the

moment of inertia of the solid inner core is less than one thousandth of the

moment of inertia of the Earth. The solid interior of Europa is therefore ex-

pected to have a much larger influence on the rotation variations of the surface

for Europa than a solid inner core has on the rotation variations of terrestrial

planets. Therefore, we include the direct gravitational coupling between the

solid interior and outer icy shell in our study of the librations of Europa.

Gravitational coupling between internal layers of Europa arises when the prin-

cipal axes of the icy shell and the solid interior below the ocean are not aligned.

For example, when the shell rotates out of alignment with the solid interior,
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it exerts a torque on the solid interior. Since the ocean fills the cavity between

the interior and the shell, the mass distribution at the top of the ocean with

respect to the solid interior then also changes, and the ocean also exerts a

torque on the solid interior. Szeto and Xu (1997) derived an expression for the

gravitational torque exerted by the outer core and mantle of the Earth on the

solid inner core:

Γz =
4πG

5

[∫ R⊕

rICB
0

ρ(r′0)
∂β(r′0)

∂r′0
dr′0

]
(BIC − AIC) sin 2(θM − θIC) (9)

(see also Xu et al. 2000). Here, R⊕ is the mean radius of the Earth, θ the

rotation angle, r0 the mean radius of an ellipsoidal internal surface, and β the

equatorial flattening

β =
a(r0) − b(r0)

a(r0)
, (10)

where a(r0) and b(r0) are the two equatorial radii of that surface. Subscripts M

and IC are used to denote the mantle and inner core, respectively, and ICB

refers to the inner core boundary. Expression (9) is valid for the gravitational

torque of an ellipsoidal shell on an ellipsoidal volume that is internal to the

shell and we will use it to determine the gravitational coupling in Europa. The

integral between brackets in Eq. (9) is over the mean radial coordinate r0 of

the outer shell, and the equatorial moment of inertia difference is of the inner

volume. If either of the volumes is spherically symmetric, the torque will be

zero since then either the integral over the flattening of the outer volume or

the moment of inertia difference of the inner volume will be zero.

For ease of calculation and interpretation of the coupling, we consider two

spheres inside the ocean of Europa, which we assume to be homogeneous in

density. Sphere 1 with radius r1 encloses the solid interior and sphere 2 with

radius r2 is the largest sphere in the ocean beneath the shell (see Fig. 2). The
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liquid in the volume between spheres 1 and 2 does not contribute to gravita-

tional coupling with the shell or with the interior since its mass distribution

with respect to the two solid regions does not change when the solids rotate.

Therefore, we only need to consider the gravitational coupling between the

regions interior and exterior to the spherical volume between spheres 1 and 2.

Region 1 comprises the solid interior and volume 1 between sphere 1 and the

solid interior, and region 2 covers the shell and volume 2 between the shell and

sphere 2 (see Fig. 2). We note that there is also no pressure coupling of the

liquid in the volume between spheres 1 and 2 with the mass in regions 1 and

2 since the interfaces are spherical. The integral in the gravitational torque

Eq. (9) must then be evaluated over region 2 (the shell and volume 2) and the

moment of inertia difference in Eq. (9) applies to region 1 (the solid interior

plus volume 1). The integral can be decomposed as

∫ R

r2

ρ(r′0)
∂β(r′0)

∂r′0
dr′0 =

∫
volume2

ρ(r′0)
∂β(r′0)

∂r′0
dr′0 +

∫
shell

ρ(r′0)
∂β(r′0)

∂r′0
dr′0, (11)

where R is the mean radius of Europa. We assume that the icy shell is of

constant density. Since also the ocean is assumed to be homogeneous in density,

the integrals can be expressed in terms of the equatorial flattenings at the top

and bottom of the layers considered. We then have

∫ R

r2

ρ(r′0)
∂β(r′0)

∂r′0
dr′0 = (ρo − ρs)βo + ρsβs, (12)

where ρo and ρs are the densities of the ocean and the shell, respectively, and

βo and βs their respective equatorial flattenings.

The moment of inertia difference of region 1 can be decomposed as

B − A =(Bi − Ai) + (B1 − A1)

=
8π

15

∫ ri

0
ρ(r′0)

d(βr′50 )

dr′0
dr′0 +

8π

15

∫ r1

ri

ρ(r′0)
d(βr′50 )

dr′0
dr′0, (13)

13
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where subscript i denotes the solid interior (mantle and core). The moment

of inertia difference of volume 1,

B1 − A1 = −8π

15
ρoβir

5
i , (14)

is equal to the opposite of the moment of inertia difference that the solid

interior volume would have if it had a density ρo. The deep interior of Europa

is thought to be composed of a silicate mantle and an iron rich core (Anderson

et al. 1998). Although the iron core could be (partially) liquid, we assume that

the rotation of the core is locked to the rotation of the mantle as would be

the case for a solid core. By assuming the core and mantle to be homogeneous

in density, the equatorial moment of inertia difference of the interior can be

written as

Bi − Ai =
8π

15

[
ρmβir

5
i + (ρc − ρm) βcr

5
c

]
, (15)

where ρc and ρm are the densities (considered constant) of the core and mantle,

respectively, and βc and rc are the equatorial flattening and radius of the core.

By substituting Eqs. (12), (14), and (15) into Eq. (9) the gravitational torque

of the outer region 2 on the inner region 1 can be expressed as

Γz =
4πG

5

8π

15
[ρsβs + (ρo − ρs)βo]

×
[
(ρm − ρo)βir

5
i + (ρc − ρm)βcr

5
c

]
sin 2(θs − θi)

= K sin 2(θs − θi). (16)

The gravitational coupling strength K depends on the flattening and density

of the icy shell and solid interior. If the solid interior could be assumed to have

a constant density ρi, we would obtain (from Eqs. 13, 14, and 15)

B − A =

(
1 − ρo

ρi

)
(Bi − Ai) , (17)

14
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and the gravitational torque on the interior would simplify to

Γz =
4πG

5
[ρsβs + (ρo − ρs)βo]

(
1 − ρo

ρi

)
(Bi − Ai) sin 2(θs − θi). (18)

The factor (1 − ρo/ρi) shows that the gravitational torque is zero when the

liquid and the solid interior have equal density. In that case, a change in

orientation would not lead to a change in the gravitational potential and there

wouldn’t be a gravitational torque. A similar expression as Eq. (18) for the

gravitational torque on the solid inner core of terrestrial planets has been used

by, e.g., Xu et al. (2000) and Peale et al. (2002).

We next write angular momentum equations for the internal layers of Europa.

We neglect the dynamics of the ocean and keep only angular momentum equa-

tions for the icy shell and the solid interior. However, the torque expression

(16) is calculated between the solid regions with inclusion of the liquid vol-

umes 1 and 2. We therefore consider the angular momentum equations for the

solid regions including the surrounding liquid volumes, which have been called

regions 1 and 2 above. However, since the volumes 1 and 2 are very thin (of

the order of r1β(r1) and r2β(r2), respectively), their polar moments of inertia

are a factor β smaller than the moments of inertia of the corresponding solid

regions. Therefore, correct up to the lowest order in the equatorial flattening,

the change in angular momentum of the solid interior and volume 1 can be

set equal to the change in angular momentum of the solid interior, or, alterna-

tively, Eq. (16) can be considered as the gravitational torque of the icy shell

on the solid interior in the angular momentum equation for the solid interior.

Similarly, it is the opposite of the torque on the icy shell in the angular mo-

mentum equation for the shell. The libration of Europa can then be described

by

15
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Csθ̈s +

3

2
(Bs − As)n

2
(

a

r

)3

sin 2(θs − f)=−K sin 2(θs − θi), (19)

Ciθ̈i +
3

2
(Bi − Ai)n

2
(

a

r

)3

sin 2(θi − f)= K sin 2(θs − θi), (20)

where the subscripts s and i are for shell and interior, respectively (see Fig. 3).

2.2.3 Shell and interior librations

To solve Eqs. (19) and (20), we introduce the small libration angles γs = θs−M

and γi = θi − M and expand the equations as a series in mean anomaly M

and eccentricity e by using well-known expansions for (a/r)3, cos f , and sin f

(Cayley 1861). We then have

Csγ̈s+
3

2
(Bs−As)n

2
+∞∑

k=−∞
X−3,2

−k (e) sin [2γs + (2 + k)M ] = −2K(γs−γi), (21)

Ciγ̈i +
3

2
(Bi − Ai)n

2
+∞∑

k=−∞
X−3,2

−k (e) sin [2γi + (2 + k)M ] = 2K(γs − γi), (22)

where the eccentricity functions X−3,2
−k (e) are Hansen coefficients (Hansen

1855, Hughes 1981). Next, we linearize the equations in eccentricity and li-

bration angles γs and γi. Since the Hansen coefficients Xn,m
k are of order

e|k−m| in eccentricity (e.g. Plummer 1918), only Hansen coefficients X−3,2
−k (e)

in Eqs. (21) and (22) with index k equal to -1, -2, and -3 have to be retained.

These are X−3,2
1 (e) = −e/2, X−3,2

2 (e) = 1, X−3,2
3 (e) = 7e/2, up to first order

in eccentricity, and we then have

Csγ̈s + σ2
sCsγs + 2K(γs − γi) = 2eσ2

sCs sin M, (23)

Ciγ̈i + σ2
i Ciγi − 2K(γs − γi) = 2eσ2

i Ci sin M, (24)

where σs and σi are defined as
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σs =n

√
3(Bs − As)

Cs
, (25)

σi =n

√
3(Bi − Ai)

Ci
. (26)

We assume that the librations are zero at perijove and set γs = As
θ sin M and

γi = Ai
θ sin M where As

θ and Ai
θ are the amplitudes of the libration of 3.55 days

for the shell and the interior, respectively. By substituting these expressions

in Eqs. (23) and (24), we obtain a system of two algebraic equations in As
θ

and Ai
θ, which we solve by using Kramer’s method:

As
θ =

φs1

n2 − ω2
f1

+
φs2

n2 − ω2
f2

, (27)

Ai
θ =

φi1

n2 − ω2
f1

+
φi2

n2 − ω2
f2

, (28)

where the coefficients in the numerators are given by

φs1 =2e
[
σ2

s

(
ω2

f1 − σ2
i − 2

K

Ci

)
− 2σ2

i

K

Cs

]
n−2

(
ω2

f2 − ω2
f1

)−1
,

φs2 =2e
[
σ2

s

(
σ2

i − ω2
f2 + 2

K

Ci

)
+ 2σ2

i

K

Cs

]
n−2

(
ω2

f2 − ω2
f1

)−1
,

φi1 =2e
[
σ2

i

(
σ2

s − ω2
f2 + 2

K

Cs

)
+ 2σ2

s

K

Ci

]
n−2

(
ω2

f2 − ω2
f1

)−1
,

φi2 =2e
[
σ2

i

(
ω2

f1 − σ2
s − 2

K

Cs

)
− 2σ2

s

K

Ci

]
n−2

(
ω2

f2 − ω2
f1

)−1
.

The eigenfrequencies ωf1 and ωf2 are the frequencies of the two free libra-

tions, which can be obtained by averaging equations (23) and (24) over one

orbital cycle and assuming that the libration angles vary slowly. We have two

free frequencies because the librations of two coupled layers are considered.

By taking the time-dependence of the libration amplitudes as exp(iσt), we

obtain a system of two homogeneous algebraic equations, which has non-zero

solutions for the two free frequencies given by
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ω2

f1 =
1

2
(σ2

i + ν2 + σ2
s +

√
Δ), (29)

ω2
f2 =

1

2
(σ2

i + ν2 + σ2
s −

√
Δ), (30)

where

Δ = σ4
i + σ4

s + ν4 + 2σ2
i ν

2 + 2ν2σ2
s − 2σ2

i σ
2
s − 8σ2

i K/Cs − 8σ2
sK/Ci, (31)

and

ν =

√
2K

Cs + Ci

CsCi

(32)

is the oscillation frequency of the differential rotation between shell and inte-

rior when the external gravitational coupling of Jupiter is neglected (see also

Buffett 1996 and Xu et al. 2000 for the case of the Earth).

3 Interior structure models

3.1 Introduction

If Europa reacts rigidly to the gravitational torque of Jupiter, B − A and C

are the only interior structure quantities necessary for the calculation of the

librations. When differential libration of the internal layers is considered, the

polar moments of inertia and the equatorial flattenings or equatorial moment

of inertia differences of the external icy shell as well as the internal layers need

to be known to characterize the librational response. To be able to study the

effect of the interior on libration, we construct models of the internal structure

of Europa and calculate the key interior parameters for libration.

We use a three-step procedure. First, from the observed C22 gravity coefficient,

we determine the mean moment of inertia of Europa. To that end, we recon-
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sider and extend the classical Radau equation, which relates the polar flatten-

ing to the mean moment of inertia I = (A+B+C)/3, to synchronously rotating

satellites flattened by rotation and permanent tides (Sect. 3.2). Secondly, we

construct spherically symmetric models of the internal structure of Europa

that satisfy the observed mass ME = 4.7987 1022 kg, radius R = 1560.8 km

(see Table 1) and the estimated mean moment of inertia (Sect. 3.3). Finally,

we apply Clairaut theory to calculate the polar and equatorial flattening as a

function of radial distance to the center of Europa, and determine the polar

principal moments of inertia and the equatorial moment of inertia differences

for the internal layers of our Europa models (Sect. 3.3).

3.2 Equilibrium figure of Europa

Rotation flattens Europa at the poles and creates an equatorial bulge, whereas

the tides stretch Europa in the direction to Jupiter and cause a contraction in

the direction perpendicular to Jupiter. As a result, the longest axis is expected

to be along the planet-satellite line at perijove and the short axis is parallel

to the rotation axis. The deformations depend on the perturbing potentials as

well as on the response of Europa to the forcing. The centrifugal potential Ur

due to rotation can be expressed as

Ur(
r) =
1

3
ω2r2[1 − P 0

2 (cosϕ)], (33)

and the static degree-two tidal potential Ut responsible for the permanent tidal

perturbation as

Ut(
r) = −1

2

GMJ

a

(
r

a

)2

[P 0
2 (cos ϕ) − 1

2
P 2

2 (cosϕ) cos 2λ]. (34)
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Here, ω is the mean rotation rate of Europa (2π/3.55 days−1), MJ the mass

of Jupiter, a the semi-major axis of Europa’s orbit, r the radial distance from

the mass center of Europa to the point considered with position vector 
r,

and ϕ and λ are co-latitude and longitude of 
r. The geodetic sign convention


F = 
∇U is used. Since the perturbing potential can be expressed in terms

of the associated Legendre functions P 0
2 (cos ϕ) and P 2

2 (cos ϕ), the perturbed

body, assumed to be in hydrostatic equilibrium, will take the form of a triaxial

ellipsoid. Any surface of constant density can then be expressed by

r = r0[1 − 2

3
α(r0)P

0
2 (cos ϕ) +

1

6
β(r0)P

2
2 (cosϕ) cos 2λ], (35)

where r0 is the mean radius of the ellipsoidal surface, α = [(a+ b)/2− c]/[(a+

b)/2] is the polar flattening, and β = (a − b)/a is the equatorial flattening

(see, e.g., Van Hoolst and Dehant 2002). We use radii of the three principal

axes of the ellipsoids a(r0) > b(r0) > c(r0).

The rotational deformation is described by Clairaut’s differential equation

d2α

dr2
0

+
6

r0

ρ

ρ

dα

dr0

− 6

r2
0

(
1 − ρ

ρ

)
α = 0, (36)

and an associated boundary condition (see Eq. 40 below, e.g. Jeffreys 1952).

Here, ρ is the mean density in a sphere of radius r0. The mean moment of

inertia I can be determined from the polar flattening α by using Radau’s

(1885) accurate approximation to Clairaut’s equation as

I

MER2
=

2

3

⎧⎨
⎩1 − 2

5

[
1 +

d ln α

d ln r0
(R)

]1/2
⎫⎬
⎭ , (37)

where the logarithmic derivative of the polar flattening is evaluated at the

surface r0 = R (see, e.g., Jeffreys 1952).

For the calculation of Europa’s mean moment of inertia I from the polar flat-
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tening using Clairaut theory, we not only have to consider the rotational effect,

but also have to include the polar flattening due to the static tides. There-

fore, the perturbing degree-two, order-zero potential U2,0
p to be considered in

Clairaut theory must also include the tidal part:

U2,0
p = U2,0

r + U2,0
t = −

[
1

3
ω2 +

1

2

GMJ

a3

]
r2P 0

2 (cos ϕ). (38)

We see that both perturbing potentials depend on r2. For a synchronously

rotating satellite, MJ/a3 = ω2/G, and the expression for U2,0
p simplifies to

U2,0
p = −5

6
ω2r2P 0

2 (cos ϕ) =
5

2
U2,0

r . (39)

The perturbing potential including both the centrifugal and the degree-two,

order-zero static tidal potential is 5/2 times larger than the centrifugal poten-

tial. Since the perturbing potential has the same spatial dependence as the

centrifugal potential and differs from it only by a constant factor, the calcula-

tion of the deformation of Europa including static tides is similar to that for

rotation, and Clairaut’s theory can easily be extended to this more general

case.

As can be seen from Eq. (36) Clairaut’s equation does not contain the per-

turbing potential, and remains unaltered when the tidal potential is included.

Similarly, Eq. (37) for the moment of inertia remains valid. The perturbing

potential enters the problem through the boundary condition of Clairaut’s

equation, which does depend on the perturbing potential. For rotational de-

formation only, αr, we have at the surface (see, e.g., Moritz 1990)

dαr

dr0
(R) =

1

R

[
5

2
q − 2αr(R)

]
, (40)

where q is the ratio of the centrifugal acceleration to the gravitational accel-

eration q = (ω2R3)/(GME) and the polar flattening and its derivative with
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respect to r0 are evaluated at the surface r0 = R. This equation can readily be

transformed to include the tidal effect on the polar flattening by multiplying

the term in q stemming from the perturbing potential by 5/2 (see Eq. 39). We

then have the following expressions for the polar and equatorial flattening at

the surface

dα

dr0

(R) =
1

R

[
25

4
q − 2α(R)

]
. (41)

By substituting Eq. (41) into Eq. (37), the derivative of the flattening in

Eq. (37) can be expressed in terms of the flattening itself. We then have

I

MER2
=

2

3

⎧⎨
⎩1 − 2

5

[
25

4

q

α(R)
− 1

]1/2
⎫⎬
⎭ , (42)

which is the extension of the Radau equation (Radau 1885, see also Jeffreys

1952, Moritz 1990, Hubbard 1984) to a synchronously rotating satellite that

is deformed by rotation and tides.

The surface polar flattening α(R) can be expressed in terms of the observed

J2 gravity coefficient by assuming that the outer surface is an equipotential

surface (consistent with our assumption of hydrostatic equilibrium). We write

the total potential as the sum of the gravitational potential of Europa, the

centrifugal potential, and the static tidal potential:

U =
GME

r

[
1 − J2P

0
2 (cosϕ) + C22P

2
2 (cos ϕ) cos 2λ

]
+ Ur + Ut. (43)

By substituting Eqs. (33), (34), and (35) into Eq. (43), we have correct up to

the first order in the flattenings

U =
GME

R

{
1 +

1

3
q +

[
2

3
α(R) − J2 −

5

6
q
]
P 0

2 (cosϕ)

+
[
C22 +

1

4
q − 1

6
β(R)

]
P 2

2 (cosϕ) cos 2λ
}

. (44)

Since U must be constant on the external equipotential surface, the coefficients
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of P 0

2 and P 2
2 must be equal to zero. We then have the following expressions

for the surface flattenings

α(R) =
3

2
J2 +

5

4
q, (45)

and

β(R) = 6C22 +
3

2
q. (46)

By substituting Eq. (45) in Eq. (42), the extension of the Radau equation can

alternatively be written as

I

MER2
=

2

3

⎡
⎣1 − 2

5

(
25

4

q
3
2
J2 + 5

4
q
− 1

)1/2
⎤
⎦ (47)

By using the observed C22 = 131.5±2.5×10−6 (from Galileo flybys, Anderson

et al. 1998), the hydrostatic relation J2 = (10/3)C22 (see Eqs. A.1 and A.2 in

Appendix A) and q = 4.98282 10−4, the mean moment of inertia of Europa

can be determined as I/MER2 = 0.3475±0.0026, which is our third constraint

on the interior structure models of Europa, in addition to R and ME .

In the literature, an alternative form of the Radau equation that uses the fluid

Love number kf (see Eq. A.3) is sometimes used for rotationally and tidally

deformed icy satellites, although the relation has, up to our knowledge, only

been proved for rotationally deformed bodies. We show in Appendix A that

that formulation of the Radau equation remains valid for bodies that are also

tidally deformed. We also note that in most works, including Jeffreys (1952)

and Moritz (1990), the symbol C is used instead of I in Radau’s equation,

suggesting that the polar moment of inertia is meant. Nevertheless, it is clear

from their expression for C that the mean moment of inertia I is used (see

also Denis et al. 1998 for a discussion of this common mistake). For a similar

equation adapted to the polar moment of inertia C, see Darwin (1899).
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3.3 Spherically symmetric models

We calculated a large set of spherically symmetric models of the interior struc-

ture of Europa. Europa is considered to be differentiated into four layers with

homogenous density: (1) an outer solid icy shell, (2) an ocean, (3) a rocky

mantle, and (4) a metallic core (see Fig. 4). Layers of homogeneous density

can be assumed since the layers are likely to be approximately homogeneous

in composition and the effect of pressure on density is small for the relatively

small satellite (Sohl et al. 2002). Eight parameters then characterize our mod-

els: the radii and the densities of the four layers. Since we only have three

constraints, we choose values in a prescribed range for five parameters and

estimate the three other parameters such that the models satisfy the three

constraints on the mass, radius, and mean moment of inertia. The three es-

timated parameters are the ocean thickness and the densities of the core and

the mantle (see Table 2).

We have used the following density ranges for the four layers. For an ocean

and icy shell composed of pure water, the densities are ρo ≈ 1000 kg m−3 and

ρs ≈ 920 kg m−3, where subscripts o and s are used to indicate the ocean

and the shell, respectively. We consider ρo and ρs to be between 800 and

1200 kg m−3 to include the effects of pressure, temperature, ice porosity, and

compositional impurities, such as the salts detected on the surface of Europa

(McCord et al. 1998, Kargel et al. 2000). In our models, we only considered

density values of 800, 1000 and 1200 kg m−3 for both the ocean and the shell.

The density ρc of the metallic core varies between 8000 kg m−3 (for a pure iron

core) and 5150 kg m−3 (for an iron-sulfur assemblage of eutectic composition)

depending on the amount of light elements such as sulfur (Anderson et al.
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1998). The densities of the silicate rocks of the mantle are within the range

3000 kg m−3 < ρm < 4450 kg m−3 (Anderson et al. 1998).

The thickness of the icy shell has been estimated in many studies. The lowest

estimates mostly come from analyses of regional surface features, whereas im-

pact studies and thermal models give larger thicknesses. The estimates range

from hundreds of meters to tens of kilometers (for an overview, see Billings

and Kattenhorn 2005). Here, we consider a broad range of thicknesses between

5 km and 100 km. Since topography with a range of a few km is observed on

Europa (Schenk 2001), it seems likely that the shell thickness is at least a few

km, and we here take 5 km as our lower bound. The upper bound is taken

larger than most estimates to include uncertainties in the shell thickness mod-

els and smaller than the depth of the combined ice and water layers, which

is between 115 and 165 km for our models, in agreement with Anderson et

al. (1998). Density profiles of Europa for two representative models of the in

total 277 models are shown in Fig. 4.

3.4 Internal flattening and principal moments of inertia

In this section, we calculate the permanent rotational and tidal deformation

of our set of spherically symmetric interior structure models of Europa. In

particular, we compute the polar moment of inertia and the equatorial moment

of inertia difference of the internal layers, which are the quantities needed

for our study of the librations of Europa. The equatorial moment of inertia

difference of the different layers of Europa can most easily be calculated by

applying Clairaut’s theory, which is normally only used for the calculation of

the polar flattening. Here, instead of considering the z-axis along the rotation
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axis as for the calculation of rotational flattening, we assume it to coincide

with the longest principal axis of inertia, which is in the equatorial plane.

With this choice of axis, the static tidal potential can be expressed as

Ut =
GMJ

a

(
r

a

)2

P 0
2 (cosϕ′) = ω2r2P 0

2 (cos ϕ′), (48)

where the angle ϕ′ is measured from the new z-axis. The potential takes the

same form as the centrifugal potential with respect to the rotation axis, except

for an additional factor -3. As a consequence, the equatorial flattening β can be

derived from Clairaut’s equation for β and the associated boundary condition

dβ

dr0
(R) =

1

R

[
15

2
q − 2β(R)

]
, (49)

which follows from the Clairaut boundary Condition (40) by taking into ac-

count that the perturbing potential (Eq. 48) is three times larger in absolute

values than the centrifugal potential (Eq. 33). Here, β and its derivative with

respect to the radial coordinate r0 are evaluated at the surface r0 = R.

Since both Clairaut’s equation and its boundary condition are linear in the

flattening, the solution of Clairaut’s equation for the tidally induced equatorial

flattening β(r0) can be derived from the solution of Clairaut’s equation for

the rotational polar flattening as β(r0) = 3αr(r0). Similarly, it follows from

a comparison of boundary conditions (40) and (41) that the polar flattening

due to rotation and static tides α(r0) = 5
2
αr(r0). For synchronous satellites

deformed by rotation and static tides, we then have the relation between

polar flattening and equatorial flattening α(r0) = 5
6
β(r0), which is valid at

any radial distance from the center of the satellite. Internal flattening profiles

for two representative models are shown in Fig. 5.

The principal moments of inertia of our models can be determined from α and
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β. For a homogenous model with mean radius R, we have (e.g. Van Hoolst

and Dehant 2002), correct up to the first order in the flattenings,

A = I0

[
1 − 1

3
α(R) − 1

2
β(R)

]
(50)

B = I0

[
1 − 1

3
α(R) +

1

2
β(R)

]
(51)

C = I0

[
1 +

2

3
α(R)

]
, (52)

where

I0 =
8π

15
ρR5. (53)

As a consequence, the equatorial moment of inertia difference can be expressed

as

B − A =
8π

15
ρR5β. (54)

For our models with homogeneous layers, the polar moment of inertia Cj and

the equatorial moment of inertia difference Bj − Aj of layer j can be derived

by applying Eqs. (52) – (54) to two volumes considered to be of homogeneous

density. First, the volume between the center and the surface of layer j is

considered and secondly, the moments of inertia are calculated for the volume

below layer j. Both volumes are considered to have the constant density ρj of

layer j. By taking the difference of the results, we then have

Cj =
8π

15
ρj

[
r5
0,j(1 +

2

3
αj) − r5

0,j−1(1 +
2

3
αj−1)

]
(55)

Bj − Aj =
8π

15
ρj

[
r5
0,jβj − r5

0,j−1βj−1

]
. (56)

Here, αj and βj are the polar flattening and equatorial flattening of the outer

surface of layer j, respectively. The index j increases with increasing distance

of the layer j to the center of the satellite. For the innermost layer containing

the center, Eqs. (52) and (54) can be used directly. The polar moment of interia
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and equatorial moment of inertia difference of the shell and solid interior are

shown in Figs. 6 and 7.

4 Results

The amplitudes of the forced longitudinal libration at 3.55 days of the icy shell

of Europa for our models of internal structure are calculated in the rigid ap-

proximation, for the decoupled shell, and for the libration model with internal

gravitational coupling by using Eqs. (5), (7), and (27) and (28), respectively.

The relative differences with respect to the results of a direct numerical in-

tegration of the governing Eqs. (1), (6), and (19) and (20) is below 10−5 in

all cases. We express the libration amplitude as a surface displacement at the

equator corresponding to the angular displacement of the longest axis with

respect to its position for a constant rotation rate of Europa.

Rigid librations are a good approximation for the librations of Europa if it

doesn’t have a subsurface ocean. The rigid libration amplitude has a mean

value of 133.9 meters at the equator and varies by at most 0.16% for our

interior structure models. The small variation is due to the small differences

in the moments of inertia between the models. The amplitude is somewhat

larger than the value of 112 meters given by Comstock and Bills (2003) as a

result of the different values of (B−A)/C used. Comstock and Bills (2003) did

not use the Radau equation and assumed Europa to have a uniform density.

As the shell polar moment of inertia is between about 7 and 200 times smaller

than the polar moment of inertia of Europa (Fig. 6) for our interior structure

models, the rotational inertia of a rotationally decoupled shell to an external
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torque is much weaker than for a rigid model, and the libration amplitude of

the shell is proportionally larger and between about 1 km and 27 km (Fig. 8

and Eq. 7). Even larger values are obtained as a result of a near resonance

between the orbital frequency and the frequency of the free shell libration for

some models. The rigid libration amplitudes do not show any effect of a reso-

nance because the free period for the rigid models, about 52.7 days, is too far

from the forced period of 3.55 days. For models with thin shells, the frequency

of the free libration of the icy shell can be much larger than the free frequency

of a rigid Europa model because of the smaller polar moment of inertia Cs

compared to C (see Eq. 8 and Fig. 6). The free shell libration period of our

models varies between about 3.7 days and 20 days. The smallest free period

is very close to the forcing period of 3.55 days, leading to a resonant amplifi-

cation of the forced libration. The corresponding interior structure model has

a shell thickness of 5 km and a shell density of 800 kmm−3. The resonance

is only important for our models with a shell thickness of 5 km. An exact

resonance can be obtained for thin shells with Cs/C = (ωf/n)2 = 4.6 10−3,

which corresponds to shell thicknesses of somewhat less than 5 km.

The large libration of a decoupled shell is clearly unrealistic as shown by the

much smaller amplitude of libration when gravitational coupling is included.

Fig. 9 represents the forced libration amplitude of the icy shell with internal

gravitational coupling as a function of the ratio (Bs −As)/Cs. The amplitude

is 6% to 14% larger than for the rigid libration applicable to Europa mod-

els without ocean. This result shows that the shell and interior libration are

strongly coupled by the gravitational force. The larger libration amplitude can

be understood by noting that in the limit case of complete coupling between

the shell and the solid interior the total polar moment of inertia of the shell
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and the interior is still somewhat smaller than the polar moment of inertia of

the whole satellite, which includes the ocean. Therefore, even in that case, the

rotational inertia would be smaller and the libration larger than for a rigid

model.

Because of the amplitude difference with the rigid amplitude, libration obser-

vations can be used to determine the existence of a subsurface ocean, provided

that the libration amplitude can be measured with a precision of a few meters

and that the rigid libration amplitude can be calculated with at least a simi-

lar precision. The latter requires the knowledge of (B − A)/C at the percent

level, which is currently almost satisfied and will certainly be obtained with a

future mission to Europa. A libration measurement precision of a few meters

could also be obtained with a mission to Europa, as currently studied and

proposed to both NASA and ESA. With only 15 days of radio tracking data

to a Europa orbiter, Wu et al. (2001) estimate a libration uncertainty of some

tens of meters. With a longer data set of 2 months, the predicted lifetime

of a Europa orbiter under study, an uncertainty of 10 meters or less seems

feasible. Librations can also be measured, with similar precisions, by taking

multiple high-resolution camera images or laser altimeter measurements of se-

lected geological features at different times, as planned for the MESSENGER

and BepiColombo missions to measure the libration of Mercury (Solomon et

al. 2001, Milani et al. 2001). With a lander on Europa’s surface, an order of

magnitude improvement can be expected with respect to libration estimates

from an orbiter only, corresponding to a one meter uncertainty on the shell

libration.

As can be seen in Fig. 9, the shell libration amplitude varies by about 7% from

about 142 to 152 meters for different interior models. Therefore, information
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on the interior of Europa can be obtained from the forced libration amplitude,

provided that sufficiently accurate measurements can be made. In particular,

the shell moment of inertia ratio (Bs − As)/Cs can be determined accurately

from libration observations since the libration amplitude is almost linear in

(Bs − As)/Cs (see Fig. 9). This linearity is essentially due to the external

gravitational torque as for the two other libration models. For the largest

moment of inertia ratios, equivalent to the smallest polar moment of inertia

of the shell, the libration amplitude increases sharply. This increase is most

likely due to a resonance with one of the free periods and will be studied in

detail in a subsequent manuscript. Here, we concentrate on the linear regime.

The geophysically most important factor in the ratio (Bs − As)/Cs is the de-

nominator Cs. Fig. 10 shows a decreasing trend of the libration amplitude of

the shell with increasing polar moment of inertia of the shell of roughly 140

m/MER2. Variations due to other interior structure parameters such as the

density and radius of the other layers are superposed on this trend and can

only be as large as 2 m for the thickest shells. The internal structure parame-

ter that causes most of these deviations from a strictly linear behavior is the

density of the shell (see Fig. 10). Because we assumed a rather large range of

shell density values in our models, the deviation from a strictly linear behav-

ior could be somewhat less than indicated in Fig. 10. If libration amplitude

observations are interpreted in terms of the polar moment of inertia of the icy

shell, these variations imply an uncertainty on Cs/MER2 of ±0.007. Fig. 11

shows that the libration amplitude can also be interpreted directly in terms

of the thickness of the icy shell. The amplitude decreases almost linearly with

increasing shell thickness, with limited variation due to other interior struc-

ture parameters (see Fig. 11). For models with shell thickness larger than
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10 km, the libration amplitude shows a linearly decreasing trend of about

−0.055 m/km. An observational error of 1 m on the libration amplitude will

therefore result in a uncertainty on the shell thickness of 18 km. Therefore,

libration observations can be used to constrain the thickness of the icy shell

of Europa, but very precise libration observations are required. The libration

amplitude variations due to the other parameters, which we estimate at 0.3 m

at a shell thickness of 30 km (see Fig. 11), imply an additional uncertainty on

the estimation of the shell thickness of 3 km. The different amplitudes at a

given shell thickness are mainly due to the different shell density of the models

as shown in Fig. 11.

Besides the shell libration, the libration of the interior can also be used to con-

strain Europa’s interior (see fig. 12). The interior libration amplitude increases

with increasing (Bi −Ai)/Ci, similarly as observed for the shell libration, and

varies between about 118 m and 123 m (a relative difference of 4%). The am-

plitude is particularly sensitive to the radius of the solid interior and is larger

for larger radius of the interior (see Fig. 12). Although the relative range of

interior libration amplitudes is smaller than for the shell, the interior libration

may still be used to constrain the interior of Europa since, as shown by Wu et

al. (2001), it can more accurately be estimated from radio tracking data than

the shell libration. The librations can be determined from the time-variable

gravity field of Europa, which can be estimated by radio tracking of a Europa

orbiter.

32



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
5 Discussion and Conclusion

Previous studies of the librations of Europa have assumed that the satellite

responds rigidly to the gravitational torque of Jupiter. We have studied dif-

ferential librations of the shell and the solid interior when a subsurface ocean

exists in Europa. We have shown that the icy shell cannot be considered to

librate independently from the interior. The most important coupling between

the different layers is gravitational coupling between the icy shell and the solid

interior. We have derived an expression for this internal gravitational coupling

and included it into the differential equations governing the librations of the

icy shell and of the solid interior. Analytical solutions for the librations of

these two layers have been derived by assuming the librations to be small.

The main geophysical parameters for the librations are the polar moments of

inertia of the layers, which are a measure of their resistance to rotational forc-

ing, and the equatorial flattenings or equatorial moment of inertia differences,

which determine the external gravitational torque of Jupiter on the layers and

the internal gravitational coupling of the icy shell and the solid interior. In

order to investigate the use of libration observations for the determination of

the existence and properties of a putative subsurface ocean, we have calculated

libration amplitudes for a range of interior structure models of Europa.

First, spherically symmetric models have been constructed from three obser-

vational constraints: the mass, radius, and mean moment of inertia. The latter

quantity is determined from the observed C22 (or J2) gravity coefficients and

the mean rotation rate by using the Radau equation. This equation is well

known for bodies flattened by rotation, and we have extended and modi-
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fied it to synchronously rotating satellites in hydrostatic equilibrium that are

deformed by rotation and static tides. Secondly, we have calculated the per-

manent rotational and tidal internal deformation using Clairaut’s theory and

have determined the geophysical parameters of the libration for our Europa

models.

With an ocean, the forced libration amplitude is 6% to 14%, or 8 m to 18 m,

larger than for the rigid libration applicable to Europa models without ocean.

Therefore, libration observations can be used to determine the existence of a

subsurface ocean provided that the libration amplitude can be measured with

a precision of less than 10 m, which seems feasible with current technology.

Information on the thickness of the icy shell is also included in the libration

amplitude, but this parameter is more difficult to retrieve. For Europa models

with a subsurface ocean, the libration amplitude shows an increasing trend by

about 6% from 142 to 149 meters with decreasing shell thickness of our models,

which can be used to estimate the shell thickness. However, the dependence

is not very strong and a 1 m error on the libration amplitude corresponds

to an uncertainty on the shell thickness of 18 km. Additional information on

the interior, in particular the density and radius of the solid interior, could

be obtained from observations of the libration of the solid interior, and could

improve this situation.

The gravitational torque of Jupiter on the permanent deformation of Europa,

as considered in this study, is not the only cause of rotation variations of Eu-

ropa. Zonal tides due to the gravitational force of Jupiter change the polar

moment of Europa and therefore also the rotation. The variation in polar mo-

ment of inertia can be determined by using the definition of the tidal Love
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number k2, which states that the change in the external gravitational poten-

tial at the surface due to mass redistribution in Europa induced by the tidal

potential is equal to the product of the Love number and the tidal potential.

Because the zonal degree-two time-variable tidal potential at the surface can

be expressed as

U2,0
t (R, φ, t) = −3

2
ω2R2eP2(cosφ) cos M, (57)

it then follows that the tidal change in the gravitational J2-coefficient is given

by

δJ2 =
3

2
k2qe cos M. (58)

Since the mean moment of inertia is conserved under these tidal deformations

(Rochester and Smylie 1974), we then have the following change in the polar

moment of inertia due to zonal tides

δC = k2qeMER2 cos M. (59)

In the case that Europa has no subsurface ocean, the rotational effect of the

zonal tides can be estimated by calculating the ratio of the additional term

ωδĊ due to the tides and the main term Cθ̈ in the governing Eq. (1) for

libration. This ratio

k2qe

Aθ

MER2

C
≈ 0.038 (60)

is small, suggesting that the effect of zonal tides on libration is on the order

of a few percent and does not change the main conclusions of this study.

A potential problem of the use of libration observations to determine the

existence of a subsurface ocean and to constrain the shell thickness is that

Europa might not be in a fully relaxed hydrostatic equilibrium. In that case,

the Radau equation is not strictly valid, and the polar moment of inertia C

35



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
could be slightly different. The relative difference with the hydrostatic value is

expected to be smaller than 1%, and could be estimated once J2 is determined

independently from C22 from spacecraft flybys. Moreover, the internal flatten-

ing cannot be calculated from Clairaut’s equation in that case. It is difficult to

estimate the deviations of the internal flattening from the hydrostatic values,

these would depend among other things on possible convection in the solid

interior, but they are expected to be small with respect to the rotational and

tidal deformations for the rapidly rotating Europa. Verification of the hydro-

static relation J2 = (10/3)C22 by future space measurements could be used

as an indication of the correctness of the hydrostatic assumption, although it

cannot prove the validity of the approximation.
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A An alternative form of the Radau equation extended to syn-

chronously rotating satellites

A somewhat different form of the extended Radau equation for a synchronously

rotating satellite, deformed by rotation and tides, can be obtained by express-

ing J2 in Eq. (47) in terms of the fluid Love number kf , which describes the

reaction of Europa to a perturbing potential after all viscous stresses have

relaxed (Munk and MacDonald 1960). By using MacCullagh’s formula for the

gravitational potential of a nearly spherical body and identifying the degree-

two, order-zero term and the degree-two, order-two term of the gravitational

potential field of Europa with the corresponding terms in kf [Ur(
r) + Ut(
r)],

we have
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J2 =

5

6
kfq, (A.1)

C22 =
1

4
kfq (A.2)

(e.g. Rappaport et al. 1997). Substitution of Eq. (A.1) into Eq. (47) gives

I

MER2
=

2

3

⎡
⎣1 − 2

5

(
4 − kf

1 + kf

)1/2
⎤
⎦ (A.3)

In contrast to the Expressions (42) and (47) in terms of α(R) or J2 and q,

this expression takes the same form as for a satellite that is only deformed by

rotation. It must be remarked though, that the relation between J2 and kf is

different, and therefore the numerical value of kf associated to the observed

value of J2 is also different from the value in the case of rotational deformation

only. In the classical derivation of this equation (e.g., Hubbard 1984), only

rotational deformation is taken into account.

By using Eqs. (45), (46), (A.1), and (A.2), we also have for the surface flat-

tenings

α(R) =
5

4
q(1 + kf), (A.4)

and

β(R) =
3

2
q(1 + kf), (A.5)

which are consistent with the ratio 5/6 between α and β throughout the

satellite (see Sect. 2.3).
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TABLES

quantity symbol value

mass ME 4.7987 1022 kg

radius R 1560.8 km

mean motion n 1.7691 d−1

eccentricity e 0.0094

gravitational coefficient C22 131.5 ± 2.5 10−6

mean moment of inertia I/MER2 0.3475± 0.0026

Table A.1

Numerical values for Europa. References: JPL Solar System Dynamics

(http://ssd.jpl.nasa.gov), Anderson et al. (1998) for C22, and this paper for I.
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Layer Thickness(km)/radius(km) Density ( kg m−3)

Shell thickness: 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 800, 1000, 1200

Ocean thickness: 15-164 800, 1000, 1200

Mantle radius: (1300), (1350), 1400, 1450, (1500) 3186-3791

Core radius: (100), 200, 300, 400, 500, 600, 700, (800), (1000) 5158-7995

Table A.2

Size and density of the four internal layers of the Europa models. The ocean thick-

ness and the densities of the core and the mantle are calculated for the given values

of the other interior parameters. The input parameters in parentheses do not satisfy

the given constraints on mass, radius and moment of inertia.
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FIGURE CAPTIONS

Fig. 1: Geometry of Europa’s libration. The long axis of Europa makes an

angle θ with the major axis of the orbit and f is the true anomaly.

Fig. 2: Different internal regions in Europa for the study of internal gravita-

tional coupling (not to scale).

Fig. 3: Geometry of Europa’s shell and interior libration (not to scale).

Fig. 4: Density profile for two representative models of the interior structure of

Europa. The first model (dashed line) has a small core with a radius of 100 km

and a density of 7995 kgm−3. The water layer (ocean+shell) is 160.8 kilometers

thick, and the thickness of the icy shell is 10 km. The second model (solid line)

has a much larger (radius 600 km) and less dense (density 6735 kgm−3) core.

Also the water layer (110.8 km) and the icy shell (5 km) are thinner for the

second model.

Fig. 5: Internal polar flattening β(r0) for the same models of the interior

structure of Europa as in Fig. 4.

Fig. 6: Polar moment of inertia ratio of the icy shell and the whole satellite

as a function of shell thickness for all our models of the interior structure of

Europa. Models with the same shell thickness and density have almost equal

ratio Cs/C and cannot be distinguished in the figure. The difference in results

at the same shell thickness is mainly due to the three different shell densities

of the models. Shell densities are 800 kg m−3 (squares), 1000 kg m−3 (circles),

and 1200 kg m−3 (triangles).

Fig. 7: Normalized equatorial moment of inertia difference of the icy shell

45



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
(Bs − As)/MER2 as a function of shell thickness h for all our models of the

interior structure of Europa. Shell densities are 800 kg m−3 (squares), 1000

kg m−3 (circles), and 1200 kg m−3 (triangles).

Fig. 8: Amplitude of the rotationally decoupled shell libration as a function

of the inertia ratio (B − A)/Cs for all our models of the interior structure of

Europa.

Fig. 9: Amplitude of the shell libration as a function of the moment of inertia

ratio (Bs − As)/Cs for all our models of the interior structure of Europa.

Fig. 10: Amplitude of the shell libration as a function of the normalized polar

moment of inertia of the icy shell Cs/MER2 for all our models of the interior

structure of Europa. Shell densities are 800 kg m−3 (squares), 1000 kg m−3

(circles), and 1200 kg m−3 (triangles).

Fig. 11: Amplitude of the shell libration as a function of the thickness h of the

icy shell for all our models of the interior structure of Europa. Shell densities

are 800 kg m−3 (squares), 1000 kg m−3 (circles), and 1200 kg m−3 (triangles).

Fig. 12: Amplitude of the libration in longitude of the solid interior as a

function of (Bi−Ai)/Ci for all our models of the interior structure of Europa.

The solutions are grouped around two mean values of 118.5 and 123 meters

depending on the radius of the mantle (1400 and 1450 km)
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