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Abstract: In quantitative image analysis, Minkowski functionals are becoming standard
parameters for topological and geometrical measurements. Nevertheless, they are limited to
binary images or to sections of gray-tone images and are achieved in a global and monoscale way.
The use of General Adaptive Neighborhoods (GANs) enables to overcome these limitations. The
GANs are spatial neighborhoods defined around each point of the spatial support of a gray-tone
image, according to three (GAN) axiomatic criteria: a criterion function (luminance, contrast,
. . . ), an homogeneity tolerance with respect to this criterion, and an algebraic model for the
image space. Thus, the GANs are simultaneously adaptive with the analyzing scales, the spatial
structures and the image intensities.
This paper aims to introduce the GAN-based Minkowski functionals, which allow a gray-tone
image analysis to be realized in a local, adaptive and multiscale way. The Minkowski functionals
are computed on the GAN of each point of the spatial support of a gray-tone image, enabling to
define the so-called Minkowski maps by assigning the Minkowski functional value to each point.
The histograms of these maps provide a statistical distribution of the topology and geometry
of the gray-tone image structures, and not only of the image intensities. The impact of the
GAN characteristics, as well as the impact of multiscale transformations, are analyzed in a
qualitative global and local way through these GAN-based Minkowski maps and histograms.
This multiscale image analysis is illustrated on the test image ’Lena’ and also applied in both
the biomedical and materials areas.

Keywords: GAN-based Minkowski maps and histograms, General Adative Neighborhoods,
Integral Geometry, Minkowski functionals, Multiscale image analysis

NOMENCLATURE

This section presents a list of all the used symboles and
their meaning.
A area
P perimeter
χ Euler number
AA specific area
PA specific perimeter
χA specific Euler number
µ specific Minkowski functional
GLIP General Linear Image Processing
7 GLIP framework
+7 vector addition of the GLIP framework
−7 vector subtraction of the GLIP framework
×7 scalar multiplication of the GLIP framework
CLIP Classical Linear Image Processing
+ vector addition of the CLIP framework
− vector subtraction of the CLIP framework

× scalar multiplication of the CLIP framework
LIP Logarithmic Image Processing
△ LIP framework
+△ vector addition of the LIP framework
−△ vector subtraction of the LIP framework
×△ scalar multiplication of the LIP framework
I space of gray-tone images
C space of analyzing criteria
E7 intensity value range
D image spatial support
f gray-tone image
h analyzing criterion
m7 homogeneity tolerance
V h

m7
(x) GAN of x ∈ D

µh
m7

GAN-based Minkowski map



H
(

µh
m7

)

histogram of the

GAN-based Minkowski map

µf
7

(.) GAN-based Minkowski function
according to the homogeneity tolerance m7

µ
T (f)
m7

(.) GAN-based Minkowski function
according to the radius of the structuring element

used for a morphological transformation T

1. INTRODUCTION

This paper aims to introduce a novel approach for analyz-
ing gray-tone images in a local, adaptive and multiscale
way. A segmentation process, generally used before quan-
titative image analysis, is not here required. The quan-
titative description is directly applied on the raw gray-
tone images. Geometrical and topological measurements,
through Minkowski functionals, see Michielsen and De
Raedt (2001), are performed on spatial neighborhoods
associated to each point of the gray-tone image support.
These specific neighborhoods, named General Adaptive
Neighborhoods (GANs), see Debayle and Pinoli (2005,
2006), are simultaneously adaptive with the spatial struc-
tures, the image intensities and the analyzing scales. They
are based on three axiomatic criteria: an analyzing crite-
rion, an homogeneity tolerance and an algebraic model.
These GAN enable to define the so-called GAN-based
Minkowski maps which assign a measurement (based on
the local Minkowski functionals) to each point of the
spatial support of the gray-tone image to be studied.

First, the second and third sections recall the notions of
Minkowski functionals and of general adaptive neighbor-
hoods, respectively. Then, the fourth and fifth sections
introduce the GAN-based Minkowski maps and histograms
and illustrate them for various analyzing critera and alge-
braic models. Thereafter, the impact of the homogeneity
tolerance and of a multiscale transformation are analyzed
through these GAN-based Minkowski maps. This multi-
scale image analysis is illustrated on the test image ’Lena’
and also applied in both the biomedical and materials
areas.

2. MINKOWSKI FUNCTIONALS AND DENSITIES

In quantitative image analysis, Minkowski functionals, see
Minkowski (1903), are becoming standard parameters for
topological and geometrical measurements, see Coster and
Chermant (1985) and Michielsen and De Raedt (2001). A
description of the shape of a two-dimensional spatial pat-
tern is provided, using the three 2D Minkowski functionals
(up to a constant): area, perimeter, and Euler number,
denoted A, P and χ, respectively.

These functionals are defined on the class of nonempty
compact convex sets (convex bodies) of R

2, and satisfy
five properties (increasing, invariance under rigid motions,
homogeneity, additivity, continuity vs. the Hausdorff met-
ric). They have been extended (excluding the properties of
increasing and continuity) to the convex ring, see Mecke
and Stoyan (2000), i.e. the set of all finite unions of con-
vex bodies of R

2, which may be considered as a realistic
Euclidean model for digital planar images.

In this paper, the densities instead of the intensities of
these functionals, i.e. the ratio of the Minkowski intensity
functionals by the area of the spatial support, will be used.
These Minkowski density functionals are called the specific
area, the specific perimeter, and the specific Euler number,
and are denoted, AA, PA and χA, respectively.

3. GENERAL ADAPTIVE NEIGHBORHOODS

The GANIP (General Adaptive Neighborhood Image
Processing) approach, see Debayle and Pinoli (2005, 2006,
2009), provides a general framework for multiscale, local
and adaptive processing and analysis of gray-tone images.

It is based on an image representation by means of
specific spatial neighborhoods, named General Adaptive
Neighborhoods (GANs). Indeed, GANs are simultaneously
adaptive with:

• the spatial structures: the size and the shape of the
neighborhoods are adapted to the local context of the
image,

• the analyzing scales: the scales are given by the image
itself, and not a priori fixed,

• the intensity values: the neighborhoods are de-
fined according to the GLIP (General Linear Im-
age Processing) algebraic mathematical framework,
see Oppenheim (1967) and Pinoli (1997), enabling
to involve the physical and/or psychophysical image
formation laws.

For a gray-tone image f , a GAN of a point x belonging
to the spatial support D ⊆ R

2, denoted V h
m7

(x), is a

connected subset of D. It is homogeneous with respect
to an analyzing criterion h (such as luminance, contrast,
thickness, . . . ) using an homogeneity tolerance, denoted
m7. The symbol 7 stands for the algebraic model for
the space of gray-tone images. The space of gray-tone
images (resp. analyzing criteria), defined on the spatial

support and valued in a real number interval Ẽ (resp. E7)
is denoted I (resp. C). The homogeneity tolerance m7

belongs to the positive intensity value range E +7 := {t ∈
E7|t ≥ 07}, where 07 denotes the neutral element for
vector addition, see Debayle and Pinoli (2006). The GAN
of a point x is mathematically defined as follows:

V h
m7

(x) := Ch−1([h(x) −7m7;h(x) +7m7])(x) (1)

where CX(x) denotes the path-connected component (with
the usual Euclidean topology on D) of X ⊆ D holding
x. The criterion function h is represented in a GLIP
(General Linear Image Processing) model, see Oppenheim
(1967) and Pinoli (1997), i.e. a vector space with its vector
addition +7 and its scalar multiplication ×7 .

For instance, the operations +7 and ×7 of the usual CLIP
(Classical Linear Image Processing) framework correspond
to the usual operations between images, + and × respec-
tively. The vector addition and subtraction and the scalar
multiplication of the LIP (Logarithmic Image Processing)
framework, see Jourlin and Pinoli (1988, 2001), denoted
+△ , −△ and ×△ respectively, are defined as follows:

f +△g = f + g −
fg

M
(2)



f −△g = M

(

f − g

M − g

)

(3)

α ×△f = M − M

(

M − f

M

)α

(4)

where f and g are gray-tone images, α ∈ R is a scalar,
and M ∈ R+ denotes the upper bound of the range where
intensity images are valued. The LIP framework has been
proved to be consistent with the transmittance and the
multiplicative reflectance/transmittance image formation
model, and with several laws and characteristics of human
brightness perception, see Pinoli (1997). The GANIP ap-
proach in the special case where the LIP framework is used
has been studied and applied in Pinoli (2007).

The GAN satisfy several properties as stated in the fol-
lowing (proved in Debayle and Pinoli (2006)). For all
(h,m7,m1

7
,m2

7
, x, x1, x2) ∈ C × (E +7 )3 × D3,

• reflexivity:

x ∈ V h
m7

(x) (5)

• increasing with respect to m7:

m1
7 ≤ m2

7 ⇒ V h
m1

7

(x) ⊆ V h
m2

7

(x) (6)

• equality between iso-valued points:
(

x1 ∈ V h
m7

(x2)

h(x1) = h(x2)

)

⇒ V h
m7

(x1) = V h
m7

(x2) (7)

• +7 -translation invariance:

∀c7 ∈ E7 : V
h +7 c7
m7

(x) = V h
m7

(x) (8)

• ×7 -multiplication compatibility:

∀α ∈ R
∗
+ : V α ×7h

m7
(x) = V h

1
α

×7m7
(x) (9)

Figure 1 gives a visual impression, on a 1D example, of the
computation of a GAN in the LIP framework (i.e. with the
+△ vector addition (Eq. 2) and the −△ vector subtraction
(Eq. 3)).

Figure 2 illustrates the GANs of two points computed
with the luminance criterion in the CLIP (Classical Linear
Image Processing) framework (the operations +7 and ×7

correspond to the usual operations between images, + and
× respectively) on a human retina image.

The General Adaptive Neighborhoods are intrinsically
defined by the local image structures. Thus, the GANs
{V h

m7
(.)}m7

allow a new multiscale representation of

gray-tone images to be defined.

Defined on the spatial support D of an image (Fig. 3),
the GANs are simultaneously adaptive with the spatial
structures, the analyzing scales and the intensity values.
On the contrary, the shape and size of the classical
neighborhoods {Br(.)}r (centered homothetic isotropic
discs of radius r), generally used as analyzing windows
for image transforms, are a priori fixed.

4. GAN-BASED MINKOWSKI MAPS

This novel multiscale representation of gray-tone images
enables to define GANs measurements, allowing a gray-
tone image quantitative analysis, in a local, adaptive and

point line

measurement value

h(x)

x[h(x) −△m△, h(x) +△m△] V h
m△

(x)

Fig. 1. One-dimensional computation of a GAN set
V h

m△
(x) in the LIP framework. For a point x, a range

of tolerance m△ is first computed around h(x). Sec-
ondly, the inverse mapping of this interval gives a
subset of the 1D spatial support. Finally, the path-
connected component holding x provides the GAN
V h

m△
(x).

(a) original retina image with
two (white) points x and y

(b) GANs V h
20(x) and V h

20(y)
respectively

Fig. 2. The GANs of the two points x and y of the original
image (a) are connected and homogeneous (b) with
respect to the luminance criterion using the tolerance
value m = 20 within the CLIP framework. The GANs
are adapted to the image structures.
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Fig. 3. Example of adaptive V h
m7

and non-adaptive Br

analyzing windows with three values both for the
homogeneity tolerance parameter m7, and for the
disks radius r. The shape of Br(x1) and Br(x2) are
identical and {Br(x)}r is a family of homothetic
sets for each point x ∈ D. On the contrary, the
shapes of V h

m7
(x3) and V h

m7
(x4) are dissimilar and

{V h
m7

(x)}m7
is not a family of homothetic sets.



multiscale way. Indeed, for each point x of the gray-tone
image f , various measurements, such as area, orientation,
concavities number, . . . see Coster and Chermant (1985)
and Rivollier (2006), of the GAN V h

m7
(x), can be com-

puted.

In this paper, the considered measurements are the
Minkowski density functionals. These functionals can be
estimated in an efficient way, see Nagel (1999) and Osher
and Mücklich (2001).

4.1 Definition

A GAN-based Minkowski map is defined by assigning a
value for each point x which represents a GAN Minkowski
density functional of V h

m7
(x). In a more explicit way, the

GAN-based Minkowski map µh
m7

of a gray-tone image f

with respect to the Minkowski density functional µ (area:
µ ≡ AA, perimeter: µ ≡ PA, Euler number: µ ≡ χA) is
defined by:

µh
m7

:

{

D → R

x 7→ µ
(

V h
m7

(x)
)

(10)

where V h
m7

(x) is the GAN of the point x with respect to

the analyzing criterion h using the homogeneity tolerance
m7 in a GLIP framework.

Figure 4 illustrates some GAN-based Minkowski maps of
the image ’Lena’ f . The GANs are homogeneous with
respect to the luminance criterion (h ≡ f) using the
tolerance value m = 40 in the context of the CLIP frame-
work. Therefore, the value µh

m7
(x) of each point x of the

Minkowski map corresponds to the density µ of the GAN

V f
40(x). The GANs depend on three axiomatic criteria (Eq.

1): an analyzing criterion, an algebraic GLIP model for the
criterion mapping space, and an homogeneity tolerance
with respect to this criterion. The two following subsec-
tions show, from a visual point of view, the impact of the
two firsts characteristics on the Minkowski maps (Eq. 10).
The impact of the homogeneity tolerance will be studied
in the next section.

4.2 Impact of the analyzing criterion

The GANs are homogeneous with respect to a criterion
function h (such as luminance, contrast, thickness, . . . ).
For instance, the luminance criterion is defined by h ≡
f where f is the original gray-tone image. A contrast
criterion can also be used. For instance, the contrast
image, denoted c, associated to the gray-tone image, can
be defined in a discrete way in the context of the CLIP
framework as:

c :







D → R+

x 7→
1

#N(x)

∑

y∈N(x)

|f(x) − f(y)| (11)

where N(x) is a neighborhood of the point x (for instance,
points in the window 3 × 3 centered on x).

Figure 5 illustrates the GAN-based Minkowski maps of a
fibronectin image f with respect to the luminance criterion

f and the contrast criterion c using the homogeneity
tolerance m = 20 in the context of the CLIP framework.
The results show that the extracted zones are not the same
for the two criteria.

4.3 Impact of the mathematical framework

Figure 6 illustrates the GAN-based Minkowski maps of
a zinc sulfide image f acquired by scanning electron mi-
croscopy imaging with respect to the luminance criterion f
using the homogeneity tolerance value 50 in the context of
the CLIP and LIP mathematical frameworks, respectively.

These GAN-based Minkowski maps can be used for image
segmentation. A usual intensity thresholding does not al-
ways extract the desired structures of a gray-tone image.
Using appropriate GAN axiomatic criteria (analyzing cri-
terion, mathematical framework, homogeneity tolerance),
the GAN-based Minkowski maps highlight these structures
and the desired segmentation is obtained by thresholding
these GAN-based Minkowski maps.

The next section focuses on the histograms of these GAN-
based Minkowski maps.

(a) original image f

(b) (χA)f
40 (c) (PA)f

40 (d) (AA)f
40

Gray-scale lower and upper bound values

(a) 0 255

(b) −812.10−5 1.10−5

(c) 4.10−5 9686.10−5

(d) 1.10−5 42926.10−5

Fig. 4. GAN-based Minkowski maps (b-d) of the image
’Lena’ (a) with respect to the luminance criterion
h ≡ f , using the homogeneity tolerance m = 40 in the
context of the CLIP mathematical framework. Gray-
scale bound values gives the extrema of the Minkowski
density functionals values.



(a) original image f (b) criterion map c

(c) (χA)f
20 (d) (χA)c

20

(e) (PA)f
20 (f) (PA)c

20

(g) (AA)f
20 (h) (AA)c

20

Gray-scale lower and upper bound values

(a-b) 0 255

(c-d) −970.10−5 1.10−5

(e-f) 4.10−5 23247.10−5

(g-h) 1.10−5 99213.10−5

Fig. 5. GAN-based Minkowski maps (c-h) of a fibronectin
image (a) with respect to the luminance criterion f
(c,e,g) and the contrast criterion c (d,f,h), respec-
tively, using the homogeneity tolerance m = 20 in
the context of the CLIP framework.

(a) original image f

(b) (χA)f
50 (c) (χA)f

50△

(d) (PA)f
50 (e) (PA)f

50△

(f) (AA)f
50 (g) (AA)f

50△

Gray-scale lower and upper bound values

(a) 0 255

(b-c) −656.10−5 1.10−5

(d-e) 4.10−5 13867.10−5

(f-g) 1.10−5 85569.10−5

Fig. 6. GAN-based Minkowski maps (b-g) of a zinc sulfide
image (a) with respect to the luminance criterion f ,
using the homogeneity tolerance m = 50 in the con-
text of the CLIP (b,d,f) and LIP (c,e,g) framework,
respectively.



5. GAN-BASED MINKOWSKI HISTOGRAMS

The GAN-based Minkowski maps allow to assess the geo-
metrical (area, perimeter) and topological (Euler num-
ber) characteristics of the different local image structures.
Consequently, the histograms of these maps, named the
GAN-based Minkowski histograms, define a topological
and geometrical signature of a gray-tone image.

The GAN-based Minkowski histograms provide a statis-
tical distribution of the different GAN-based Minkowski
density functionals values of a gray-tone image. They can
be defined as the derivative of the cumulative histogram
which is an increasing function bounded in [0, 1], as a
cumulative distribution function. Thus, the derivative pro-
vides the histogram, as a probability density function.

From a 2D gray-tone image f , three GAN-based Minkow-
ski maps are built, and consequently, three histograms
providing the distribution of each GAN-based Minkowski
density functionals values. These (normalized) histograms,

denoted H
(

µh
m7

)

for µ ∈ {AA, PA, χA}, are defined by:

H
(

µh
m7

)

(t) =
dL2

({

x ∈ D : µh
m7

(x) < t
})

L2(D)dt
(12)

where dL2(X)/dt denotes the derivative according to t of
the Lebesgue measure L2 of a subset X ⊆ D.

Figure 7 illustrates some GAN-based Minkowski his-
tograms of the image ’Lena’ f . The GANs are homoge-
neous with respect to the luminance criterion (h ≡ f)
using the tolerance value m = 40 in the context of the
CLIP framework.

These GAN-based Minkowski histograms define a topo-
logical and geometrical signature of a gray-tone image.
They provide a statistical distribution of the topology
and geometry of the gray-tone image structures, and not
only of the image intensities, like the classical gray-tone
histograms. Thanks to this signature, similarity measures
between gray-tone images could be determined (distances
between histograms). When comparing gray-tone images,
the GAN-based Minkowski maps can supply major addi-
tional informations: images that cannot be differentiated
by their gray-tone histograms (two images visually differ-
ent can have similar gray-tone histograms) can be differ-
entiated by the histograms of their GAN-based Minkowski
histograms. Consequently, application issues to image clas-
sification could be adressed, based on this geometrical and
topological image characterization.

The next section focuses on the definition of GAN-based
Minkowski functions, providing a multiscale analysis of a
gray-tone image.

6. MULTISCALE ANALYSIS

When studying the variation of the homogeneity tolerance
on the GAN-based Minkowski maps, as it has been done
previously for the two others GAN axiomatic criteria, a
multiscale analysis of gray-tone images can be performed.
This leads to study the impact of a multiscale transforma-
tion on these maps. GAN-based Minkowski functions are
thus defined.

(a) original image f

(b) (χA)f
40 (c) (PA)f

40 (d) (AA)f
40

0

0.05

0.10

0.15

0.20

0.25

−812.10−5 1.10−5

(e) H
(

(χA)f
40

)

0

0.012

0.024

0.036

0.048

0.060

4.10−5 9686.10−5

(f) H
(

(PA)f
40

)

0

0.015

0.030

0.045

0.060

0.075

1.10−5 42926.10−5

(g) H
(

(AA)f
40

)

Fig. 7. GAN-based Minkowski maps (b-d) and histograms
(e-g) of the image ’Lena’ (a) with respect to the
luminance criterion h ≡ f , using the homogeneity tol-
erance m = 40 in the context of the CLIP framework.

6.1 Impact of the homogeneity tolerance

The GANs are homogeneous regions with respect to an
analyzing criterion h using a tolerance m7 within a GLIP
framework. For one point of the spatial support of a gray-
tone image, an increasing family of GANs is obtained with
the variation of the homogeneity tolerance m7 (Fig. 3).
The variation of this parameter allows to built GAN-based
Minkowski multiscale maps.

Figure 8 illustrates the GAN-based Minkowski maps and
histograms of a brain MR image f with respect to the
luminance criterion f using various homogeneity tolerance
values: m = 20, m = 30 and m = 40 in the context of the
CLIP framework.

These multiscale maps define a GAN-based Minkowski
function according to the homogeneity tolerance m7.
Mathematically, it is thus defined by:

µf
7

(.) : m7 7→ µf
m7

(.) (13)

Figure 9 shows the cumulative histograms of the GAN-
based Minkowski maps according to the homogeneity
tolerance m7. A 2D representation is obtained where each
row is a cumulative histogram. The statistical distribution
is given with the use of a color scale.

Figure 10 illustrates these GAN-based Minkowski func-
tions with respect to the luminance criterion, for one
point in the brain MR image. This figure shows that in
the context of the CLIP framework the function (AA)f (.)



(a) original image f
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(c) (χA)f
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(d) (χA)f
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4.10−5 14765.10−5

(f) (PA)f
30

0
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0.15

4.10−5 14765.10−5

(g) (PA)f
40

0
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1.10−5 57701.10−5

(h) (AA)f
20

0
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1.10−5 57701.10−5

(i) (AA)f
30

0

0.04

0.08

0.12

0.16

0.20

1.10−5 57701.10−5

(j) (AA)f
40

Fig. 8. GAN-based Minkowski maps and histograms (b-j)
of a brain image (a) with respect to the luminance
criterion f , using the homogeneity tolerance values
m = 20 (b,e,h), m = 30 (c,f,i) and m = 40 (d,g,j),
respectively, in the context of the CLIP framework.

(a) hist((χA)f (.)) (b) hist((PA)f (.)) (c) hist((AA)f (.))

(d) color scale

Fig. 9. GAN-based Minkowski cumulative histograms,
with respect to the luminance criterion f in the con-
text of the CLIP framework, according to the homo-
geneity tolerance m7 (a-c). A 2D representation is
obtained where each row is a cumulative histogram.
Abscissa and ordinate coordinates indicate respec-
tively the Minkowski density functionals values and
the homogeneity tolerance. The distribution is given
with the use of a color scale (d).

(a) x

(b) V
f
10(x) (c) V

f
20(x) (d) V

f
40(x)

(e) (χA)f (x), (PA)f (x) et (AA)f (x)

Fig. 10. Original image of brain marked with a point x
(a), and marked with the GAN of x for the tolerance
values m = 10, 20, 40 (b-d). Representation of the
GAN-based Minkowski functions according to m (e)
for this point x. The dot lines represent the results for
the Euler number, perimeter, and area of the GAN
(b-d) of the point x with m = 10, 20, 40.



increases, contrary to (PA)f (.) and (χA)f (.). This prop-
erty can be generalized to the others GLIP frameworks

and criterions: the function (AA)f
7

(.) increases, however

(PA)f

7
(.) and (χA)f

7
(.) are not monotonous. This is due

to the boundary tortuosity and the number of holes that

can occur in the GANs. The increasing of (AA)f
7

(.) is
explained by the increasing of the GANs with respect to
m7 (eq. 6).

Thanks to the variation of the homogeneity tolerance m7,
a GAN-based Minkowski function is defined, providing a
multiscale analysis of gray-tone images. The next section
is focused on the analysis of the impact of a multiscale
transformation on the GAN-based Minkowski maps.

6.2 Impact of a morphological transformation

Mathematical morphology, see Soille (2003), is an impor-
tant and nowadays a traditional theory in image process-
ing, particularly used for geometrical image analysis. The
elementary morphological operators of dilation and erosion
(and thus the combined operators of closing and opening)
act on image intensities with the use of an operational
window named structuring element.

The GAN-based Minkowski maps can be computed on
gray-tone images transformed by morphological operators.
For instance, figure 11 first illustrates the morphological
transforms Tr(f) (Tr denotes the opening (resp. closing)
if r < 0 (resp. r > 0)) using a disk of radius |r| ∈ R+

as structuring element of a gray-tone image f of corneal

endothelium cells. The GANs V
Tr(f)
m are determinated

with respect to this transformation Tr(f) using the ho-
mogeneity tolerance m = 20 in the context of the CLIP
framework. Figure 11 shows the associated GAN-based
Minkowski maps and histograms.

The variation of the radius r allows to built GAN-
based Minkowski multiscale maps. It defines a GAN-based
Minkowski function according to the radius r of the struc-
turing element used for the morphological transformation.
Mathematically, it is thus defined by:

µT (f)
m7

(.) : r 7→ µTr(f)
m7

(.) (14)

where r is the radius of the structuring element used for
the morphological operator T .

Figure 12 shows the cumulative histograms of the GAN-
based Minkowski maps according to the radius r of the
structuring element. A 2D representation is obtained
where each line is a cumulative histogram. The statistical
distribution is given with the use of a color scale.

Figure 13 illustrates these GAN-based Minkowski func-
tions, for one point in the image f of corneal endothelium
cells. This figure shows that in the context of the CLIP

framework the function (AA)
T (f)
m (.) is not monotonous,

contrary to T (f)(.). Thus, whatever the a priori fixed al-
gebraic model and the homogeneity tolerance, the function

µ
T (f)
m7

(.) is not monotonous.

A more detailed analysis of the GAN-based Minkowski
functions (particularly on the discontinuities of the curves)
should allow to obtain shape and/or size informations of

the local structures in a gray-tone image, which could be
useful for image segmentation and classification.
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Fig. 11. GAN-based Minkowski maps and histograms (d-
l) of an image of corneal endothelium cells (b) with
respect to the morphological transformation Tr(f),
using the homogeneity tolerance values m = 20, in
the context of the CLIP framework. Tr denotes the
morphological opening (r < 0) and closing (r > 0)
with a disk of radius r.



(a)hist((χA)
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20 (.)) (b)hist((PA)
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(d) color scale

Fig. 12. GAN-based Minkowski cumulative histograms,
with respect to the morphological transformation Tr

in the context of the CLIP framework, according to
the radius r (a-c). Tr denotes the morphological open-
ing (r < 0) and closing (r > 0) with a disk of radius
r. A 2D representation is obtained where each row
is a cumulative histogram. Abscissa and ordinate co-
ordinates indicate respectively the Minkowski density
functionals values and the radius. The distribution is
given with the use of a color scale (d).

(a) x

(b) V
T−4(f)

20 (x) (c) V
f
20(x) (d) V

T4(f)
20 (x)

(e) (χA)
T (f)
20 (x), (PA)

T (f)
20 (x) et (AA)

T (f)
20 (x)

Fig. 13. Original image of cornea cells marked with a
point x (a), and marked with the GAN of x for the
tolerance value m = 20 on transformed images Tr(f)
by opening (r < 0) and closing (r > 0) with disks of
radii r = −4, 0, 4 (b-d). Representation of the GAN-
based Minkowski functions according to r (e) for this
point x. The dot lines represent the results for the
Minkowski density functionals of the GAN (b-d) of
the point x with r = −4, 0, 4.

7. CONCLUSION

In this paper, a novel approach for analyzing gray-tone
images in a local, adaptive and multiscale way is proposed.
Geometrical and topological measurements (Minkowski
functionals) are computed on the spatial neighborhood
(GAN) of each point of the spatial support of a gray-
tone image, enabling to define the so-called GAN-based
Minkowski maps by assigning the Minkowski density func-
tional value to each point. The histograms of these maps
provide a statistical distribution of the topology and geom-
etry of the gray-tone image structures, and not only of the
intensities, like the classical histograms.

The GANs are simultaneously adaptive with the spatial
structures, the image intensities and the analyzing scales.
They are based on three axiomatic criteria: an analyzing
criterion, an algebraic model and an homogeneity toler-
ance. A visual analysis was performed on the GAN-based
Minkowski maps for various analyzing critera and alge-
braic model. Thanks to the variation of the homogeneity
tolerance m7, GAN-based Minkowski multiscale maps and
histograms are built. These multiscale maps allow to define
a GAN-based Minkowski function providing a multiscale
analysis of gray-tone images. This leads to look for the im-
pact of a multiscale transformation on these maps, defining
an other GAN-based Minkowski function.

Currently, the authors are working on the analysis of
the GAN-based Minkowski functions (particularly the
discontinuities of the curves) allowing to obtain shape
and/or size informations of the structures in a gray-tone
image.
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