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Abstract In this paper we deal with an enlarged theory of binary mixtures: a second gradi-
ent solid constituent and a perfect fluid are considered. On the basis of this as-
sumptions we obtain, for a linear elastic hollow cylinder, a set of density profiles
of the solid matrix, parameterized by a suitable energetic coupling coefficient
and characterized by the presence of boundary layers arising at the external sur-
faces of the body. A structural stability analysis of the partial differential equa-
tions, governing the motion of the mixture, is also developed, in a case which
may be of interest in applications to underground structural engineering.

Introduction

A simplified model for mechanical systems constituted by a solid deform-
able porous matrix filled by a compressible fluid has been developed by [6],
[2] and [10]. The main idea in their works stays in the “homogenization" as-
sumption which leads us to accept the possibility of simultaneous placement of
a solid and a fluid material particle at the same current place. In the literature
when this assumption is accepted one talks about homogeneous mixtures. Ob-
servations of the behavior of fluid saturated solids have shown a not negligible
increase of fluid percolation, through the pores of the solid matrix, with re-
spect to the prediction provided by classical models of homogeneous mixtures
(see e.g. [9]). In other words experimental evidence (see e.g. [3]) makes clear
that the model of homogeneous mixture is not predictive in describing several
Phenomena occurring in fluid-saturated solids. A possible explanation for the



previously described phenomena stays in the circumstances that the increase of
percolation is not simply due to the increase of externally applied pressure but
also to the pore-opening occurring in the vicinity of the boundary (see [3]). In
this paper we do not directly deal with a micro-structured model, but consider
a binary mixture model involving a second gradient solid and a perfect fluid;
for the relationship between micro-structured and second gradient theories we
refer to [7] and [8]. This kind of approach is very close to that based on the
volume fraction concept, as this last reduces to the first one once a suitable con-
straint, among the enlarged set of state parameters, is assumed. On the basis of
this approach and considering a linear elastic model, we study the equilibrium
static configurations assumed by a porous hollow cylinder filled with a liquid.
In particular assuming the energy functional to be split into a first gradient and
a second gradient energy contribution, we address the parametric analysis of
the equilibrium density profiles of the solid matrix with respect to a suitable
energetic coupling coefficient between the solid and the fluid. Since we have
chosen to deal with static deformations of the hollow cylinder we require the
external tractions applied on both constituents to be conservative. Last but not
least we discuss the structural stability properties of the governing equations,
with respect to perturbations of the aforementioned coupling coefficient.

Formulation of the Problem

Material particles of the fluid and the solid are identified respectively by
their position vectors Xy and X in fixed reference configurations Qg and 2.
As is usually done in the theory of mixtures we presume that, at any time ¢,
particles of both constituents may occupy the same position x in the present

configuration Q. The velocity v, (o = f, s) of the material particle X, is
defined by

. daua(Xaat)
B dt

Vo

(1)

i e. the material time derivative of the displacement of the a-th constituent Uq
from its reference configuration.

Let py and p denote the apparent mass densities of the fluid and the solid
then the mean velocity v of the mixture is defined by

pvV = ppvs -+ pgVs. )
Details of the theory of mixtures are given in [10], [9].
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Balance laws

We use the principle of virtual power to derive the balance of linear mo-
mentum and the boundary conditions for each constituent. That is,

/(ms Vs+my vy + Ts- Vv —prdivey + T - VVv,)dV =
q v Vs

v,
(ts-vs+tf-Vf+Ts-—v—>dA.

on
3)

Here m,, is the bulk solid-fluid interaction force, T the partial Cauchy stress
in the solid, py the hydrostatic pressure in the perfect fluid, Il the second-
order stress in the solid, b,, the density of partial body forces, t,, the partial sur-
face tractions, 7 the traction corresponding to the second-order stress tensor
in the solid and Ov,/On the directional derivative of v, along the outward unit
normal n to the boundary 952 of ().

The physical meaning of IT, and 7 can be grasped in a way similar to that
done in different contexts in [7] and [4]. We remark that the external action
T can be regarded as the sum of two different contributions, the first one is a
doubly normal double force, i.e. an external areal action which works on the
rate of opening, Vv, -n ® n, of boundary pores along the outward unit normal
n, the other one a tangential couple working on the vorticity of the apparent
velocity of the solid. This last areal action is considered in the Cosserat model
for granular materials (see e.g. [5]) and in the present approach vanishes. The
objectivity of the left hand side of (3) implies that the sum of the two internal
supplies my and m; of linear momentum equals zero and T, is symmetric.

By using the divergence theorem and exploiting the fact that eqn.(3) must
hold for all virtual velocities we obtain:

z/(bs-vs—l—bf‘Vf)dV—l—/
Q

o0

div(T, — divIL) —ms+ b, = 0, in Q, 4)
—~Vps —my+by =0, in(, 5)
mg; +my =0, in , (6)
(Ts — divIIg)n — divs(ITgn) = t,, on 09, @)
(Hsn)n = T4, on 0F, (8)
—psn = ts, on 9}, 9

where div; is the surface divergence on Of).

Constitutive relations

The balance laws (4)-(5) are to be supplemented by constitutive relations;
we express these in terms of the internal energy. We presume that the mixture is
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at a uniform temperature, the constituents are deforming quasi-statically so that
their kinetic energy can be neglected, and no energy is dissipated. The internal
energy density is split into two parts; a part that depends upon the “local”
deformation of the solid and fluid particles and another part that depends upon
a “nonlocal” measure of deformation of the solid particles: the latter is taken
to be proportional to |V p,|?. Thus we write the balance of internal energy as

dv
dt

Ovs
/(bs 'V5+bf 'Vf)dv+/ (ts 'Vs+tf 'Vf+TS * _.V__) dA
Q on on

As
P [G(pf, F37Xs) + 2—va3'2:| dV = (10)
Q p

where F is the deformation gradient for the solid, A; > 0 is a material para-
meter with units of Newton (meter)®/ Kg2, and d /dt signifies the material
time derivative following the mean motion of the mixture. According to the
Reynolds transport theorem the following constitutive equations must hold

0 Jss
Oe Ag
= A o JssSF (12)
Pr prapf 5 f §f
HS = - ASPSI & vpsv (13)
o a7 Oe F-T e, Oe
As
—V(éffss)jl ) (14)

where fss = Vp; - Vpg, and £ is the mass fraction of the fluid phase.

In this paper we limit our attention to external actions for which by = 0
and by = 0, i.e. only to external surface tractions. In order to find the partial
tractions we assume the existence of a potential function such that the working,
We"t, of external surface tractions is given by

d

—/ we}(t(x) ps7pf7Vps)dV7 (15)

Wext
dt

where Wt equals the surface integral on the right-hand side of eqn.(10). The
external surface tractions for which eqn.(15) holds are conservative. Requiring
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that eqn.(15) hold for all choices of the velocity field, we obtain

8,(/}ext . awext _ a¢ext _ .
Bp. — div (8 Vps) = (, apf = (Y, in Q, (16)
_ awext exct az/)ext . 8¢ext
ts = l:— 6/03 Ps + gsd) ) vps vﬂs + div <psm
a ext . 8 ext 8 .
+ps<av’ép -n)tr(v n)—(a’(ép -n) ai}n
awex’c )
+p,V? ‘n |, on 9N, 17
P ( 5%, (17)
ext
t; = (JW’ pf +gf¢ext) n, on 99, (18)
awext
Tsg = — (psa 7 -n) n, on Jf). (19)

Equations (16) with Cs and C f as constants are necessary conditions for the
existence of a 1)*** for which by = 0 and b s =0.

Solution of a Boundary-Value Problem

We analyze, within a linearized second gradient theory, the static infinites-
imal deformations of an annular porous cylinder filled with an inviscid fluid
and with the inner and the outer surfaces subjected to uniform external pres-
sures p$** and p$** respectively. We assume that surface tractions on the inner
and the outer surfaces of the cylinder, in the reference configuration, equal -pg
and postulate that

1 1 1
€= P_ [_pOI -Hs + ’Y?Apf + EC[HS] -H, — ZPOHS : (Hs - H;r)
0
1

where H := Vu, and Ap, = Po— P2 a = s, f; p0 is the mass density of
the a-th constituent in the reference configuration, C is the elasticity tensor, for
the solid constituent, ,Y?’ Vs and Ky are material parameters. The spherical
tensor K541 accounts for the interaction between the solid and the fluid phases
because of the deformations of the pores. The following form for the elasticity
tensor is prescribed: C[Es] = Atr(E,)I + 2uE,, where X and 4 are the Lamé.

We assume that deformations of the mixture are axi-symmetric, i.e., in cyl-
indrical coordinates the two in-plane components of the displacement, u, and
Ug, are functions of thg radial coordinate 7 only. In order to find boundary
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conditions on the solid and the fluid phases, we consider only those external
tractions for which the following expression for 1/*** holds: :

'd]eXt = Csps + Cfpf + Cint (Ta 9) ) vps Aps + '(’2;(7.)’ e2y)

¥(r) = po + p1r so that different tractions applied on the inner and the outer
surface can be considered. Because of our interest in studying infinitesimal
deformations, we retain terms bilinear in Ap, and Vp,.

Influence of coupling coefficient K s on density profiles

Through these assumptions the governing equations can be reduced to the
following two uncoupled ordinary differential equations ("= 0/ or):

1 2
A {UJ! + ;U,ﬁ} +q(Ksp) Ur=Ts U+ —Up = 0 (22

(€999 +po/po — Ksp)?
Q’Y(}/Po +Y¢r

q(Ksf) = 20+ X — 265p0 — : (23)

where T, is an integration constant to be determined by boundary conditions,
U, = (u.+1/ru,) = tr Hy and Uy = (ug — 1/ up) are dimensionless quant-
ities; in particular U, is related to the increment of the solid apparent density
by Ap, = —p2U,. We specify boundary conditions coming from eqns.(7)-(9)
and eqns.(17)-(19). Equation (22);, for I's = 0, (homogeneous equation) be-
longs to the family of Classical or Modified Bessel equations, according to the
sign of the coefficient ¢. Therefore two different solutions for the increment of
the solid apparent density are obtained in dependence of K¢: if ¢ > 0 then the
solution of eqn.(22); is given by a linear combination of Modified Bessel func-
tions I (£) and Ko (&) , conversely if ¢ < 0 it is given by a linear combination
of Classical Bessel functions Jp (£) and Yp (£). In particular we notice that

when K5 € (Ks(}), K Sc)) the solution of the homogeneous equation is given
by a linear combination of the Modified Bessel functions, as sign (@ =1,
conversely when K¢ € (— oo, KS(})) U (K Sc), o) the solution of the homo-
geneous equation is a linear combination of the Classical Bessel functions, as
sign (¢q) = —1; Ks(}) and Kgc) being the values of the coupling coefficient for
which ¢ vanishes. The solution of eqn.(22); is obtained by simply adding a
suitable cone stant to solution of the homogeneous equation. In the following
figures we draw plots of the Ap,-profiles, for a damaged salt matrix filled with
brine; values of constitutive and geometric parameters and surface tractions are
listed in Table 1.

Note that values for the constitutive coefficients s and Ciyt are introduced
without any experimental validation of the model. However, this choice of
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Table 1. In the first column F and v are the Young modulus and the Poisson ratio of the solid -

matrix; in the second one ,52 and [)?c are the densities of the solid and the fluid constituent in

the reference configuration, /2 and V?c their volume fractions (in the reference configuration the

mixture is saturated).

Constitutive parameters Referential state parameters Iensions
E =200 MPa pY = 1850 Kg/m? pett = 20 M Pa
v=0.33 p% = 1300 Kg/m? PG5’ = 20 M Pa
As =200 Nm?*/K g? 2 =097 Po=—2.21 MPq
Yir=1.6410° Nm*/Kg? v =1-19=0.03 p1= 10° N/m?
Cs =Cy P = P = 1794.5 K g/m?

Cine =1 Nm®/Kg? Py = pIv% =39 Kg/m?

Ry =2m, Ro=20m

values is based on the expectation that these values can describe the pore-
opening effect close to the boundary of the mixture.

<

K

Ap®

. . . 1 2
Figure 1. Qualitative Ap_-profiles for K, f € (Ké f), K i f)).

[ [
s
Ap Ap*
K
0 5 10 15 20 7 & 10 15 20

Figure 2. Qualitative Ap,-profiles for K € (—o0, K 3(}) JU (K S‘)’ oo). Figure 2a corres-
ponds t0 1.75 < K < 1.81, and Figure 2bt0 1.83 < K < 1.9.

In Figure 1 the typical behavior of fields exhibiting boundary layers is
shown, in Figure 2 the solution apparently shows wide oscillations due to the
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change of type occurring in the Bessel equation; this is usually an indication
of instability.

On the basis of the previous remarks on admissible values of the couphng
coefficient Ky we wish to establish which conditions assure the uniqueness
of the solutions of the elastic problem. In doing this our aim is therefore the
characterization of those coupling parameters which guarantee the so-called
structural stability of the PDEs (defined on the space of the considered state
parameters us and Apg) which describe the governing equations of the mix-
ture. According to the criterion stated by [1], we discuss the possibility that
for two different representative elements of this family, corresponding to suffi-
ciently close values of K¢, an homeomorphism on the space of state paramet-
ers exists transforming one solution into the other (topological equivalence).
In order for the aforementioned PDEs to fulfill this requirement it is assumed
that the trajectories of a representative element of the vector field family pre-
scribed by eqns.(22) describes available transformations of a given reference
configuration. Indeed we adopt a physically meaningful energetic criterion:
the reference configuration is stable if the total energy

A
gtot (pfan) = /{; {pe(pfan) + ES|VPS|2 - wext(x, ps7pf7vPs):| dV)

(24)
attains its minimum in the reference configuration. In particular we prove
structural stability when the coupling coefficient lies in a suitable subset of

the open interval (K S), K (2)) The second functional derivative of eqn.(24),
evaluated in the reference conﬁguratlon is in this case positive definite.

In order to prove this statement we assume the second functional derivative
of &, evaluated in the reference configuration to equal the integral over €2 of a
suitable quadratic form multiplied by a scalar quantity « and determine under
which conditions the corresponding spectral problem admits positive eigen-
values. In particular the following quadratic form is assumed for the second
functional derivative of &y

dzgtot
dt?

o) = /Qa [(divv5)2 + skw (Vvy) - skw (Vvy) + (div Vf)Q] dv.
p}.P3
(25)

Numerical simulations show that structural stability is guaranteed in this case
for values of the coupling coefficient which belong to a suitable open sub-
set (K 1]% K? ) of (K 5(}), K, (2 )) This means that the meaningful solutions of
eqns.(22) are those for couphng coefficients belonging to this open interval
only.

.
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Concluding Remarks

In this paper a static linear elastic deformation problem for a fluid saturated
solid is formulated in which the behavior of the solid matrix is described by
a second gradient model. The non-deformed configuration, chosen as a refer-
ence configuration, for the considered mixture can not be stress-free: indeed
the saturating fluid must exhibit internal stresses acting both on the solid con-
stituent and on its sub-bodies.

When limiting our attention to purely spherical pre-stress we find analytical
forms for the solutions of Bessel or Modified Bessel equations in dependence
on the coupling coefficient K 7- The obtained density profiles may show an
oscillating behavior; we prove the conjecture that oscillating profiles are un-
stable as well as the non-oscillating ones which correspond to sufficiently high
absolute values of K f-
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