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Abstract—the similarity search problem is one of the main 
problems in time series data mining. Traditionally, this problem 
has been tackled by sequentially comparing the given query 
against all the time series in the database and returning the time 
series that are within a predetermined threshold of that query. 
But the large size and the high dimensionality of time series 
databases that are in use nowadays make that scenario 
inefficient. There are many representation techniques that aim at 
reducing the dimensionality of time series so that the search can 
be handled faster at a lower-dimensional space level. In this 
paper we propose a new method which is based on using multiple 
reduced spaces that correspond to certain segments’ lengths. The 
new method also uses fast-and-dirty filters which speed up the 
similarity search process. For each space an approximating 
function is used to represent the time series at that space. The 
distances between the time series and those approximating 
functions are calculated and stored at indexing time. At query 
time, the designed filters use these pre-computed distances to 
exclude the time series which are not answers to the query, 
making the least number of distance computations and return a 
candidate response set. The representation level is increased 
gradually to higher levels with stronger exclusion power. The 
cardinality of the candidate response set gets smaller as we move 
from one level to another. A post-processing scanning on this 
response set is performed to filter out any false alarms and return 
the final response set. We present experimentations that compare 
our method with sequential scanning on different datasets, using 
different threshold values and different approximating functions. 
The experiments show that our new method is faster than 
sequential scanning by an order of magnitude.  

Keywords- Time Series Information Retrieval, Time Series 
Data Mining, Similarity Search, Multiple Reduced Spaces  

I.  INTRODUCTION  
Time series is a collection of observations at intervals of 

time points. These data appear in a broad variety of financial, 
medical, and scientific applications. Indexing, searching and 
retrieving of time series is one of the main tasks in time series 
data mining. Due to the numerous applications in which time 
series are involved, and the large size of time series databases, 
speed has always been the principal focus of all the methods 
and algorithms that handle this type of data.  

Time series data mining deals with several tasks such as 
classification, clustering, similarity search, motif discovery, 
anomaly detection, and others. One key to performing these 
tasks efficiently and effectively is to use suitable indexing 

structures that direct the query processing towards regions in 
the search space, where similar time series to the query are 
likely to be found. This makes the retrieving process faster. 

However, the high dimensionality of time series can make 
these indexing structures fail to handle these data. One of the 
best solutions to deal with the high dimensionality of time 
series is to utilize a dimensionality reduction technique that 
helps represent the time series at lower dimensional spaces, and 
then use an indexing structure on the reduced spaces.  

Similarity between two time series can be depicted using a 
similarity measure. Similarity search can be viewed as 
retrieving all the data objects, in the repository, that are “near” 
a given query. This nearness can be modeled using a powerful 
mathematical concept; the metric distance, which is related to 
another mathematical concept; the metric space.   

In time series data mining the most widely used distance is 
the Euclidean distance [12, 19], which is a metric distance. 
This distance is easy to compute, but it is has a few 
inconveniences; it is sensitive to noise and to shifts on the time 
axis. It is also applied to series of identical lengths only [15] 

Time series representation techniques use predefined 
schemes. This means that the parameters which control the 
performance of the search algorithm have been decided at 
indexing time, and the performance of the search process 
depends highly on these parameters, which may prove to be 
inappropriate at query-time. 

In this paper we present a new method that offers more 
control on these parameters. This control enables the search 
algorithm to use the necessary computations only, starting with 
the less costly computations, whose excluding power is lower, 
and moving to more expensive computations, with more 
exclusion power, only when less costly computations fail to 
exclude the time series 

The rest of the paper is organized as follows: in section 2 
we present the necessary background, and main concepts of 
similarity search, in general, and search in time series 
databases, in particular. Our method is explained in section 3. 
The experimental part is presented in section 4. Section 5 
discusses the results of our experiments, and finally in section 6 
we present a conclusion and the different directions of future 
work.. 

II. BACKGROUND 

A. Materic Spaces 
Let D  be a set of objects. A function   



{ }0: U+ℜ→×DDd  , is called a distance metric if the 
following holds;   

i-  0),( ≥yxd                                                  (non-negativity)                                                                                                                        
ii- ),(),( xydyxd =                                             (symmetry)         
iii- 0),( =⇔= yxdyx                                                  (identity)                                                                                                                              
iv- ),(),(),( zydyxdzxd +≤                   (triangular inequality) 

Dzyx ∈∀ ,, . We call ),( dD a metric space 

Search in metric spaces has many advantages, the most 
common of which is that a single indexing structure can be 
applied to several kinds of queries and data types, which can be 
very different in nature.  This is mainly important in 
establishing unified models for the search problem that are 
independent of the data type. This makes metric spaces a solid 
structure that is able to handle several data types.  

In practice, distance metrics are not always easy to find or 
to apply. Many similarity search paradigms relax some of the 
above conditions and use similarity measures instead. 
Similarity measures can be viewed as a weak form of the 
distance metric. The most important condition of the four 
above ones is the triangular inequality, because by using this 
inequality the search algorithm can exclude data objects, which 
are not answers to the query, without making unnecessary 
distance computations. This speeds up the search process, 
because distance computation is usually the most costly 
operation.   

There are so many distance functions that are known in the 
multimedia community, some of them are general, while others 
are used with certain data types only. The most common 
distance is the Minkowski distance:  This is actually a whole 
family of distances, designated by PL  .This distance is defined 
in a n-dimensional space as: 
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If  1=p , the distance is called the Manhattan distance or the 
city block distance. If ∞=p , it is called the infinity distance 
or the chessboard distance. And if 2=p ,we get the well-
known Euclidean distance. 

B. Range Queries 
Given a query q and a radius r , which represents a 

threshold, a tolerance, or a selectivity. The range query 
problem can be specified as retrieving all the data objects that 
are within a distance r  of that query. This can be represented 
as: 

{ }ruqdUurqR ≤∈= ),(;),(                             (2) 
 

Where U is the set of objects in the database. 
Range queries have a main drawback: in some cases we do 

not have any prior knowledge about the database in question. 
So assigning an inappropriate value to r may sometimes result 

in two undesirable situations; returning a response set that is 
too large, or returning an empty response set. What happens in 
these cases is that the user restarts the query using a different 
value of r , and this may happen several times before getting a 
satisfying size of the response set. In very large databases, with 
a computationally expensive distance function, this can be 
laborious. 

C. Sequential Scanning 
In many applications distance computations can be a time 

consuming task that other tasks such as CPU time or even I/O 
time can be neglected. For this reason search algorithms try to 
avoid distance computations as much as possible. In fact, in 
many cases the performance of an algorithm is measured by the 
number of distance computations it requires. Different 
distances also take different computing times. For instance, the 
dynamic time warping (DTW), which is a similarity measure 
that is widely used in time series databases, gives better results 
in time series data mining tasks than the Euclidean distance, 
but it is more costly to compute. 

A trivial solution to the similarity search problem is 
sequential scanning, also known as linear scanning, where the 
query is compared against all the data objects in the data base. 
So in order to perform a range query ),( rqR , the distance 
between the query q  and all the data objects in the data base is 
computed, and all the data objects that satisfy ruqd ≤),(  
constitute the response set. 

It is easy to notice that in the cases where the size of the 
data base is very large, which is the case with most databases in 
use today, sequential scanning is not the best scenario to 
answer similarity queries because it requires too many distance 
evaluations.  

Different techniques can be used to avoid the high cost of 
sequential scanning. One of them is using indexing structures, 
which are offline procedures based on storing some distance 
calculations between all the data points and other points, 
usually called pivots, in different data structures (trees, 
partitions, etc) . Later, and at query time, these calculations can 
be used to exclude some data objects, which, according to these 
pre-computed distances, can not be answers to the query. This 
is what we call a fast-and-dirt filtering of data. What remains 
of the data objects is scanned sequentially against the query to 
get the true answers to the query.   

Nevertheless, even these structures can fail in handling 
high-dimensional databases that their performance can 
deteriorate to become similar to that of sequential scanning, or 
even worse. This is what we call the dimensionality curse. 

D. The Dimensionality Curse 
The term “dimensionality curse”, which is also known by 

“Hughes effect”, was first introduced in [3]. It refers to the fact 
that in order to estimate a function of several variables to a 
given accuracy, the number of data samples required grows 
exponentially as the number of dimensions grows linearly [14]. 
High dimensional data spaces are inherently sparse, because 
available data are usually limited. This results in what it known 
as the empty space phenomenon [21] 

What makes high dimensional spaces difficult to handle is 
that most of the effects resulting from the increase of 



dimensionality are unintuitive. While our perception of high 
dimensional spaces is based on extending our image of low 
dimensional spaces, this technique becomes deceptive when 
the dimension of the space becomes high, which is a part of the 
curse of dimensionality effect. 

Another result of the dimensionality curse is that by 
increasing space dimensionality more space is required to store 
a single data object. As a consequence, the index fanout (the 
number of children per node) is reduced considerably, resulting 
in an increase in disk accesses. In addition, the good properties 
of index structures no longer hold because of the excessive 
overlap, hence the discrimination power of the structure 
decreases [18] 

E. Representaion Techniques  
Time series are highly correlated data, so one of the widely-

known schemes to handle these data is projecting the original 
time series onto lower dimensional spaces and processing the 
query in those reduced spaces.  

When embedding the original space into a lower 
dimensional space and performing the similarity query in the 
transformed space, two main side-effects may be encountered; 
false alarms and false dismissals. False alarms are data objects 
that belong to the response set in the transformed space, but do 
not belong to the response set in the original space. False 
dismissals are data objects that the search algorithm excluded 
in the transformed space, although they are answers to the 
query in the original space. Generally, false alarms are more 
tolerated than false dismissals, because a post-processing scan 
is usually performed on the results of the query in the 
transformed space to filter out these data objects that are not 
valid answers to the query in the original space. However, false 
alarms can slow down the search time if they are too many. 
False dismissals are a more serious problem and they require 
more sophisticated procedures to be avoided.                          

False alarms and false dismissals are dependent on the 
transformation used in the embedding. If f  is a transformation 
from the original space ),( origorig dS  into another space  

),( transtrans dS then in order to guarantee no false dismissals this 
transformation should satisfy: 

 

          ),())(),(( 2121 uudufufd origtrans ≤ ,   origSuu ∈∀ 21,   (3) 

The above condition is known as the lower-bounding lemma. 
[22] 

The GEMINI Framework: In [8] the authors presented a 
generic approach for indexing time series. Later GIMINI was 
extended to other data types. GEMINI reduces the 
dimensionality of the time series by converting them from a 
point in a n-dimensional space into a point in a m-dimensional 
space, where m<<n. A similarity distance is defined on the 
reduced space, which is lower bounding to the original 
similarity distance, thus the similarity search returns no false 
dismissals. A post-processing scan on the candidate response 
set is performed to filter out all false alarms and return the 
final response set. Table 1 illustrates the GEMINI algorithm. 

TABLE I.  THE GEMINI ALGORITHM FOR TIME SERIES RANGE QUERIES 

_________________________________________ 
 
Algorithm: range_query(Q,r)   
1. Transform the time series in the   
   database DB from the original n- 
   dimensional space into a lower  
   dimensional space of m dimensions  
     
2. Define a lower bounding distance on the  
   reduced space:    

   DBSSSSdSSd jiji
n

ji
m ∈∀≤ ,),(),(  

 
3. Eliminate all the time series for which  

   we have rSQd m >),(  → obtain a  
   candidate response set 
 

4. Apply  nd  to the candidate response   
   set and eliminate all the time series  
   that are farther than r from Q  to  
   get the true response set. 
__________________________________________ 
 
Research in time series data mining has focussed on these two 
aspects: dimensionality reduction methods, and similarity 
distances. 

There have been different suggestions to represent time 
series in lower dimensional spaces. To mention a few: Discrete 
Fourier Transform (DFT) [1, 2], Discrete Wavelet Transform 
(DWT) [5], Singular Value Decomposition (SVD)[13], 
Adaptive Piecewise Constant Approximation (APCA) [11], 
Piecewise Aggregate Approximation (PAA) [10,22] , Piecewise 
Linear Approximation (PLA) [16], and Chebyshev Polynomials 
(CP) [4].  

Different similarity distances have also been used. While 
the Euclidian distance is the most widely-known distance in the 
literature, other distances have also been used, one of which is 
the DTW we mentioned in section 2.3. Other distances are Edit 
distance with Real Penalty (ERP) [6], Edit distance with Real 
Sequence (EDR) [7], and the Extended Edit Distance (EED) 
[17].  

III. THE PROPOSED METHOD 

A. Motivation 
Time series representation methods have the following 

scheme, choose a lower-dimensional space, project the data 
objects on that space, define a lower bounding  distance 
function or similarity measure on the reduced space , process 
the similarity search in the reduced (transformed) space , 
exclude the data objects that are farther than r from the query. 
At the end, we get a candidate response set, because, as we 
mentioned above, this scheme may produce some (few or 
many, depending on the method) false alarms, so a post-
processing scan on this candidate answer set, using the original 
data objects and the original distance function or similarity 



measure, is performed to get the final answer set. Pre-computed 
methods use a similar scheme.  

The problem with all these methods is that they are a one-
step method. They decide at indexing-time, the dimension of 
the transformed space. And the performance at query-time 
depends completely on the choice of dimension of the 
transformed space. But in practice, we do not know a priori the 
optimal dimension of the reduced space or the optimal number 
of pivots.  

In this paper we try to address this problem in a different 
way that involves a multi-resolution representation of time 
series; we use multiple reduced spaces, or as we call them 
resolution levels and they store different numbers of pre-
computed distances. Lower resolutions have lower dimensions, 
so distance calculations are less costly than higher resolutions, 
where dimensions are higher, so distance calculations are more 
expensive. But the distances that we compute at any level are 
always less expensive than the distances used in sequential 
scanning, because even at the highest level, the dimension is 
still lower than that of the original space, which is used in 
sequential scanning. In our method, the search algorithm starts 
with the lowest level, and tries to exclude the data objects, 
which are not answers to the query, at that level, where the 
distances are not costly to compute, and it does not access a 
higher level until all the pre-computed distances of the lower 
level have been exploited. Our method uses a strategy that 
economizes distance computations to the lowest degree 
possible. 

B. The poposed Method 
Let O  be the original, n -dimensional space where the time 

series are embedded, R is another space, whose dimension is 
m2 , where nm≤2 . Each time series OS ∈ is segmented into m  

segments. Each segment [ti,tj] of this time series is 
approximated by a function of low dimension: a polynomial of 
degree (1:5), for instance, where the degree of this 
approximating function is lower than the length (the number of 
points) of that segment, and where the approximation error, 
according to a given distance, between this segment and the 
approximating function is minimal, so this function is the best 
approximation of that segment.  A polynomial of the same 
degree is used to approximate all the segments of all the time 
series of the database. 

We associate every segment with two related concepts; the 
first is the image of all the points of that segment on the 
approximating function.  The image vector S~ is, by definition, 
a n -dimensional  vector whose components are the images of 
all the points of all the segments of that time series. The second 
concept is the images of the two end points of each segment   
[ti , tj] on that approximating function, which we call the main 
image of that segment. So for a time series of m  segments we 
have m2  main images. Those m2  main images are, by definition, 
the projection vector RS of the time series on R . 

Figure 1 illustrates the different definitions we presented in 
this section. The segment [0:3] is approximated by a first-
degree polynomial. The image of this segment is the points [a, 
b, c, d]. The main image of this segment is the points [a, d].  
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Figure 1.  The different concepts of the proposed method 

We define two distances on the database. The first is 
denoted by d , and is defined on an n - dimensional space, so it 
is the distance between two time series in the original space , 
i.e. ),( ji SSd , or the distance between the original time series 

and its image vector, i.e. )~,( ii SSd . The second distance is 

denoted by Rd , and is defined on a m2 - dimensional space, so 
it is the distance between  two projection vectors, i.e.    
  ),( R

j
R
i

R SSd .  
Notice that since the main image of each segment is a partial 

set of the image of that segment, this implies that Rd  is a 
partial distance of d . The direct result of this is that if we use 
the Euclidean distance (or any Minkowski distance), for both 
d  and Rd we get: 

 
              )~,~(),( 2121 SSdSSd RRR ≤                              (4) 

 

Relation (4) means that Rd  is a lower bounding of d . 
The resolution level ℵ∈k is a number related to the 

dimensionality of the reduced space R . So the above 
definitions of the projection vector and the image vector can 
be extended to further segmentation of the time series ,  with 
different values kmm≤ , The image vector and the projection 

vector at level k  are denoted by )k(S~ and )(kRS , respectively. 
Figure 2 shows an example of the relationships between the 
previous concepts. 

C. The Double Filtering Inequalities 
Given a range query Q  and a radius r .By applying the 

triangular inequality we get:   

OSQQdSQdSQd kk ∈∀+≤ )~,(),(),~( )()(            (5) 
 

So now the range query can be expressed as :  
 
                        )

~
,(),

~
( )()( kk QQdrSQd +≤                             (6) 

 
 
 



 

 

 

 

 

 

 

Figure 2.  The original space (O,d) embeds the original time series 21, SS  

(top), the images of the approximated time series 21
~,~ SS  (middle). The 

reduced space R  embeds the main images of the approximated time series 
RR SS 21 ,  (bottom) 

 

Since )(~ kS  is the best approximation of S at level k , then for 
any OS ∈ we have: 
 

)~,(),~( )()( kk SSdSQd ≥                                (7) 
 
So (6) can be expressed as:  
 

)~,()~,( )()( kk QQdrSSd +≤                            (8) 
 
This means that all the data objects that satisfy: 
 

)~,()~,( )()( kk QQdrSSd +>                           (9) 
 
Should be excluded.  
 
In a similar way, by applying the triangular inequality, we 
have:  
 

)~,(),()~,( )()( kk SSdSQdSQd +≤                   (10) 
 
And the range query can be expressed as  : 
 

    )~,()~,( )()( kk SSdrSQd +≤                              (11) 
 

Since )(~ kQ  is the best approximation of Q at level k , then 
for any OS ∈ we have:  
 

)~,()~,( )()( kk QQdSQd ≥                             (12) 
 
So (11) can be expressed as:  

 
   )~,()~,( )()( kk SSdrQQd +≤                           (13) 

 
This means that all the data objects that satisfy:  
 

)~,()~,( )()( kk SSdrQQd +>                         (14) 
 
Should be excluded  
 
From both (9) and (14), we get:  

 
rSSdQQd kk >− )~,()~,( )()(                       (15) 

 
Inequality (15) defines the first exclusion condition, which we 
call the first filter 

 

On the other hand, by using the triangular inequality, we 
have : 

 
)~,(),~()~,~( )()()()( kkkk SSdSQdQSd +≤                  (16) 

 
Using the triangular inequality again, and substituting in the 
above relation we get: 
 

)~,()~,(),()~,~( )()()()( kkkk SSdQQdSQdQSd ++≤      (17) 
 
Or: 
 
               )~,()~,()~,~( )()()()( kkkk SSdQQdrQSd ++≤            (18) 
 
If  d  and Rd are Euclidean, and taking (4) into account, we 
can write: 
 

 )~,~(),( )()()()( kkkRkRR QSdQSd ≤                       (19) 
 
By substituting in (18) we get the second exclusion condition: 
 

)~,()~,(),( )()()()( kkkRkRR SSdQQdrQSd ++>     (20) 
 

We call the above exclusion condition the second filter 

D. The Algorithm 
At indexing time: We start by choosing the length of 
segments at each resolution level. The segments at the lowest 
resolution level are the longest. The length of segments gets 
shorter as the resolution level gets higher. Then we choose the 
approximating function to be used with all the time series and 
for all resolution levels. This means that if we choose to 
approximate the time series by a first-degree polynomial, all 
the time series in the database should be approximated by a 
first-degree polynomial.  
       We compute and store all the values OS)S~,S(d )k( ∈∀   
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At query time: The query is segmented at each resolution 
level using the same length of segments that was used to 
segment the time series. Then these segments are 
approximated using the same approximating function that was 
used to approximate the time series. The distances 

)Q~,Q(d )k( are computed. Notice that )Q~,Q(d )k(  is computed 
only once for all the time series in the database. 

At each resolution level, filter one is much less costly to 
apply than filter two, because it does not include any distance 
computations, since the two distances it uses have already been 
computed at indexing time. Filter two contains two distances 
that have been computed at indexing time: 
( )S~,S(d),Q~,Q(d )k()k( ), so the only distance that is to be 
computed at query time is ),( )()( kRkRR QSd . Since lower 
resolution levels have lower dimensions, filter two is less costly 
to compute at those levels than at higher levels, where the 
dimensionality increases. But at any level, the cost of 
computing filter two is never as costly as distance calculations 
at the original space, because we assumed that nm≤2 . 

The algorithm starts at the lowest resolution level by 
applying filter one to the first time series. If this time series is 
excluded, we move to the next time series and apply filter one 
to this time series, if not, the algorithm applies filter two to the 
first time series, then it moves to the next time series. At any 
stage, if all the time series have been excluded the algorithm 
terminates immediately. Only when all the time series have 
been examined at a certain resolution level does the algorithm 
move to a higher level. In this higher level filter two is more 
costly than it was at the lower level, so our algorithm does not 
compute a more expensive distance calculation unless it has 
tried to exclude the time series using a less expensive distance 
at a lower resolution level.  

Applying the two filters , and moving from one resolution 
level to a higher one produces a response set, whose cardinality 
becomes smaller and smaller. 

At the end, and after all resolution levels have been used , 
we get a candidate response set, which contains all the true 
answers to the query, since our method uses a lower bounding 
distance, but it could also contain some false alarms. This 
answer set is post-processed to get the final answer set. 

IV. EXPERIMENTS  
We tested our new method using datasets available at UCR 

[23]. To see how our method scales, we chose the datasets with 
the largest sizes. These datasets are: (50words), (CBF), 
(FaceAll), (Two_Patterns), (wafer), and (yoga). The size of 
these datasets varies between 900 (CBF), and 6164 (wafer). We 
used segment lengths that are of the power of 2. For example, 
when the length of the time series is 128 (CBF, Two_Patterns), 
the length of each segment at the first resolution level is 64, 
and at the second it is 32, and so on. So we obtained 7 
resolution levels with (50words) and (yoga) and 6 resolution 
levels with the others. The approximating function we used 
was of the first degree in the first experiment (linear fitting), of 
the third degree in the second experiment and of the fifth 
degree in the third experiment. The distance we used for both 
d  and Rd  was the Euclidian distance. We compared our 
method with sequential scanning. For all the datasets, the 

values of r varied between r that returns 1% of the time series 
of that dataset (in sequential scanning) and r that returns 10% 
of the time series 

For each data set and for each value of r we launched the 
query 100 times and took the average of these 100 runs. The 
queries in all cases were time series in that dataset chosen at 
random, and then noise was added to them. 

We decided to a use a platform-independent approach to 
test our method using latency time, so we added a counter to 
compute the number of different operations (>,+ - ,*,abs, sqrt) 
that both sequential scanning and our method used in the search 
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Figure 3.  Comparison of the latency times of sequential scanning (dashed 
line) and the latency time of our method on datasets (yoga) (above), (wafer) 
(middle) and (50words) (below). The figure shows the latency time using as 
an approximating function a first degree polynomial (P1), a third degree 
polynomial (P3), and a fifth degree polynomial (P5) 



process. Then the number of each operation was multiplied by 
the latency time of that operation to get the total latency time 
for sequential scanning and for our method.  The latency time 
of the different operations was obtained from a performance 
study of floating point operations [20]. According to this study, 
the latency time (given in processor cycles) is 5 cycles for (>, + 
-), 1 cycle for (abs), 24 cycles for (*), and 209 cycles for (sqrt). 
This approach actually puts our method at a disadvantage, 
because our method uses the square root operation, which is an 
expensive operation, more often. So the results of our method 
should be viewed as a worst case performance of our method. 
Figure 3, shows the results we obtained using as an 
approximation function a first, third, and fifth degree 
polynomials. Due to space limitation, we present the results of 
three datasets only: (yoga), (50words), and (wafer). The results 
show that our method outperforms sequential scanning by an 
order of magnitude on average.  

V. DISCUSSION  
The experiments show that the general performance of our 

algorithm outperforms that of sequential scan. The 
performance of the two filters seems to be complementary, 
since filter one filters out more time series at lower resolution 
levels, while filter two filters out more time series at higher 
levels. This phenomenon can be explained by examining the 
relations (15) and (20): at lower resolution levels segments are 
longer, so the approximation error is higher. As a consequence, 
the absolute difference in filter one is a difference between 
relatively large numbers: )~,( )(kQQd , )~,( )(kSSd  ,so this 
difference has a better chance of exceeding the value of r and 
excluding the time series than at higher levels, where the 
approximation is better, so these numbers become smaller and 
their difference has less chance of exceeding r   

The performance of filter two is different; at lower levels 
),( )()( kRkRR QSd is small while )~,()~,( )()( kk SSdQQd +  is relatively 

large (see the beginning of this section) , so the chance for this 
filter to exclude time series is low. As the resolution level gets 
higher ),( )()( kRkRR QSd  gets bigger, while )~,()~,( )()( kk SSdQQd +  
gets smaller, so this filter has a better chance of excluding time 
series at higher levels. 

Another thing we can notice is that the performance of the 
algorithm gets better as the degree of the approximating 
function gets higher, which is easy to explain, since the 
approximation error gets smaller. An interesting phenomenon 
is that for very small r, the performance drops as we use a 
higher degree approximating function. We think the reason for 
this is that the algorithm pays an overhead cost when using a 
higher degree approximation.  

We also notice that as the degree of the approximating 
function gets higher, the performance of the first filter 
deteriorates as shown in Table 2 and Figure 4. 

VI. CONCLUSION AND FUTURE WORK  
In this paper we presented a new method that uses a new 

paradigm to tackle the similarity search problem. The 
conducted experiments give promising results compared with 
those obtained by sequential scanning. In all experiments, the 
performance  was  much better than  that of sequential scanning 

TABLE II.  FILTERING EFFICIENCIES (IN PERCENT) AS A FUNCTION OF THE 
FITTING POLYNOMIAL AND THE RESOLUTION LEVEL FOR THE 50WORDS 
DATASET, FOR RANGE QUERIES THAT RETRIEVE 1% (TOP) AND 10% (BOTTOM) 
OF THIS DATASET. THE NUMBERS ARE ROUNDED-UP.  

  N/128 N/64 N/32 N/16 N/8 N/4 N/2 AVR 

P=1 Filter 1 40 34 13 1 0 0 0 89 

 Filter 2 0 0 0 2 9 1 0 11 

P=3 Filter 1 64 15 2 0 0 0 0 81 

 Filter 2 0 0 4 14 1 0 0 19 

P=5 Filter 1 74 6 0 0 0 0 0 80 

 Filter 2 0 2 12 6 0 0 0 20 
 
 

  N/128 N/64 N/32 N/16 N/8 N/4 N/2 AVR 

P=1 Filter 1 0 2 1 0 0 0 0 3 

 Filter 2 0 0 0 0 1 74 20 94 

P=3 Filter 1 5 2 0 0 0 0 0 7 

 Filter 2 0 0 0 0 9 71 11 90 

P=5 Filter 1 6 0 0 0 0 0 0 6 

 Filter 2 0 0 0 0 13 67 11 91 
 
for small values of r , and was still better than sequential 
scanning, even for large values of  rlevels. This phenomenon 
can be explained by examining the relations (15) and (20): at 
lower resolution levels segments are longer, so the 
approximation error is higher. As a consequence, the absolute 
difference in filter one is a difference between relatively large 
numbers: )~,( )(kQQd , )

~
,( )(kSSd  ,so this difference has a 

better chance of exceeding the value of r and excluding the 
time series than at higher levels, where the approximation is 
better, so these numbers become smaller and their difference 
has less chance of exceeding r  

In this paper we presented the results obtained by using the 
Euclidean distance, but our method can support a variety of 
distances. We conducted several preliminary experiments using 
other distances and they gave similar results. 
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Figure 4.  Speedups for queries that retrieve 1% and 10% of the datasets 
averaged on the 6 experimented datasets (50words, CBF, FaceAll, wafer, 
Two_patterns and yoga). 



While working on this method and conducting the 
experiments we realized that there are many heuristics that can 
be used to improve this method. The first direction of 
improvement is optimizing the filtering process by sorting the 
distances before filtering. The preliminary experiments that we 
conducted using some optimising heuristics, which we did not 
report in this paper because they are not complete yet, showed 
that sorting improved the performance of our method. Other 
directions of optimizing, like recycling some calculations from 
lower levels, gave good results too, yet we need to find the best 
recycling scheme. The approximating functions we used in this 
paper were polynomials, but we think that other types of 
functions, which are particularly designed to approximate time 
series, can even give better results. We notice that the 
performance of the two filters depends highly on the resolution 
level. This idea can be exploited by using different segmenting 
schemes, mainly schemes that use finer segmenting in the areas 
where the approximation error is large, and a coarser 
segmenting in the areas where the approximating error is small.  

The fact that filter one stops filtering out time series at a 
certain level and that filter two starts filtering out at a certain 
level can suggest an “economised” scheme for applying the 
filters. 

Another, and more important, direction of future work is to 
use one of the dimensionality reduction methods, which are 
well-known in the literature, as an approximating function. The 
principle here is that dimensionality reduction methods aim at 
finding the best representation of the original space at a lower 
space, so this can be viewed as an approximation of the time 
series. 

When we started developing our method, our aim was also 
to use it on multidimensional time series, so this is still a main 
direction of future work. 

The final direction of future work is to apply our method to 
other data types, where the idea of resolution level is pertinent. 
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