
HAL Id: hal-00509243
https://hal.science/hal-00509243v1

Submitted on 21 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speeding-up the Similarity Search in Time Series
Databases by Coupling Dimensionality Reduction

Techniques with a Fast-and-dirty Filter
Muhammad Marwan Muhammad Fuad, Pierre-François Marteau

To cite this version:
Muhammad Marwan Muhammad Fuad, Pierre-François Marteau. Speeding-up the Similarity Search
in Time Series Databases by Coupling Dimensionality Reduction Techniques with a Fast-and-dirty
Filter. Fourth IEEE International Conference on Semantic Computing (ICSC2010), Sep 2010, Pitts-
burgh, United States. pp.101-104, �10.1109/ICSC.2010.34�. �hal-00509243�

https://hal.science/hal-00509243v1
https://hal.archives-ouvertes.fr

Time Series Retrieval Using Multiple Reduced
Spaces

Muhammad Marwan Muhammad Fuad
Université de Bretagne Sud

BP. 573, 56017 Vannes, France
marwan.fuad@univ-ubs.fr

Abstract—the similarity search problem is one of the main
problems in time series data mining. Traditionally, this problem
has been tackled by sequentially comparing the given query
against all the time series in the database and returning the time
series that are within a predetermined threshold of that query.
But the large size and the high dimensionality of time series
databases that are in use nowadays make that scenario
inefficient. There are many representation techniques that aim at
reducing the dimensionality of time series so that the search can
be handled faster at a lower-dimensional space level. In this
paper we propose a new method which is based on using multiple
reduced spaces that correspond to certain segments’ lengths. The
new method also uses fast-and-dirty filters which speed up the
similarity search process. For each space an approximating
function is used to represent the time series at that space. The
distances between the time series and those approximating
functions are calculated and stored at indexing time. At query
time, the designed filters use these pre-computed distances to
exclude the time series which are not answers to the query,
making the least number of distance computations and return a
candidate response set. The representation level is increased
gradually to higher levels with stronger exclusion power. The
cardinality of the candidate response set gets smaller as we move
from one level to another. A post-processing scanning on this
response set is performed to filter out any false alarms and return
the final response set. We present experimentations that compare
our method with sequential scanning on different datasets, using
different threshold values and different approximating functions.
The experiments show that our new method is faster than
sequential scanning by an order of magnitude.

Keywords- Time Series Information Retrieval, Time Series
Data Mining, Similarity Search, Multiple Reduced Spaces

I. INTRODUCTION
Time series is a collection of observations at intervals of

time points. These data appear in a broad variety of financial,
medical, and scientific applications. Indexing, searching and
retrieving of time series is one of the main tasks in time series
data mining. Due to the numerous applications in which time
series are involved, and the large size of time series databases,
speed has always been the principal focus of all the methods
and algorithms that handle this type of data.

Time series data mining deals with several tasks such as
classification, clustering, similarity search, motif discovery,
anomaly detection, and others. One key to performing these
tasks efficiently and effectively is to use suitable indexing

structures that direct the query processing towards regions in
the search space, where similar time series to the query are
likely to be found. This makes the retrieving process faster.

However, the high dimensionality of time series can make
these indexing structures fail to handle these data. One of the
best solutions to deal with the high dimensionality of time
series is to utilize a dimensionality reduction technique that
helps represent the time series at lower dimensional spaces, and
then use an indexing structure on the reduced spaces.

Similarity between two time series can be depicted using a
similarity measure. Similarity search can be viewed as
retrieving all the data objects, in the repository, that are “near”
a given query. This nearness can be modeled using a powerful
mathematical concept; the metric distance, which is related to
another mathematical concept; the metric space.

In time series data mining the most widely used distance is
the Euclidean distance [12, 19], which is a metric distance.
This distance is easy to compute, but it is has a few
inconveniences; it is sensitive to noise and to shifts on the time
axis. It is also applied to series of identical lengths only [15]

Time series representation techniques use predefined
schemes. This means that the parameters which control the
performance of the search algorithm have been decided at
indexing time, and the performance of the search process
depends highly on these parameters, which may prove to be
inappropriate at query-time.

In this paper we present a new method that offers more
control on these parameters. This control enables the search
algorithm to use the necessary computations only, starting with
the less costly computations, whose excluding power is lower,
and moving to more expensive computations, with more
exclusion power, only when less costly computations fail to
exclude the time series

The rest of the paper is organized as follows: in section 2
we present the necessary background, and main concepts of
similarity search, in general, and search in time series
databases, in particular. Our method is explained in section 3.
The experimental part is presented in section 4. Section 5
discusses the results of our experiments, and finally in section 6
we present a conclusion and the different directions of future
work..

II. BACKGROUND

A. Materic Spaces
Let D be a set of objects. A function

{ }0: U+ℜ→×DDd , is called a distance metric if the
following holds;

i- 0),(≥yxd (non-negativity)
ii-),(),(xydyxd = (symmetry)
iii- 0),(=⇔= yxdyx (identity)
iv-),(),(),(zydyxdzxd +≤ (triangular inequality)

Dzyx ∈∀ ,, . We call),(dD a metric space

Search in metric spaces has many advantages, the most
common of which is that a single indexing structure can be
applied to several kinds of queries and data types, which can be
very different in nature. This is mainly important in
establishing unified models for the search problem that are
independent of the data type. This makes metric spaces a solid
structure that is able to handle several data types.

In practice, distance metrics are not always easy to find or
to apply. Many similarity search paradigms relax some of the
above conditions and use similarity measures instead.
Similarity measures can be viewed as a weak form of the
distance metric. The most important condition of the four
above ones is the triangular inequality, because by using this
inequality the search algorithm can exclude data objects, which
are not answers to the query, without making unnecessary
distance computations. This speeds up the search process,
because distance computation is usually the most costly
operation.

There are so many distance functions that are known in the
multimedia community, some of them are general, while others
are used with certain data types only. The most common
distance is the Minkowski distance: This is actually a whole
family of distances, designated by PL .This distance is defined
in a n-dimensional space as:

 P

pn

i
iinnP yxyyyxxxL ∑

=

−=
1

2,121)],...,(),,...,,[((1)

If 1=p , the distance is called the Manhattan distance or the
city block distance. If ∞=p , it is called the infinity distance
or the chessboard distance. And if 2=p ,we get the well-
known Euclidean distance.

B. Range Queries
Given a query q and a radius r , which represents a

threshold, a tolerance, or a selectivity. The range query
problem can be specified as retrieving all the data objects that
are within a distance r of that query. This can be represented
as:

{ }ruqdUurqR ≤∈=),(;),((2)

Where U is the set of objects in the database.
Range queries have a main drawback: in some cases we do

not have any prior knowledge about the database in question.
So assigning an inappropriate value to r may sometimes result

in two undesirable situations; returning a response set that is
too large, or returning an empty response set. What happens in
these cases is that the user restarts the query using a different
value of r , and this may happen several times before getting a
satisfying size of the response set. In very large databases, with
a computationally expensive distance function, this can be
laborious.

C. Sequential Scanning
In many applications distance computations can be a time

consuming task that other tasks such as CPU time or even I/O
time can be neglected. For this reason search algorithms try to
avoid distance computations as much as possible. In fact, in
many cases the performance of an algorithm is measured by the
number of distance computations it requires. Different
distances also take different computing times. For instance, the
dynamic time warping (DTW), which is a similarity measure
that is widely used in time series databases, gives better results
in time series data mining tasks than the Euclidean distance,
but it is more costly to compute.

A trivial solution to the similarity search problem is
sequential scanning, also known as linear scanning, where the
query is compared against all the data objects in the data base.
So in order to perform a range query),(rqR , the distance
between the query q and all the data objects in the data base is
computed, and all the data objects that satisfy ruqd ≤),(
constitute the response set.

It is easy to notice that in the cases where the size of the
data base is very large, which is the case with most databases in
use today, sequential scanning is not the best scenario to
answer similarity queries because it requires too many distance
evaluations.

Different techniques can be used to avoid the high cost of
sequential scanning. One of them is using indexing structures,
which are offline procedures based on storing some distance
calculations between all the data points and other points,
usually called pivots, in different data structures (trees,
partitions, etc) . Later, and at query time, these calculations can
be used to exclude some data objects, which, according to these
pre-computed distances, can not be answers to the query. This
is what we call a fast-and-dirt filtering of data. What remains
of the data objects is scanned sequentially against the query to
get the true answers to the query.

Nevertheless, even these structures can fail in handling
high-dimensional databases that their performance can
deteriorate to become similar to that of sequential scanning, or
even worse. This is what we call the dimensionality curse.

D. The Dimensionality Curse
The term “dimensionality curse”, which is also known by

“Hughes effect”, was first introduced in [3]. It refers to the fact
that in order to estimate a function of several variables to a
given accuracy, the number of data samples required grows
exponentially as the number of dimensions grows linearly [14].
High dimensional data spaces are inherently sparse, because
available data are usually limited. This results in what it known
as the empty space phenomenon [21]

What makes high dimensional spaces difficult to handle is
that most of the effects resulting from the increase of

dimensionality are unintuitive. While our perception of high
dimensional spaces is based on extending our image of low
dimensional spaces, this technique becomes deceptive when
the dimension of the space becomes high, which is a part of the
curse of dimensionality effect.

Another result of the dimensionality curse is that by
increasing space dimensionality more space is required to store
a single data object. As a consequence, the index fanout (the
number of children per node) is reduced considerably, resulting
in an increase in disk accesses. In addition, the good properties
of index structures no longer hold because of the excessive
overlap, hence the discrimination power of the structure
decreases [18]

E. Representaion Techniques
Time series are highly correlated data, so one of the widely-

known schemes to handle these data is projecting the original
time series onto lower dimensional spaces and processing the
query in those reduced spaces.

When embedding the original space into a lower
dimensional space and performing the similarity query in the
transformed space, two main side-effects may be encountered;
false alarms and false dismissals. False alarms are data objects
that belong to the response set in the transformed space, but do
not belong to the response set in the original space. False
dismissals are data objects that the search algorithm excluded
in the transformed space, although they are answers to the
query in the original space. Generally, false alarms are more
tolerated than false dismissals, because a post-processing scan
is usually performed on the results of the query in the
transformed space to filter out these data objects that are not
valid answers to the query in the original space. However, false
alarms can slow down the search time if they are too many.
False dismissals are a more serious problem and they require
more sophisticated procedures to be avoided.

False alarms and false dismissals are dependent on the
transformation used in the embedding. If f is a transformation
from the original space),(origorig dS into another space

),(transtrans dS then in order to guarantee no false dismissals this
transformation should satisfy:

),())(),((2121 uudufufd origtrans ≤ , origSuu ∈∀ 21, (3)

The above condition is known as the lower-bounding lemma.
[22]

The GEMINI Framework: In [8] the authors presented a
generic approach for indexing time series. Later GIMINI was
extended to other data types. GEMINI reduces the
dimensionality of the time series by converting them from a
point in a n-dimensional space into a point in a m-dimensional
space, where m<<n. A similarity distance is defined on the
reduced space, which is lower bounding to the original
similarity distance, thus the similarity search returns no false
dismissals. A post-processing scan on the candidate response
set is performed to filter out all false alarms and return the
final response set. Table 1 illustrates the GEMINI algorithm.

TABLE I. THE GEMINI ALGORITHM FOR TIME SERIES RANGE QUERIES

Algorithm: range_query(Q,r)
1. Transform the time series in the
 database DB from the original n-
 dimensional space into a lower
 dimensional space of m dimensions

2. Define a lower bounding distance on the
 reduced space:

 DBSSSSdSSd jiji
n

ji
m ∈∀≤ ,),(),(

3. Eliminate all the time series for which

 we have rSQd m >),(→ obtain a
 candidate response set

4. Apply nd to the candidate response
 set and eliminate all the time series
 that are farther than r from Q to
 get the true response set.
__

Research in time series data mining has focussed on these two
aspects: dimensionality reduction methods, and similarity
distances.

There have been different suggestions to represent time
series in lower dimensional spaces. To mention a few: Discrete
Fourier Transform (DFT) [1, 2], Discrete Wavelet Transform
(DWT) [5], Singular Value Decomposition (SVD)[13],
Adaptive Piecewise Constant Approximation (APCA) [11],
Piecewise Aggregate Approximation (PAA) [10,22] , Piecewise
Linear Approximation (PLA) [16], and Chebyshev Polynomials
(CP) [4].

Different similarity distances have also been used. While
the Euclidian distance is the most widely-known distance in the
literature, other distances have also been used, one of which is
the DTW we mentioned in section 2.3. Other distances are Edit
distance with Real Penalty (ERP) [6], Edit distance with Real
Sequence (EDR) [7], and the Extended Edit Distance (EED)
[17].

III. THE PROPOSED METHOD

A. Motivation
Time series representation methods have the following

scheme, choose a lower-dimensional space, project the data
objects on that space, define a lower bounding distance
function or similarity measure on the reduced space , process
the similarity search in the reduced (transformed) space ,
exclude the data objects that are farther than r from the query.
At the end, we get a candidate response set, because, as we
mentioned above, this scheme may produce some (few or
many, depending on the method) false alarms, so a post-
processing scan on this candidate answer set, using the original
data objects and the original distance function or similarity

measure, is performed to get the final answer set. Pre-computed
methods use a similar scheme.

The problem with all these methods is that they are a one-
step method. They decide at indexing-time, the dimension of
the transformed space. And the performance at query-time
depends completely on the choice of dimension of the
transformed space. But in practice, we do not know a priori the
optimal dimension of the reduced space or the optimal number
of pivots.

In this paper we try to address this problem in a different
way that involves a multi-resolution representation of time
series; we use multiple reduced spaces, or as we call them
resolution levels and they store different numbers of pre-
computed distances. Lower resolutions have lower dimensions,
so distance calculations are less costly than higher resolutions,
where dimensions are higher, so distance calculations are more
expensive. But the distances that we compute at any level are
always less expensive than the distances used in sequential
scanning, because even at the highest level, the dimension is
still lower than that of the original space, which is used in
sequential scanning. In our method, the search algorithm starts
with the lowest level, and tries to exclude the data objects,
which are not answers to the query, at that level, where the
distances are not costly to compute, and it does not access a
higher level until all the pre-computed distances of the lower
level have been exploited. Our method uses a strategy that
economizes distance computations to the lowest degree
possible.

B. The poposed Method
Let O be the original, n -dimensional space where the time

series are embedded, R is another space, whose dimension is
m2 , where nm≤2 . Each time series OS ∈ is segmented into m

segments. Each segment [ti,tj] of this time series is
approximated by a function of low dimension: a polynomial of
degree (1:5), for instance, where the degree of this
approximating function is lower than the length (the number of
points) of that segment, and where the approximation error,
according to a given distance, between this segment and the
approximating function is minimal, so this function is the best
approximation of that segment. A polynomial of the same
degree is used to approximate all the segments of all the time
series of the database.

We associate every segment with two related concepts; the
first is the image of all the points of that segment on the
approximating function. The image vector S~ is, by definition,
a n -dimensional vector whose components are the images of
all the points of all the segments of that time series. The second
concept is the images of the two end points of each segment
[ti , tj] on that approximating function, which we call the main
image of that segment. So for a time series of m segments we
have m2 main images. Those m2 main images are, by definition,
the projection vector RS of the time series on R .

Figure 1 illustrates the different definitions we presented in
this section. The segment [0:3] is approximated by a first-
degree polynomial. The image of this segment is the points [a,
b, c, d]. The main image of this segment is the points [a, d].

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

 b

 a

 c
 d

the time series

the image vector

the main image

Figure 1. The different concepts of the proposed method

We define two distances on the database. The first is
denoted by d , and is defined on an n - dimensional space, so it
is the distance between two time series in the original space ,
i.e.),(ji SSd , or the distance between the original time series

and its image vector, i.e.)~,(ii SSd . The second distance is

denoted by Rd , and is defined on a m2 - dimensional space, so
it is the distance between two projection vectors, i.e.
),(R

j
R
i

R SSd .
Notice that since the main image of each segment is a partial

set of the image of that segment, this implies that Rd is a
partial distance of d . The direct result of this is that if we use
the Euclidean distance (or any Minkowski distance), for both
d and Rd we get:

)~,~(),(2121 SSdSSd RRR ≤ (4)

Relation (4) means that Rd is a lower bounding of d .
The resolution level ℵ∈k is a number related to the

dimensionality of the reduced space R . So the above
definitions of the projection vector and the image vector can
be extended to further segmentation of the time series , with
different values kmm≤ , The image vector and the projection

vector at level k are denoted by)k(S~ and)(kRS , respectively.
Figure 2 shows an example of the relationships between the
previous concepts.

C. The Double Filtering Inequalities
Given a range query Q and a radius r .By applying the

triangular inequality we get:

OSQQdSQdSQd kk ∈∀+≤)~,(),(),~()()((5)

So now the range query can be expressed as :

)

~
,(),

~
()()(kk QQdrSQd +≤ (6)

Figure 2. The original space (O,d) embeds the original time series 21, SS

(top), the images of the approximated time series 21
~,~ SS (middle). The

reduced space R embeds the main images of the approximated time series
RR SS 21 , (bottom)

Since)(~ kS is the best approximation of S at level k , then for
any OS ∈ we have:

)~,(),~()()(kk SSdSQd ≥ (7)

So (6) can be expressed as:

)~,()~,()()(kk QQdrSSd +≤ (8)

This means that all the data objects that satisfy:

)~,()~,()()(kk QQdrSSd +> (9)

Should be excluded.

In a similar way, by applying the triangular inequality, we
have:

)~,(),()~,()()(kk SSdSQdSQd +≤ (10)

And the range query can be expressed as :

)~,()~,()()(kk SSdrSQd +≤ (11)

Since)(~ kQ is the best approximation of Q at level k , then
for any OS ∈ we have:

)~,()~,()()(kk QQdSQd ≥ (12)

So (11) can be expressed as:

)~,()~,()()(kk SSdrQQd +≤ (13)

This means that all the data objects that satisfy:

)~,()~,()()(kk SSdrQQd +> (14)

Should be excluded

From both (9) and (14), we get:

rSSdQQd kk >−)~,()~,()()((15)

Inequality (15) defines the first exclusion condition, which we
call the first filter

On the other hand, by using the triangular inequality, we
have :

)~,(),~()~,~()()()()(kkkk SSdSQdQSd +≤ (16)

Using the triangular inequality again, and substituting in the
above relation we get:

)~,()~,(),()~,~()()()()(kkkk SSdQQdSQdQSd ++≤ (17)

Or:

)~,()~,()~,~()()()()(kkkk SSdQQdrQSd ++≤ (18)

If d and Rd are Euclidean, and taking (4) into account, we
can write:

)~,~(),()()()()(kkkRkRR QSdQSd ≤ (19)

By substituting in (18) we get the second exclusion condition:

)~,()~,(),()()()()(kkkRkRR SSdQQdrQSd ++> (20)

We call the above exclusion condition the second filter

D. The Algorithm
At indexing time: We start by choosing the length of
segments at each resolution level. The segments at the lowest
resolution level are the longest. The length of segments gets
shorter as the resolution level gets higher. Then we choose the
approximating function to be used with all the time series and
for all resolution levels. This means that if we choose to
approximate the time series by a first-degree polynomial, all
the time series in the database should be approximated by a
first-degree polynomial.
 We compute and store all the values OS)S~,S(d)k(∈∀

1S

S
k~)(

1
 S~

)k(

2

2S

 d

)k(RS2
)k(RS1

 d

Rd

At query time: The query is segmented at each resolution
level using the same length of segments that was used to
segment the time series. Then these segments are
approximated using the same approximating function that was
used to approximate the time series. The distances

)Q~,Q(d)k(are computed. Notice that)Q~,Q(d)k(is computed
only once for all the time series in the database.

At each resolution level, filter one is much less costly to
apply than filter two, because it does not include any distance
computations, since the two distances it uses have already been
computed at indexing time. Filter two contains two distances
that have been computed at indexing time:
()S~,S(d),Q~,Q(d)k()k(), so the only distance that is to be
computed at query time is),()()(kRkRR QSd . Since lower
resolution levels have lower dimensions, filter two is less costly
to compute at those levels than at higher levels, where the
dimensionality increases. But at any level, the cost of
computing filter two is never as costly as distance calculations
at the original space, because we assumed that nm≤2 .

The algorithm starts at the lowest resolution level by
applying filter one to the first time series. If this time series is
excluded, we move to the next time series and apply filter one
to this time series, if not, the algorithm applies filter two to the
first time series, then it moves to the next time series. At any
stage, if all the time series have been excluded the algorithm
terminates immediately. Only when all the time series have
been examined at a certain resolution level does the algorithm
move to a higher level. In this higher level filter two is more
costly than it was at the lower level, so our algorithm does not
compute a more expensive distance calculation unless it has
tried to exclude the time series using a less expensive distance
at a lower resolution level.

Applying the two filters , and moving from one resolution
level to a higher one produces a response set, whose cardinality
becomes smaller and smaller.

At the end, and after all resolution levels have been used ,
we get a candidate response set, which contains all the true
answers to the query, since our method uses a lower bounding
distance, but it could also contain some false alarms. This
answer set is post-processed to get the final answer set.

IV. EXPERIMENTS
We tested our new method using datasets available at UCR

[23]. To see how our method scales, we chose the datasets with
the largest sizes. These datasets are: (50words), (CBF),
(FaceAll), (Two_Patterns), (wafer), and (yoga). The size of
these datasets varies between 900 (CBF), and 6164 (wafer). We
used segment lengths that are of the power of 2. For example,
when the length of the time series is 128 (CBF, Two_Patterns),
the length of each segment at the first resolution level is 64,
and at the second it is 32, and so on. So we obtained 7
resolution levels with (50words) and (yoga) and 6 resolution
levels with the others. The approximating function we used
was of the first degree in the first experiment (linear fitting), of
the third degree in the second experiment and of the fifth
degree in the third experiment. The distance we used for both
d and Rd was the Euclidian distance. We compared our
method with sequential scanning. For all the datasets, the

values of r varied between r that returns 1% of the time series
of that dataset (in sequential scanning) and r that returns 10%
of the time series

For each data set and for each value of r we launched the
query 100 times and took the average of these 100 runs. The
queries in all cases were time series in that dataset chosen at
random, and then noise was added to them.

We decided to a use a platform-independent approach to
test our method using latency time, so we added a counter to
compute the number of different operations (>,+ - ,*,abs, sqrt)
that both sequential scanning and our method used in the search

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 107

r

La
te

nc
y

Ti
m

e

yoga

P1
P3
P5
Sequential Scan

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3
x 107

r

La
te

nc
y

Ti
m

e

wafer

P1
P3
P5
Sequential Scan

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4
x 106

r

La
te

nc
y

Ti
m

e

50words

P1
P3
P5
Sequential Scan

Figure 3. Comparison of the latency times of sequential scanning (dashed
line) and the latency time of our method on datasets (yoga) (above), (wafer)
(middle) and (50words) (below). The figure shows the latency time using as
an approximating function a first degree polynomial (P1), a third degree
polynomial (P3), and a fifth degree polynomial (P5)

process. Then the number of each operation was multiplied by
the latency time of that operation to get the total latency time
for sequential scanning and for our method. The latency time
of the different operations was obtained from a performance
study of floating point operations [20]. According to this study,
the latency time (given in processor cycles) is 5 cycles for (>, +
-), 1 cycle for (abs), 24 cycles for (*), and 209 cycles for (sqrt).
This approach actually puts our method at a disadvantage,
because our method uses the square root operation, which is an
expensive operation, more often. So the results of our method
should be viewed as a worst case performance of our method.
Figure 3, shows the results we obtained using as an
approximation function a first, third, and fifth degree
polynomials. Due to space limitation, we present the results of
three datasets only: (yoga), (50words), and (wafer). The results
show that our method outperforms sequential scanning by an
order of magnitude on average.

V. DISCUSSION
The experiments show that the general performance of our

algorithm outperforms that of sequential scan. The
performance of the two filters seems to be complementary,
since filter one filters out more time series at lower resolution
levels, while filter two filters out more time series at higher
levels. This phenomenon can be explained by examining the
relations (15) and (20): at lower resolution levels segments are
longer, so the approximation error is higher. As a consequence,
the absolute difference in filter one is a difference between
relatively large numbers:)~,()(kQQd ,)~,()(kSSd ,so this
difference has a better chance of exceeding the value of r and
excluding the time series than at higher levels, where the
approximation is better, so these numbers become smaller and
their difference has less chance of exceeding r

The performance of filter two is different; at lower levels
),()()(kRkRR QSd is small while)~,()~,()()(kk SSdQQd + is relatively

large (see the beginning of this section) , so the chance for this
filter to exclude time series is low. As the resolution level gets
higher),()()(kRkRR QSd gets bigger, while)~,()~,()()(kk SSdQQd +
gets smaller, so this filter has a better chance of excluding time
series at higher levels.

Another thing we can notice is that the performance of the
algorithm gets better as the degree of the approximating
function gets higher, which is easy to explain, since the
approximation error gets smaller. An interesting phenomenon
is that for very small r, the performance drops as we use a
higher degree approximating function. We think the reason for
this is that the algorithm pays an overhead cost when using a
higher degree approximation.

We also notice that as the degree of the approximating
function gets higher, the performance of the first filter
deteriorates as shown in Table 2 and Figure 4.

VI. CONCLUSION AND FUTURE WORK
In this paper we presented a new method that uses a new

paradigm to tackle the similarity search problem. The
conducted experiments give promising results compared with
those obtained by sequential scanning. In all experiments, the
performance was much better than that of sequential scanning

TABLE II. FILTERING EFFICIENCIES (IN PERCENT) AS A FUNCTION OF THE
FITTING POLYNOMIAL AND THE RESOLUTION LEVEL FOR THE 50WORDS
DATASET, FOR RANGE QUERIES THAT RETRIEVE 1% (TOP) AND 10% (BOTTOM)
OF THIS DATASET. THE NUMBERS ARE ROUNDED-UP.

 N/128 N/64 N/32 N/16 N/8 N/4 N/2 AVR

P=1 Filter 1 40 34 13 1 0 0 0 89

 Filter 2 0 0 0 2 9 1 0 11

P=3 Filter 1 64 15 2 0 0 0 0 81

 Filter 2 0 0 4 14 1 0 0 19

P=5 Filter 1 74 6 0 0 0 0 0 80

 Filter 2 0 2 12 6 0 0 0 20

 N/128 N/64 N/32 N/16 N/8 N/4 N/2 AVR

P=1 Filter 1 0 2 1 0 0 0 0 3

 Filter 2 0 0 0 0 1 74 20 94

P=3 Filter 1 5 2 0 0 0 0 0 7

 Filter 2 0 0 0 0 9 71 11 90

P=5 Filter 1 6 0 0 0 0 0 0 6

 Filter 2 0 0 0 0 13 67 11 91

for small values of r , and was still better than sequential
scanning, even for large values of rlevels. This phenomenon
can be explained by examining the relations (15) and (20): at
lower resolution levels segments are longer, so the
approximation error is higher. As a consequence, the absolute
difference in filter one is a difference between relatively large
numbers:)~,()(kQQd ,)

~
,()(kSSd ,so this difference has a

better chance of exceeding the value of r and excluding the
time series than at higher levels, where the approximation is
better, so these numbers become smaller and their difference
has less chance of exceeding r

In this paper we presented the results obtained by using the
Euclidean distance, but our method can support a variety of
distances. We conducted several preliminary experiments using
other distances and they gave similar results.

1

10

100

1% 10,00% 1% 10,00% 1% 10,00%

P1 P1 P3 P3 P5 P5

AVR

Figure 4. Speedups for queries that retrieve 1% and 10% of the datasets
averaged on the 6 experimented datasets (50words, CBF, FaceAll, wafer,
Two_patterns and yoga).

While working on this method and conducting the
experiments we realized that there are many heuristics that can
be used to improve this method. The first direction of
improvement is optimizing the filtering process by sorting the
distances before filtering. The preliminary experiments that we
conducted using some optimising heuristics, which we did not
report in this paper because they are not complete yet, showed
that sorting improved the performance of our method. Other
directions of optimizing, like recycling some calculations from
lower levels, gave good results too, yet we need to find the best
recycling scheme. The approximating functions we used in this
paper were polynomials, but we think that other types of
functions, which are particularly designed to approximate time
series, can even give better results. We notice that the
performance of the two filters depends highly on the resolution
level. This idea can be exploited by using different segmenting
schemes, mainly schemes that use finer segmenting in the areas
where the approximation error is large, and a coarser
segmenting in the areas where the approximating error is small.

The fact that filter one stops filtering out time series at a
certain level and that filter two starts filtering out at a certain
level can suggest an “economised” scheme for applying the
filters.

Another, and more important, direction of future work is to
use one of the dimensionality reduction methods, which are
well-known in the literature, as an approximating function. The
principle here is that dimensionality reduction methods aim at
finding the best representation of the original space at a lower
space, so this can be viewed as an approximation of the time
series.

When we started developing our method, our aim was also
to use it on multidimensional time series, so this is still a main
direction of future work.

The final direction of future work is to apply our method to
other data types, where the idea of resolution level is pertinent.

REFERENCES
[1] Agrawal, R., Faloutsos, C., & Swami, A.: Efficient Similarity Search in

Sequence Databases”. Proceedings of the 4th Conf. on Foundations of
Data Organization and Algorithms (1993)

[2] Agrawal, R., Lin, K. I., Sawhney, H. S. and Shim, K.: Fast Similarity
Search in the Presence of Noise, Scaling, and Translation in Time-series
Databases. In Proceedings of the 21st Int'l Conference on Very Large
Databases. Zurich, Switzerland, pp. 490-501(1995).

[3] Bellman, R. : Adaptative Control Processes: A Guided Tour. Princeton
University Press, Princeton, NJ (1961).

[4] Cai, Y. and Ng, R. : Indexing Spatio-temporal Trajectories with
Chebyshev Polynomials. In SIGMOD (2004).

[5] Chan, K. & Fu, A. W.: Efficient Time Series Matching by Wavelets. In
proc. of the 15th IEEE Int'l Conf. on Data Engineering. Sydney,
Australia, Mar 23-26. pp 126-133 (1999).

[6] Chen, L., and Ng, R..: On the Marriage of Edit Distance and Lp norms.
In VLDB, (2004).

[7] Chen, L., Ozsu, M. T. and V. Oria. V.: Robust and Fast Similarity
Search for Moving Object Trajectories. In SIGMOD, (2005).

[8] Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. : Fast
Subsequence Matching in Time-series Databases. In Proc. ACM
SIGMOD Conf., Minneapolis (1994)

[9] Jessica Lin, Eamonn J. Keogh, Stefano Lonardi, Bill Yuan-chi Chiu: A
Symbolic Representation of Time Series, with Implications for
Streaming Algorithms. DMKD (2003).

[10] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra: Dimensionality
Reduction for Fast Similarity Search in Large Time Series Databases. J.
of Know. and Inform. Sys. (2000).

[11] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra: Locally Adaptive
Dimensionality Reduction for Similarity Search in Large Time Series
Databases. SIGMOD (2001).

[12] Keogh, E. & Kasetty, S.. On the Need for Time Series Data Mining
Benchmarks: A Survey and Empirical Demonstration. In proceedings of
the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. July 23 - 26, 2002. Edmonton, Alberta,
Canada. pp 102-111(2002)

[13] Korn, F., Jagadish, H & Faloutsos. C.: Efficiently Supporting ad hoc
Queries in Large Datasets of Time Sequences. Proceedings of SIGMOD
'97, Tucson, AZ,pp 289-300 (1997).

[14] Lee, J.A. and M. Verleysen, M. : Nonlinear Dimensionality Reduction.
Springer (2007).

[15] Megalooikonomou, V., Wang, Q., Li, G. & Faloutsos, C.
Multiresolution Symbolic Representation of Time Series. In proceedings
of the 21st IEEE International Conference on Data Engineering (ICDE).
Tokyo, Japan. Apr 5-9. (2005).

[16] Morinaka, Y., Yoshikawa, M. , Amagasa, T., and Uemura, S.: The L-
index: An indexing Structure for Efficient Subsequence Matching in
Time Sequence Databases. In Proc. 5th PacificAisa Conf. on Knowledge
Discovery and Data Mining, pages 51-60 (2001).

[17] Muhammad Fuad, M.M. and Marteau, P.F.: Extending the Edit Distance
Using Frequencies of Common Characters, 19th International
Conference on Database and Expert Systems Applications (DEXA'08),
Turin, Italy,2008 . Lecture Notes in computer Science (LNCS). Springer
Berlin / Heidelberg, Vol. 5181. pp 150-157 (2008)

[18] Papadopoulos,A.N. and Y. Manolopoulos, Y.: Nearest Neighbor Search:
A Database Perspective. Springer-Verlag, New York, (2005).

[19] Reinert, G., Schbath, S. & Waterman, M. S. Probabilistic and Statistical
Properties of Words: An Overview. Journal of Computational. Biology.
Vol. 7, pp 1-46. (2000)

[20] Schulte,M.J. ,Lindberg, M. and Laxminarain, A. :Performance
Evaluation of Decimal Floating-point Arithmetic in IBM Austin Center
for Advanced Studies Conference, February (2005).

[21] Scott, D.W and J.R. Thompson, J.R : Probability Density Estimation in
Higher Dimensions. In J.R. Gentle, editor, Proceedings of the Fifteenth
Symposium on the Interface, pages 173–179. Elsevier Science
Publishers, B.V., North-Holland, (1983).

[22] Yi, B,K., & Faloutsos, C.: Fast Time Sequence Indexing for Arbitrary
Lp norms. Proceedings of the 26st International Conference on Very
Large Databases, Cairo, Egypt (2000).

[23] UCR Time Series datasets
http://www.cs.ucr.edu/~eamonn/time_series_data/

