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R. Garcı́a-Patrón,1 J. Fiurášek,1,2 N. J. Cerf,1 J. Wenger,3 R. Tualle-Brouri,3 and Ph. Grangier3

1QUIC, Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
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We propose a feasible optical setup allowing for a loophole-free Bell test with efficient homodyne
detection. A non-Gaussian entangled state is generated from a two-mode squeezed vacuum by
subtracting a single photon from each mode, using beam splitters and standard low-efficiency
single-photon detectors. A Bell violation exceeding 1% is achievable with 6 dB squeezed light and a
homodyne efficiency around 95%. A detailed feasibility analysis, based upon the recent experimental
generation of single-mode non-Gaussian states, suggests that this method opens a promising avenue
towards a complete experimental Bell test.

DOI: 10.1103/PhysRevLett.93.130409 PACS numbers: 03.65.Ud, 03.67.–a, 42.50.Dv, 42.50.Xa
In their seminal 1935 paper, Einstein, Podolsky, and
Rosen (EPR) advocated that if ‘‘local realism’’ is taken
for granted, then quantum theory is an incomplete de-
scription of the physical world [1]. The EPR argument
gained a renewed attention in 1964 when Bell derived his
famous inequalities, which must be satisfied within any
local-realistic theory [2]. The violation of Bell inequal-
ities (BI), predicted by quantum mechanics, has since
then been observed in many experiments [3–7], disprov-
ing the concept of local realism. So far, however, all these
tests suffered from ‘‘loopholes’’ allowing a local-realistic
explanation of the experimental observations by exploit-
ing either the low detector efficiency [8,9] or the timelike
interval between the detection events [10,11]. Several
schemes were proposed which circumvent these loopholes
based on entangled pairs of photons [12,13], Hg atoms
[14], Rydberg atoms [15], or trapped ions [16], but all
presented a formidable experimental challenge. In this
Letter, we propose a scheme based on the conditional
generation of non-Gaussian entangled light states and
balanced homodyning, which is experimentally realistic
and allows for a ‘‘loophole-free’’ Bell test.

A test of the violation of BI typically involves two
distant parties, Alice and Bob, who simultaneously carry
out measurements on two systems prepared in an en-
tangled quantum state. The measurement events (includ-
ing the measurement choice) at Alice’s and Bob’s sites
must be spacelike separated in order to avoid the locality
loophole [10,11], that is, to rule out any possible commu-
nication between the two parties. Optical systems are
therefore particularly suitable candidates for Bell tests
because entangled photon pairs can now be generated
and distributed over long distances [5,6]. However, the
currently available single-photon detectors suffer from
too low efficiencies �, opening the so-called detector-
efficiency loophole [8,9]; that is, the experimental data
can be explained by local-realistic theories wherein the
detectors click only with probability �. This loophole is
present in all optical Bell tests today.
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In contrast, very high detection efficiencies can be
reached in optical systems using balanced homodyne
detectors [17–19], opening a very promising alternative
to Bell tests based on single-photon detectors. Several
theoretical works have shown that a violation of BI may
indeed be observed with balanced homodyning provided
that some very specific entangled light states can be
prepared [20–22]. Although a violation up to the maxi-
mum theoretical limit can be achieved with homodyne
detection [22], all the states required in [20–22] unfortu-
nately appear to be experimentally infeasible. On the
other hand, the experimentally accessible [23–25] two-
mode squeezed vacuum states are unsuitable for a Bell
test because they are characterized by a positive-definite
Gaussian Wigner function, which provides an explicit
hidden-variable model for homodyne measurements. So
far, no feasible experimental scheme has been found that
could be used to prepare non-Gaussian states that exhibit
a violation of BI with balanced homodyning.

In this Letter, we show that a strikingly simple optical
setup (see Fig. 1) can be used to conditionally generate
non-Gaussian states that are suitable for this purpose. Our
scheme requires a pulsed source of two-mode squeezed
vacuum state, which can be expressed in the Fock basis as
j iniAB �

���������������
1� �2

p P
1
n�0 �

njn; niAB, where � � tanh�r�
and r is the squeezing constant. This state is ‘‘degaussi-
fied’’ by subtracting a photon from each mode [26–28].
More precisely, we produce a non-Gaussian entangled
state with the use of two unbalanced beam splitters BSA
and BSB with intensity transmittance T, followed by two
single-photon detectors PDA and PDB, such as avalanche
photodiodes. The successful state preparation is heralded
by a click of both PDA and PDB. We shall see that a
detector efficiency as low as � � 10% suffices for the
preparation of states exhibiting a violation of BI.

The single-photon subtraction requires a high trans-
mittance of BSA and BSB, since then the most probable
event leading to a click at each PD is when a single-
photon is reflected by each BS. In the limit T ! 1, the
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FIG. 1 (color online). Proposed experimental setup. The
source (controlled by Sophie) is based on a master laser
beam, which is converted into second harmonic in a nonlinear
crystal (SHG). After spectral filtering (F), the second har-
monic beam pumps an OPA which generates two-mode
squeezed vacuum in modes A and B. Single photons are condi-
tionally subtracted from modes A and B with the use of the
beam splitters BSA and BSB and single-photon detectors PDA
and PDB. Alice (Bob) measures a quadrature of mode A (B)
using a balanced homodyne detector that consists of a balanced
beam splitter BS3 (BS4) and a pair of highly efficient photo-
diodes. The local oscillators LOA and LOB are extracted from
the laser beam by means of two additional beam splitters BS1
and BS2. The random switching of the relative phase  (�)
between LOA and A (LOB and B) can be performed using fast
electro-optical modulators.
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conditionally generated state is very close to the pure state
j outiAB / âAâBj iniAB /

P
1
n�0�n� 1��T��njn; niAB,

where âA;B are annihilation operators. This state is non-
Gaussian, and therefore suitable for a Bell test based on
homodyning. Note that the generation of pulsed single-
mode non-Gaussian states by photon subtraction from
squeezed states has recently been demonstrated experi-
mentally by some of us [29], so the preparation of two-
mode non-Gaussian states should be feasible along the
same lines.

In the experiment proposed here, Alice and Bob mea-
sure the quadratures xA � cosxA � sinpA and xB� �

cos�xB � sin�pB, which have continuous spectra and
satisfy �xj; pk � i�jk. In order to use the Clauser-
Horne-Shimony-Holt (CHSH) inequality [30], we discre-
tize xA and xB� by postulating that the outcome is �1 when
x � 0, and �1 otherwise. Alice and Bob must then
choose randomly and independently between two differ-
ent measurements, corresponding to the choices of angles
 � 1 or 2 and � � �1 or �2. Their measurement
outcomes are thus described by four variables
a1; a2; b1; b2, with values �1 or �1. One defines the usual
Bell parameter

S � ha1b1i � ha1b2i � ha2b1i � ha2b2i; (1)
where hajbki denotes the average over the subset of the
experimental data when Alice measured aj and, simulta-
130409-2
neously, Bob measured bk. As we shall see, exploiting the
fact that PDA and PDB can be viewed here as ‘‘event-
ready’’ detectors [10], one can prove that all local-
realistic models for Alice and Bob measurements must
satisfy the Bell-CHSH inequality jSj � 2.

In the formalism of event-ready detectors introduced
by Bell [10], one should know, by some initiating event,
when a measurable system has been produced. The main
idea is to preselect —rather than post-select —the rele-
vant events. For that purpose, one considers three part-
ners: Alice and Bob, who perform the measurements, and
Sophie, who controls the source (see Fig. 1). The entire
data analysis must be performed on a pulsed basis, with
Sophie sending time-tagged light pulses (local oscillator
and squeezed light) to Alice and Bob. In each experimen-
tal run, Sophie records whether her photodetectors
clicked, while Alice and Bob carry out spacelike sepa-
rated measurements of one of two randomly chosen quad-
ratures. After registering a large number of events, the
three partners discard all events not corresponding to an
event-ready double click registered by Sophie. The corre-
lation coefficients hajbki are then evaluated from all
remaining events and plugged into the S parameter (1).

In a local-realistic approach, the light pulses in each
time slot supposedly carry some random unknown pa-
rameter �, which ultimately determines the sign of xA
and xB�. Imposing, by proper timing, that the clicks of
Sophie’s conditioning detectors cannot be influenced by
the measurements on Alice’s and Bob’s sides implies that
the probability distribution p��� is independent of the
measurement phases 1;2 and �1;2. The measured sign sA
on Alice’s side (sB on Bob’s side) therefore depends only
on � and  (� on Bob’s side), so that hajbki �R
d�p���sA�j; ��sB��k;��, from which the derivation

of the Bell-CHSH inequality is very standard [31].
Consequently, a truly loophole-free Bell test can be per-
formed provided that Sophie’s event-ready detectors ef-
fectively preselect the measuring events.

Let us now evaluate the quantum mechanical value of
the S parameter in the proposed experimental scheme. We
only briefly outline the main steps of the calculation, as
the details will be presented elsewhere [32]. We model
realistic photodetectors (which have a limited quantum
efficiency �< 1, and cannot discriminate between one
and multiple photon detection events) as ideal detectors
preceded with a ‘‘virtual’’ beam splitter of transmittance
�. Ideal detectors respond with two different outcomes,
either a no click (projection onto the vacuum) or a click
(projection on all states with at least one photon).
Similarly, a balanced homodyne detector with efficiency
�BHD is modeled as a perfect homodyne detector pre-
ceded with a virtual beam splitter of transmittance �BHD.
At the output of the optical parametric amplifier, the
modes A and B are prepared in a two-mode squeezed
vacuum state, and the auxiliary modes C and D are in
130409-2
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FIG. 2. Violation of Bell-CHSH inequality with the condi-
tionally prepared non-Gaussian state. (a) One-dimensional cut
of the Wigner function of the conditionally generated non-
Gaussian two-mode state (with � � 0:5, T � 0:95, and � �
30%) along the line xB � �xA, pA � pB � 0. Notice the re-
gions where W is negative. (b) Bell parameter S as a function of
the squeezing � of the initial two-mode squeezed vacuum. The
curves are plotted for perfect detectors (� � �BHD � 100%)
with T � 0:9 (solid line), T � 0:95 (dashed line), and T � 0:99
(dot-dashed line). The open circles mark the points where
T� � 0:57. (c) Bell parameter S as a function of the efficiency
� of the single-photon detectors, for �T � 0:57 and �BHD �
100%. (d) Bell parameter S as a function of the efficiency �BHD

of the balanced homodyne detectors, for �T � 0:57 and � �
30%.
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vacuum state. The Wigner function of modes A;B;C;D is
a Gaussian function centered at the origin,

Win;ABCD�r� �
1

�4
�������������
det�in

p exp��rT��1
in r: (2)

This state is fully characterized by the covariance matrix
�ij � hrirj � rjrii � 2hriihrji, where r � �xA; pA; . . . ; xD;
pD� is a vector of quadrature components. The input
covariance matrix is �in � �in;AB � ICD, where I is the
identity matrix and �in;AB denotes the covariance matrix
of the two-mode squeezed vacuum j iniAB. After com-
bining modes A and C (B and D) on an unbalanced beam
splitter BSA (BSB) with transmittance T, the mode C (D)
is detected by the photon-counting detector PDA (PDB),
while mode A (B) is sent to the homodyne detector. The
covariance matrix �out of the mixed Gaussian state of
modes A;B;C;D after passing through the beam splitters
BSA and BSB and the four virtual beam splitters model-
ing the imperfect detectors is related to �in via a Gaussian
completely positive map �out � S�SBS�inSTBSS

T
� �G,

where SBS describes the mode coupling in BSA and
BSB, and the matrices S� �

������������
�BHD

p
IAB �

����
�

p
ICD and

G � �1� �BHD�IAB � �1� ��ICD account for the imper-
fect detectors [32].

The Wigner function of the state of modes A and B
prepared by conditioning on observing clicks at PDA and
PDB can then be expressed as a linear combination of four
Gaussian functions,

W�r� �
1

�2P
���������������
det�out

p
X4
j�1

qj������������������
det�j;CD

q exp��rT�jr; (3)

where P � �det�out�
�1=2 P4

j�1 qj�det��j�j;CD�
�1=2 stands

for the probability of success, r � �xA; pA; xB; pB�, and we
have defined q1 � 1, q2 � q3 � �2, q4 � 4. The various
matrices appearing in Eq. (3) are obtained from ��1

out ,

which can be split into four smaller submatrices as ��1
out ��

�AB $
$T �CD

�
. These four submatrices are then used to

define �j��AB�$�
�1
j;CD$

T , where �1;CD��CD, �2;CD �

�CD � IC � 0D, �3;CD��CD�0C�ID, and �4;CD�
�CD�ICD.

After discretization of the quadratures, the correlation
coefficient can be expressed as

hajbki �
Z 1

�1
sign�xAjx

B
�k
�P�xAj ; x

B
�k
�dxAjdx

B
�k
; (4)

where P�xAj ; x
B
�k
� is the joint probability distribution of

the two commuting quadratures xAj and xB�k
, which can be

determined as a marginal distribution from the Wigner
function given by Eq. (3). The correlation coefficient
(4) —and therefore S— can then be expressed in a closed
form by analytically integrating the resulting Gaussian
functions [32].
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The results plotted in Fig. 2 were obtained for the
optimal choice of angles 1 � 0, 2 � �=2, �1 �
��=4, �2 � �=4. Figure 2(a) shows that the Wigner
functionW is negative in some regions of the phase space,
which is a necessary condition for the observation of a
violation of BI with homodyne detectors. Figure 2(b)
illustrates that the Bell inequality jSj � 2 can indeed be
violated with the proposed setup, and shows that there is
an optimal squeezing �opt which maximizes S. A sim-
plified calculation assuming perfect detectors with
single-photon resolution [32] predicts that �optT � 0:57.
It follows from Fig. 2(c) that the Bell factor S depends
only very weakly on the efficiency � of the single-photon
detectors, so the Bell inequality can be violated even if
� & 10%. In contrast, the efficiency of the homodyne
detectors �BHD must be above �90%; see Fig. 2(d).

The maximum Bell parameter achievable with our
scheme is about Smax � 2:046, which represents a BI
violation of 2.3%. This is a small, but statistically signifi-
cant violation, which should be possible to observe ex-
perimentally. The required degree of squeezing to get
close to Smax corresponds to � � 0:57, i.e., approximately
5.6 dB, a value that has already been achieved experi-
mentally [17,33]. Another important parameter is the
transmittance T of the beam splitters BSA and BSB, which
must be as high as possible for maximizing S. However,
the probability of successful state preparation can be
estimated as P � �2�1� T�2, so that it quickly drops
130409-3
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when T approaches unity. Thus, there is a trade off be-
tween S and P, which needs to be optimized by taking
into account the statistical uncertainties of the data.

In order to be more specific, let us consider the single-
mode photon subtraction experiment [29]. It is based on a
commercial cavity-dumped titanium-sapphire laser, de-
livering nearly Fourier-limited pulses at 850 nm, with a
duration of 150 fs and a repetition rate of 790 kHz.
Squeezed vacuum pulses generated by parametric deam-
plification are sent through a beam splitter, and the re-
flected beam is detected by a silicon avalanche
photodiode (APD). Conditional on a click, the transmit-
ted pulse is prepared in a non-Gaussian state, which is
measured by homodyne detection with an overall effi-
ciency �BHD � 75%. This experiment gives us useful
estimates for a possible Bell test. First, the delay between
pulses (1:2 �s) allows ample time for individual pulse
analysis. A fast random choice of the analyzed quadra-
tures can be performed using electro-optical modulators
on the LO beams, triggered for instance by digitizing the
shot noise of locally generated auxiliary beams.
Switching times around 100 ns, associated with propaga-
tion distances of a few tens of meters, seem quite feasible.
The APDs can be triggered only when a pulse is expected,
reducing the effect of dark counts to a negligible value.
The intrinsic APD efficiency is about 50%, but the filter-
ing used to select a single-mode currently reduces the
overall � to less than 5%, which should be improved for
accumulating enough statistics.

In conclusion, let us define a set of realistic parameter
values that should be reached in a loophole-free Bell test:
with � � 30%, T � 95%, and � � 0:6, a violation of BI
by about 1% should be observable if the homodyne effi-
ciency �BHD is larger than 95% [see Fig. 2(d)]. With a
repetition rate of 1 MHz and P � 2:6� 10�4, the number
of data samples would be several hundreds per second, so
that the required statistics to see a violation in the percent
range could be obtained in a reasonable time (a few
hours). In addition, the electronic noise of the homodyne
detectors should be 15–20 dB below shot noise, which is
attainable with low-noise charge amplifiers. All these
numbers have already been reached separately in various
experiments, but attaining them simultaneously certainly
represents a serious challenge. Nevertheless, taking into
account many possible experimental improvements, the
existence of an experimental window for a loophole-free
test of Bell inequalities can be considered as highly
plausible. Therefore, it appears that, with quantum con-
tinuous variables, a reasonable compromise can be found
between the experimental constraints and the very strin-
gent requirements imposed by a loophole-free test of Bell
inequalities.
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Note added.—After this work was completed, we have
learned that a similar scheme has just been independently
proposed by H. Nha and H. J. Carmichael [34].
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