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An intercept-resend attack on a continuous-variable quantum-key-distribution protocol is investigated
experimentally. By varying the interception fraction, one can implement a family of attacks where the
eavesdropper totally controls the channel parameters. In general, such attacks add excess noise in the
channel, and may also result in non-Gaussian output distributions. We implement and characterize the
measurements needed to detect these attacks, and evaluate experimentally the information rates available
to the legitimate users and the eavesdropper. The results are consistent with the optimality of Gaussian

attacks resulting from the security proofs.
DOI: 10.1103/PhysRevLett.98.030503

Quantum key distribution (QKD) enables two distant
parties—Alice and Bob—Ilinked by a quantum channel
and an authenticated classical channel to share a common
secret key that is unknown to a potential eavesdropper,
Eve. For this purpose, Alice and Bob have to agree on a
proper set of noncommuting quantum variables, as well as
a proper encoding of the key into these variables. Common
QKD setups use so-called discrete variables (e.g., the
polarization of a photon), thereby requiring single-photon
sources or detectors [1].

In this Letter, we shall rather follow an alternative
procedure, pioneered in [2,3], which consists in encoding
the key into continuous variables (CV). Specifically, we
use a CV QKD protocol with coherent states introduced in
[4]. The action of a possible eavesdropper then appears as
added noise on the observed continuous data. More pre-
cisely, line losses correspond to a restricted class of attacks,
often called beam-splitting attacks, which only add
Gaussian ‘““vacuum’ noise. Other attacks typically add
more noise, called “‘excess noise”, which may be non-
Gaussian. It is generally crucial to show that Alice and Bob
can measure these noises with the required accuracy in
order to ensure the security of CV QKD.

In order to analyze these noises, we have explicitly
implemented several nontrivial actions of the eavesdropper
Eve, which are simple but general enough to include both
Gaussian and non-Gaussian features. These attacks are
implemented optically as partial intercept-resend (IR) op-
erations, in which the signal beam is either measured and
subsequently reprepared, or is eavesdropped using a beam
splitter (BS). These attacks enable Eve to control indepen-
dently the two main channel parameters, namely, the loss
(BS part) and excess noise (IR part), simply by adjusting
the intercepted fraction. They are therefore much more
powerful than a simple BS attack corresponding to a pure
line loss. We examine in detail how well Alice and Bob can
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detect them in real operating conditions. The experiment
confirms and emphasizes that it is crucial to properly
evaluate the channel excess noise in order to warrant the
security of the present CV QKD protocol [4-6]. In addi-
tion, we explicitly measure the information gained by Eve
for a wide range of partial IR attacks, and check that it
never exceeds the bound based on Gaussian attacks (with
excess noise). This is in full agreement with the security
proof given in [7].

Our CV QKD protocol is based on coherent states and
reverse reconciliation, as described in [4]. Alice sends Bob
a train of coherent states |x + ip) where the quadratures (x,
p) are randomly chosen from a bivariate Gaussian distri-
bution with variance V. Bob randomly measures either x
or p, and publicly announces his choice. A binary secret
key is then extracted from the correlated continuous data
by using a sliced reconciliation algorithm [8,9]. This pro-
tocol is well suited for practical QKD because it only
requires conventional fast telecommunication components,
such as InGaAs photodiodes or electro-optics modulators.
A full QKD setup with a typical repetition rate of 1 MHz
can be assembled with off-the-shelves components [10].
The security of the protocol is proven against a wide range
of attacks, namely, Gaussian individual attacks [4], finite-
size non-Gaussian attacks [7], Gaussian collective attacks
[11,12] and non-Gaussian collective attacks [13,14]. It will
be sufficient for our needs here to focus on the proof of [7],
which provides a simple analytical expression for the
secret key rates against non-Gaussian attacks.

General framework.—The processing of a coherent state
via a Gaussian quantum channel can be described as fol-
lows. Its amplitude is multiplied by +/T, where T < 1 is the
channel transmission, while its noise variance is increased
to (1 + Te€)N, at the output, where N, stands for the shot-
noise level and € is the so-called excess noise (referred to
the input). Assuming that the limited efficiency n <1 of
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the homodyne detector deteriorates Bob’s reception but
does not contribute to Eve’s information (so-called “‘real-
istic mode”’ in [4,10]), the information rates can be written
as

1 nTV,+ 1+ nTe
Lip = =1
AB T O T L Te

, (D

I _110 nTV,+ 1+ nTe
BE 9 gzn/[l—T—i—Te-i—#]—i—l—n'

2

In reverse reconciliation [4], the secret key rate is given by
K = Bl — Igg, where B is the efficiency of the recon-
ciliation algorithm with respect to Shannon’s limit. All the
quantities appearing in these formulas are known or can be
measured by Alice and Bob. In practice, Alice and Bob
must carefully evaluate 7 and € in order to infer the
optimal attack Eve can perform, and therefore to upper
bound Izg. This is done by statistical evaluation over a
random subset of the raw data [10].

Non-Gaussian attacks.—Let us consider a particular
non-Gaussian attack, namely, a partial IR attack: Eve
detects and resends a fraction u of the pulses, while she
performs a standard BS attack on the remaining fraction
(1 — ). For the IR step, Eve performs a simultaneous
measurement of both quadratures (Fig. 1), and resends a
coherent state displaced according to her measurement
results. For the BS step, Eve is assumed to keep the tapped
signal in a quantum memory and to measure it only after
Bob has revealed his measurement basis. For given channel
parameters (7, €), the optimal attack is known to be
Gaussian [7]. It can be achieved using an ‘“‘entangling
cloner” [5], which simply reduces to a BS attack if
€ = 0. If € # 0, the partial IR attack that we consider
here is not optimal, although it has several advantages for
our demonstration purposes. First, it gives Eve a very
simple way to exploit the excess noise of the line in order
to gain more information; second, it provides the oppor-
tunity to check explicitly the bound on Eve’s information
for non-Gaussian attacks, deduced from Alice and Bob’s
noise variance measurements as established in [7].

Let us emphasize that for a full IR attack (u = 1), one
has € = 2. This corresponds to the “‘entanglement break-
ing” limit in our protocol [5,15], at the edge between the
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FIG. 1 (color online). Intercept-resend attack. Alice prepares a
random coherent state, and Bob chooses a random quadrature
measurement with a random number generator (RNG). In be-
tween, Eve makes a heterodyne measurement of each incoming
quantum state, and displaces another generated coherent state
according to her measurement result.

classical and quantum regimes. No entanglement can be
transmitted through the quantum channel, and therefore no
secret key can be extracted. For a lossy channel, this added
noise gets attenuated, so the entanglement breaking limit
may become difficult for Bob to detect. Thus, as another
challenge to our experimental implementation, it is inter-
esting to check whether Bob can detect this IR attack and
properly reject the transmitted key.

Experimental setup.—We have realized the IR attack
using the device described Fig. 2. It is a coherent-state
QKD setup, working at 1550 nm and exclusively as-
sembled with fiber optics and fast telecom components.
It displaces a train of pulsed coherent states within the
complex plane, with arbitrary amplitude and phase, ran-
domly chosen from a two-dimensional Gaussian distribu-
tion with variances V, = 36.6N,. The pulse width is
100 ns. The signal is sent to Bob along with a strong phase
reference—or local oscillator (LO), with 10° photons
per pulse. Bob selects an arbitrary measurement phase
with a phase modulator placed on the LO path. The se-
lected quadrature is measured with an all-fiber shot-noise
limited, time-resolved homodyne detector. A key trans-
mission is composed of independent blocks of 50000
pulses, sent at a rate of 500 kHz, among which 10000
test pulses with agreed amplitude and phase are used to
synchronize Alice and Bob and to determine the relative
phase between the signal and LO (see [10] for more de-
tails). Knowing this relative phase, Bob is able to choose an
absolute phase measurement, for example, one of the field
quadratures x and p, with a software control loop.

Practical QKD requires that only a part of the data set is
revealed for channel parameters evaluation. This finite set
size introduces statistical fluctuations that can alter the
excess noise estimate. Therefore, security margins have
to be considered when computing information rates. In all
the experimental curves shown below, the number of sam-
pling points for channel characterization has arbitrarily
been chosen to be 5000 (i.e., 13% of the 40 000 available
pulses) for illustration purpose, and may be optimized for
each value of the channel transmission.

Implementation of full IR attacks.—To implement an IR
attack as in Fig. 1, one would need three homodyne de-
tectors and two modulation setups. To avoid unnecessary
hardware duplication, this attack has been split in three
phases, with the role of Eve being played either by Alice or
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FIG. 2 (color online). Experimental setup. Alice generates
modulated signal pulses. Bob measures a random quadrature
with a pulsed, shot-noise limited homodyne detector.
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by Bob. First, Alice sends coherent states, and Bob simu-
lates Eve measuring the x quadrature of the incoming
states. Then, the same operation is repeated with a p
measurement. To take into account Eve’s beam splitter
shown in Fig. 1, the variance measured by Eve (actually
Bob) is adjusted to be exactly half of Alice’s output modu-
lation. This calibration also virtually includes the losses
within the homodyne detector, thus simulating a perfect
heterodyne measurement. Both x and p measurement out-
puts are then communicated to Alice through a classical
channel so that she can simulate Eve resending coherent
states that are displaced accordingly. After this sequence,
the correlations between Alice and Bob are measured in
order to determine the channel parameters. Since Alice and
Eve drop the quadrature not measured by Bob, our two-
step implementation of the interception is legitimate.

The excess noise referred to the channel input is mea-
sured by Bob for different channel transmissions, selected
with an amplitude modulator. For a full IR attack (. = 1),
the excess noise is measured to be about 0.1V, above the
expected 2N, entanglement breaking bound (Fig. 3). This
is due to the various technical noises encountered through-
out the IR process, which can be independently determined
from the experimental data (mostly laser phase noise and
modulation imperfections). Since this technical noise is
quite small, we also conclude that the imperfections related
to the method used to ““simulate” Eve are negligible.

Implementation of partial IR attacks.—Because the full
IR attack reaches the entanglement breaking limit, it is not
the best for Eve to tap information from the quantum

Noise referred to the input
(SNL units)

0 0.2 0.4 0.6 0.8 1
Channel transmission (T)

FIG. 3. Variance of the noise measured by Bob that is pro-
duced by a full IR attack (u = 1). We define the total added
noise (referred to the input) as y = yo + €, with y, =
1/(nT) — 1 denoting the loss-induced vacuum noise and €
denoting the excess noise. The total added noise y (stars) is
measured experimentally, while y, (crosses) is deduced from the
measured transmission (7) and from Bob’s homodyne efficiency
(n = 0.6). Then € (plus symbols) is obtained from their differ-
ence. The uncertainties margins on € represent the standard
deviation of statistical fluctuations when computing over a finite
data subset (5000 points out of 40 000).

channel. As explained previously, a more subtle way for
Eve to interact is to intercept and resend only a fraction u
of the pulses, and to implement a BS attack on the rest of
the pulses. In this case, Eve can choose the amount of noise
she wants to introduce independently of the channel trans-
mission. This allows a complete channel parameter con-
trol, which is not achievable with a simple BS attack
(e = 0), nor with an IR attack where the added noise is
fixed for a given channel transmission.

An important point is that the probability distribution of
Bob’s measurements becomes the weighted sum of two
Gaussian distributions with different variances, namely
TV, + Ny for the transmitted data (BS) and T(V, +
2N,) + N, for the resent data (IR), so the attack is not
Gaussian any more. Figure 4 shows the measured excess
noise for different interception fractions w. Ideally, it is
given by the weighted sum of the excess noises in the IR
and BS cases, i.e., eror = ner + (1 — pw)egs = 2. In
our experiment, we have to add the technical noise of
variance €; = 0.1N,, which leads to ergr = 2u + €7, in
good agreement with the experimental data.

For such an attack, the achievable secret key rate is
lower bounded by the information rate for an equivalent
Gaussian attack characterized by the same variance and
conditional variance of the data distribution [7]. The
Gaussian mutual information rate I, between Alice and
Bob can be derived from the noise variance measurements
with a Gaussian channel model characterized by the same
correlations. This can be compared with the actual mutual
information rate 7,5 computed from the measured data
distribution in presence of the partial IR attack. We find
that the Gaussian mutual information /4 is lower than the
actual mutual information 7%, with a very small gap
between them (=0.8% for modulation of V, = 36.6N,)
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FIG. 4. Variance of the excess noise in a partial IR attack. Each
point results from an average of the measured excess noise for
different channel transmissions (see the € vs T plot of Fig. 3).
The solid line plots the expected excess noise due to an IR attack
on a fraction u of the pulses. Because of technical noise, the
experimental data are above this line, typically less than 0.1V,
(dashed line).
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FIG. 5. Mutual information rates for a non-Gaussian partial IR
attack, for 7 = 0.1, 0.25, and 0.9, with V, = 36.6N,, n = 0.6
and a technical excess noise of 0.1Ny. The mutual information
I, is plotted for a Gaussian model with equivalent excess noise
(solid lines), as well as for a BS attack (dotted lines), and for a
partial IR attack (dashed lines). It is compared with the Gaussian
mutual information /4. As expected, the IR attack enables to
exploit the excess noise, giving Eve extra information above the
BS attack. We show statistical fluctuations (=1 standard devia-
tion) corresponding to a data subset of 5000 points per block, as
in Fig. 3.

for any T and e. Therefore, only the curve I, (noted I,3)
has been represented in Fig. 5.

On Eve’s side, Fig. 5 compares 45 with three possible
values of Igg. The dotted line (IE,S;-) is obtained from a BS
attack for the given transmission. With this attack, Eve
only makes use of the channel losses, as if she was not able
to exploit the excess noise. The dashed line (I55*"™) is
obtained when, in addition to the BS attack, Eve exploits
the excess noise for implementing a partial IR attack. This
information therefore reads

EER R (1 — ) IBS, (3)

The experimental points shown over the dashed line are
obtained from this formula, using the measured informa-
tion acquired by Eve from the IR part of the attack /., and
the evaluated information from the BS attack (dotted line).
The solid line (I§y) is the optimal Gaussian attack where
Eve exploits the excess noise for implementing an entan-
gling cloner attack. The experimental points shown over
this solid line are the bounds on Ipr deduced from the

measured line parameters, according to Eq. (2). These

curves show the crucial role of the excess noise, even if
Eve does not implement the strongest attack. On Fig. 5 one
can actually read the tolerable excess noise for a given
channel transmission 7', at the crossing point between /45
and /g, confirming that Alice and Bob are on the “safe
side” when using the Gaussian bound [7].

In conclusion, we have implemented a family of quan-
tum attacks, namely, partial intercept-resend attacks,
which allow Eve to exploit the excess noise and are thus
more general than simple ‘“‘beam-splitting attacks’ as con-
sidered so far. Our experiment confirms that such attacks
can be successfully detected and eliminated by accurately
monitoring the variances of all (vacuum and excess) noises
of the channel. Therefore, the present ‘“‘real-case study”
provides both a test and an illustration of the working
principles of experimental CV QKD. It is also particularly
important in view of the recent proof [13,14] that the
optimal collective attack for a given noise variance is
Gaussian, just as for individual attacks. Considering that
our family of attacks spans all possible relevant transmis-
sions and noise variances of the channel, the security of our
Gaussian-modulated protocol remains warranted under
very general conditions.
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