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Quantum cloning and teleportation criteria for continuous quantum variables
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We discuss the criteria presently used for evaluating the efficiency of quantum teleportation schemes for
continuous variables. Using an argument based upon the difference between 1-to-2 quantuniep@mtugm
duplication and 1-to-infinity cloning(classical measurementve show that a fidelity value larger than 2/3
warrants that the teleported state is the best possible remaining copy of the input state. This value has not been
reached experimentally so far.
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[. INTRODUCTION that the relevant limit is the one associated with a classical
measurementt-,_,,=1/2. This conclusion is incorrect be-
Quantum teleportation has emerged in recent years ascause the good question to ask is: what is the measured fi-
major paradigm of theoreticdll] and experimenta[2,3]  delity of Bob’s copy, as measured by the verifier Victor,
quantum information. The initial approaches using discretavhich warrants that no better copy of the input state can exist
variables[1,2] have been extended to continuous quanturrelsewhere®i.e., kept by a cheating Alice, or eavesdropped
variableg3—7]. However, various discussions have appearedy a malicious Eve We will show below in detail, but it
recently about the significance and the evaluation criteria o$hould already be clear from the above cloning limit, that the
real, and thus imperfect, teleportation experim¢hisll. In  correct answer i, ,=2/3.
this article, we will reconsider the teleportation criteria for
continuous quantum variables, with emphasis on the telepor- II. THE 1 -2 AND 1—M CLONING LIMITS
tation of coherent statd8]. Using an argument based upon
the no-cloning theorerfil2,13, we will show that a telepor-
tation fidelity F¢;>2/3 warrants that the teleported state is ~We first give a simple demonstration that the fidelity limit
the best remaining copy of the input state. for making two copies of an input state i5_,,=2/3, as it
In order to set the scene, it may be useful to come back twas previously shown by Ceet al.in [12]. Here we recover
[1], where Bennetét al. introduce and define the concept of the same conclusion by using simple techniques similar to
quantum teleportation. This quotation is taken from their pathe ones used for evaluating quantum nondemolitQND)
per: “Below, we show how Alice can divide the full infor- measurements, introduced[ib4—-16 and used ir{6,9,10.
mation encoded ifthe unknown quantum stdtgp) into two A 1—2 cloner or “duplicator” has one input mode and
parts, one purely classical and the other purely non-classicaiwo output modes andb. Denoting byg andB the (linear-
and send them to Bob through two different channels. Havized gains and noises for each channel, the quadratures of
ing received these two transmissions, Bob can construct aifne two output modes are related to the two input quadratures
accurate replica of¢). Of course Alice’s original|¢) is  Xj, andY;, by
destroyed in the process, as it must be to obey the no-cloning

A. Quantum duplication

theorem.We call the process we are about to describe tele- XangaXm+ Bxa’ YazgYaYinJr BY,.J1
portation, a term of science-fiction meaning to make a person

or objectdisappearwhile an exact replica appears some- Xp=0x, XinTBx,, Yb=0y,YintBy,. (1)
where else.”

From this definition it should be clear that teleportation Sincea andb are two different field modes, any observ-
must not only beat the classical limits on measurement angblé ofa commutes with any observable lafand in particu-
transmission, but must also reach the limit where the nola’[Xa,Ys]=0. Using Eqgs(1), and assuming that the added
cloning theorem is enforced, otherwise Bob may receive &0ises are not correlated to the input signals, we obtain
state that is better than any classical copy, but nevertheless it

. . L By ,By |=— Xin+Yinl- 2
will not be the teleportede). A crucial point is then that (BB, 1= = 9x,9v,[ Xin  Yin] @
there is a distinction between nonclonable quantum informasy, noises added by the duplicator verify therefore
tion and classical information. This is best illustrated by con-
sidering the fidelity for cloning one copy of a c%herent state ABx ABy,=|gx_gv,|No, ®))
into M identical copies, which i&;_ ;= 2/(2+ N2%), where
Na39=2(M —1)/M, as shown by Cerf and Iblisdid3] (N3¢  whereN, is the vacuum’s noise variance asddenotes the
is an equivalent noise in the cloning procg8§ that will be  usual rms dispersion.
discussed in more detail belgwit is then clear thafF,_, ., It is convenient to define the variances of the equivalent
=1/2, whileF;_,,=2/3. The usual criterion about teleporta- input noiseq15] associated with the measurements
tion assumes correctly that a classical measurement is in- B 5 9 5
volved in teleportation. However, it should not be concluded in_(AXi /|9Xi|) —(AXin) _(ABxilngiD '
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Ny,=(AY;/|gv )3~ (AYin)2=(ABy /gy D% (4) [Bx,,By,]=~[Xin.Yin] foreveryi#j, ©)
wherei is eithera or b. One thus obtains the symmetrical [By ,By.]=0 for everyi. (10
inequalities b
) ) We can define\ for any real numbek by
Nx Ny, =Ng, Ny Ny =Ng. (5) y
These inequalities are very similar to the ones that appear in A=By, + xi_Ez Bx, (13)

QND measurementd 5], and they ensure that building two

copies of the input state will not allow one to work around ¢ fo|lows straightforwardly from Eqs(9) and (10), that
the Heisenberg inequality. Actually, the added noise is just

the one required to forbid to infer the valuesXf, andY;, [A.By, J= =MM=1)[Xin,Yinl. (12
with a precision better than Heisenberg limit, by measuring
X, andY,. For the variances, it implies

The equivalent noises can be easily related to the cloning
fidelity. It can be shown straightforwardI§,10] that the AAABy =[N (M—1)Ng|. (13
fidelity obtained when copying coherent states with unity . )
gain (g, =gy, =1) is given by ComputingA A directly from Eq.(11), we have

M M
2 2_ 2 2 2
Fgo1= _ ®) AAZ=ABf +\ ;2 ABXi+2)\iZZ (Bx,Bx.)
V(2+Ny/Ng)(2+ Ny /No) "
Assuming that the two copies are identical and have phase- +A2D) <Bx.ij>- (14)
ij>1 !

independent noise, the limit of E@5) is reached forNXa

=Ny, =Nx,=Ny =No and corresponds thus 1y -1  Using the definitiong8) in Eq. (14), we obtain

=2/3. This is identical to the result obtained by Cetfal.in 5 5

[12]. A “duplicator” reaching the limit of Eq.(5), can be AA“=[1+NA(M—1)]Nx

easily implemented using a linear amplifier and a 50/50 _ 2,01 _

beam splitter. Such a duplicator is a Gaussian cloning ma- FLAM=D+FAM=1)(M=2)]Cx. (15
chine as defined by Ceett al.[12]. Various implementations |t \ = —2/(M — 2), this expression is simpler and becomes
of “cloners” have been proposed recentl{7], and may

allow, in particular, to arbitrarily share the noise between one M2

copy that is kept, and another one that is sent out. AZ:me, (16)

B. The 1—M cloning limit which can be injected in Eq13) to obtain the 2-=M clon-

We generalize here the above demonstration to copyin§d limit
one input toM identical outputs. In order to directly recover 5
the result of Cerf and Iblisdir13], we will assume that each NN B(Z(M — 1)) N2, (17)
output channel has unity gain, and that all copies are identi- X M 0
cal in the sense that the variances are the same for all output, = | i . )
and that the pairwise correlation does not depend on the paﬁh'S limit is also valid fortM =2 as written in Eq(5) and for
of outputs that is considered. More precisely, the quadraturd§€ trivial caseM =1.

of the M outputs of a 1-M cloner (M>2) obey Assuming that theM copies have phase-independent
noise, i.e.Ny/No=Ny/Ng=N23=2(M—1)/M, it is simple
Xi=Xin+ By, to show from Eq{(6) that the corresponding fidelity limit for
@ coherent state cloning is
Y,=Y;,+By,
i in Y; - 2 M (18)
= = .
for every I=i<M. We defineCy, Ny, andNy as =My Nad 2M—1
Cx=<Bxinj> for everyi#j, As previously stated, a perfectdM symmetrical cloner can
be implemented using a linear amplifier adMi—1 beam
NX=ABf<i for everyi, splitters[17].
NY:AB\z(i for everyi. (8) C. The 1— cloning and classical measurements

When a classical measurement is performed, the measure-
Like in Sec. Il A, we have ment result can be copied an arbitrary number of times. It
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should thus be clear that the limit corresponding to a classi- Number of Local Remote
cal measurement i§, ..=1/2, or N3®=2. On the other allowed copies operations _ operations

hand, making only two copies comes at a smaller price, and ] Quantum | Quantum
corresponds té&; .,=2/3, orN29=1. We will show below transfer  |teleportation
that this distinction is crucial as far as quantum teleportation 23
is concerned > 2_. T Quantum Quantum

: g == cloning fax 12

[N
lIl. TELEPORTATION AND NO-CLONING N Classical C|afssica|
copy ax
A. Quantum teleportation criteria
Suppose Alicda) sends a quantum state to B@®, who 0

wants t'o be certain that Alice cannot have Kept a bet'ter COF’V FIG. 1. Table illustrating the fidelity values associated to the
of the input state than the one she has given to him. Thi§,mper of allowed copies of the input state. The vafie 1/2

requirement means to be sure that Alice’s copy is destroyedgrresponds to the threshold for the use of quantum entanglement,
i.e., that quantum teleportation accordind iphas occurred.  yhile the valueF=2/3 corresponds to the enforcement of no-
Alice will be able to cheat if her equivalent noise is smaller cjoning. For distant operations, the region betw&en1/2 andF

than Bob’s, that is, =2/3 is called “quantum fax,” because the original kept by Alice
may have a higher fidelity than the teleported copy. The no-cloning
opt opt
Nbeng and NYb> NYg ’ (19 region F>2/3 corresponds to tranferring quantum states between

different systems for local operations, and to quantum teleportation
where opt denotes the optimum result for Alice. Since the (as defined if1]) for remote operations.

best Alice can do is limited by the Heisenberg-like inequali-

ties (5), one has perfectly eavesdrop the classical channel, and that she has

Ny, = NS/va and NYbBNé/Nxb (200  full access to the Iosseg a_llong at least one “_transm.is.sion
arm” of the EPR beantthis is a strong hypothesis, but it is
usually done for evaluating the security of standard quantum
cryptography. The simplest solution for Eve is to build her

Ny Ny =N3. (21)  own teleport.ed state, famd she will be successful if this state
bob has an equivalent noise smaller than the one achieved by

Bob. It can be shown simply, and it is physically obvious,

that as long as the EPR channel efficiengys smaller than

1/2, Eve can obtain a teleported copy of the input state that is

Thus .the'only way for Victor to warrant th.at A'Ilce. s not betterthan the one obtained by Bob. More generally, this can
cheating is to obtain a measured teleportation fidelity Iarge[) A
e also seen as a consequence of the2icloning limit: if F

that 2/3. It is worth noticing that when the associated condi—iS larger than 2/3. Bob can be sure that a malicious Eve will
tion Ny Ny < N2 is fulfilled, then Eq.(5) imposes thalNy 9 !

) i not be able to eavesdrop the teleported sta@. Thus the
<Nyx_ andNy <Ny, and thus Alice will have both quadra- F>2/3 |imit appears also as a crucial security condition if

and thus

If Bob’s noise variances are symmetrical, irenb= Ny,, one
recovers the limitF<2/3 for teleporting coherent states.

tures worse than Bob. teleportation is used as a quantum communication tool.
B. Security in quantum teleportation C. Discussion
It should be clear now that as long Bs<2/3, Alice can In order to clarify the issues involved, it may be worth

cheat teleportation by keeping a better copy than the one Bokummarizing the physics involved in the respective criteria
has received. The simplest way to do that is first to duplicatdé->1/2 andF > 2/3.
the input state, then to keep one copy, and to teleport the As said abovel-=1/2 is actually a classical measurement
other one to Bob. As an example, if Bob’s teleported outpulimit, associated with the 4o cloning limit. It has been
has a fidelityF,,=0.58, orN,=1.45, and if Alice has a per- shown in[18] that purifications procedure can be initiated as
fect teleporter than she claims to be imperfect, she can keefpon as=>1/2, and may lead to high fidelity values. How-
a copy with a fidelityF,=0.74, orN,=0.7. This is clearly ever, the purpose of teleportation criteria is to characterize a
not acceptable according to the definition[ af. given experiment, and not what it might be by adding puri-
We point out that the same condition applies when Alicefication procedures. We note also that recently demonstrated
is honest, but when quantum teleportation is used to send entanglement criteri@19] are fully compatible with the~
guantum state from Alice to Bob for quantum cryptography=1/2 limit. It is thus clear that th&>1/2 criterion charac-
purposes. In that case, one must worry about the amount @érizes a threshold for the appearance of quantum effects,
information that can be eavesdropped during the teleportaelated to entanglement in the teleportation pro¢éss.
tion process. For simplicity, let us consider a teleportation On the other hand, the main virtue of the-2/3 criterion
scheme using light beams exhibiting Einstein-Podolskyds that it warrants that no other copy of the input state can
Rosen(EPR) correlations, with a finite degree of squeezing,remain, that would have a better fidelity than the one Bob
and transmission losses. It is assumed that Eve is able twas received. This has obvious advantages if quantum tele-
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portation is used as a secure way to transmit quantum informent resource must be used to reach that region, but never-
mation. It is worth pointing out that thE>2/3 criterion is  theless that the no-cloning theorem is not yet enforced.
more demanding technically, and can be fulfilled only whenTherefore, as in a fax machine, Bob has received something
the transmission of each beam distributing the entanglemenihat is not so bad, but a better copy may still exist some-
resource is higher than 50%, and enough squeezing is avaiyhere. Obviously, this does not happen any more in the re-

able[9,10,20. gion aboveF =2/3.
In [9,10] it was argued that th&>2/3 criterion is also
related to the so-called EPR nonseparability argument, which IV. CONCLUSION

was introduced irf21] and implemented experimentally in
[22]. This argument requires that “conditional squeezing” is As a conclusion, it should be clear that the criteFa
obtained on one EPR beam, given a measurement that is1/2 andF>2/3 have different physical contents, and are
done on its entangled partner. By changing the measuremeroth legitimate. Based upon the definition giver{ij, and
one can get conditional squeezing in both quadratures, crem the no-cloning theorem, we showed that in order to war-
ating an apparent violation of Heisenberg's relatif®k,22.  rant the destruction of the initial state one should reqire
It was shown in[9] that F>2/3 is a sufficient condition to  >2/3. However, it should be clear that though the result
warrant that such conditional squeezing can be obtained OP,,,=0.58 reported in Refl3] falls below that value, this
the EPR beams. Though the status of this EPR-Heisenbegkperiment is nevertheless a very significant achievement in
argument is a subject of debatg®-11], these various re-  defining and using the concept of continuous variables quan-
marks strongly suggest that tie=2/3 limit is related to  tym teleportation.
inferences made using conditional measurements, which play
an essential role both for QND measuremdri—16 and
for the noncloning theoreri2,13. ACKNOWLEDGMENTS
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