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Quantum cloning and teleportation criteria for continuous quantum variables
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We discuss the criteria presently used for evaluating the efficiency of quantum teleportation schemes for
continuous variables. Using an argument based upon the difference between 1-to-2 quantum cloning~quantum
duplication! and 1-to-infinity cloning~classical measurement!, we show that a fidelity value larger than 2/3
warrants that the teleported state is the best possible remaining copy of the input state. This value has not been
reached experimentally so far.
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I. INTRODUCTION

Quantum teleportation has emerged in recent years
major paradigm of theoretical@1# and experimental@2,3#
quantum information. The initial approaches using discr
variables@1,2# have been extended to continuous quant
variables@3–7#. However, various discussions have appea
recently about the significance and the evaluation criteria
real, and thus imperfect, teleportation experiments@5–11#. In
this article, we will reconsider the teleportation criteria f
continuous quantum variables, with emphasis on the tele
tation of coherent states@3#. Using an argument based upo
the no-cloning theorem@12,13#, we will show that a telepor-
tation fidelity Ftel.2/3 warrants that the teleported state
the best remaining copy of the input state.

In order to set the scene, it may be useful to come bac
@1#, where Bennettet al. introduce and define the concept
quantum teleportation. This quotation is taken from their
per: ‘‘Below, we show how Alice can divide the full infor
mation encoded in@the unknown quantum state# uf& into two
parts, one purely classical and the other purely non-class
and send them to Bob through two different channels. H
ing received these two transmissions, Bob can construc
accurate replica ofuf&. Of course Alice’s originaluf& is
destroyed in the process, as it must be to obey the no-clo
theorem.We call the process we are about to describe te
portation, a term of science-fiction meaning to make a per
or object disappearwhile an exact replica appears som
where else.’’

From this definition it should be clear that teleportati
must not only beat the classical limits on measurement
transmission, but must also reach the limit where the
cloning theorem is enforced, otherwise Bob may receiv
state that is better than any classical copy, but neverthele
will not be the teleporteduf&. A crucial point is then that
there is a distinction between nonclonable quantum inform
tion and classical information. This is best illustrated by co
sidering the fidelity for cloning one copy of a coherent st
into M identical copies, which isF1→M52/(21Nad), where
Nad52(M21)/M , as shown by Cerf and Iblisdir@13# (Nad

is an equivalent noise in the cloning process@9#, that will be
discussed in more detail below!. It is then clear thatF1→`

51/2, whileF1→252/3. The usual criterion about teleport
tion assumes correctly that a classical measurement is
volved in teleportation. However, it should not be conclud
1050-2947/2001/64~1!/010301~4!/$20.00 64 0103
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that the relevant limit is the one associated with a class
measurement,F1→`51/2. This conclusion is incorrect be
cause the good question to ask is: what is the measure
delity of Bob’s copy, as measured by the verifier Victo
which warrants that no better copy of the input state can e
elsewhere?~i.e., kept by a cheating Alice, or eavesdropp
by a malicious Eve!. We will show below in detail, but it
should already be clear from the above cloning limit, that
correct answer isF1→252/3.

II. THE 1 \2 AND 1\M CLONING LIMITS

A. Quantum duplication

We first give a simple demonstration that the fidelity lim
for making two copies of an input state isF1→252/3, as it
was previously shown by Cerfet al. in @12#. Here we recover
the same conclusion by using simple techniques simila
the ones used for evaluating quantum nondemolition~QND!
measurements, introduced in@14–16# and used in@6,9,10#.

A 1→2 cloner or ‘‘duplicator’’ has one input mode an
two output modesa andb. Denoting byg andB the ~linear-
ized! gains and noises for each channel, the quadrature
the two output modes are related to the two input quadratu
Xin andYin by

Xa5gXa
Xin1BXa

, Ya5gYa
Yin1BYa

Xb5gXb
Xin1BXb

, Yb5gYb
Yin1BYb

. ~1!

Sincea andb are two different field modes, any obser
able ofa commutes with any observable ofb, and in particu-
lar @Xa ,Yb#50. Using Eqs.~1!, and assuming that the adde
noises are not correlated to the input signals, we obtain

@BXa
,BYb

#52gXa
gYb

@Xin ,Yin#. ~2!

The noises added by the duplicator verify therefore

DBXa
DBYb

>ugXa
gYb

uN0 , ~3!

whereN0 is the vacuum’s noise variance andD denotes the
usual rms dispersion.

It is convenient to define the variances of the equival
input noises@15# associated with the measurements

NXi
5~DXi /ugXi

u!22~DXin!25~DBXi
/ugXi

u!2,
©2001 The American Physical Society01-1
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NYi
5~DYi /ugYi

u!22~DYin!25~DBYi
/ugYi

u!2, ~4!

where i is eithera or b. One thus obtains the symmetric
inequalities

NXa
NYb

>N0
2 , NXb

NYa
>N0

2. ~5!

These inequalities are very similar to the ones that appea
QND measurements@15#, and they ensure that building tw
copies of the input state will not allow one to work arou
the Heisenberg inequality. Actually, the added noise is
the one required to forbid to infer the values ofXin andYin
with a precision better than Heisenberg limit, by measur
Xa andYb .

The equivalent noises can be easily related to the clon
fidelity. It can be shown straightforwardly@9,10# that the
fidelity obtained when copying coherent states with un
gain (gXi

5gYi
51) is given by

FgT515
2

A~21NX /N0!~21NY /N0!
. ~6!

Assuming that the two copies are identical and have ph
independent noise, the limit of Eq.~5! is reached forNXa

5NYb
5NXb

5NYa
5N0 and corresponds thus toFgT51

52/3. This is identical to the result obtained by Cerfet al. in
@12#. A ‘‘duplicator’’ reaching the limit of Eq.~5!, can be
easily implemented using a linear amplifier and a 50
beam splitter. Such a duplicator is a Gaussian cloning
chine as defined by Cerfet al. @12#. Various implementations
of ‘‘cloners’’ have been proposed recently@17#, and may
allow, in particular, to arbitrarily share the noise between o
copy that is kept, and another one that is sent out.

B. The 1\M cloning limit

We generalize here the above demonstration to copy
one input toM identical outputs. In order to directly recove
the result of Cerf and Iblisdir@13#, we will assume that each
output channel has unity gain, and that all copies are ide
cal in the sense that the variances are the same for all ou
and that the pairwise correlation does not depend on the
of outputs that is considered. More precisely, the quadrat
of the M outputs of a 1→M cloner (M.2) obey

Xi5Xin1BXi

~7!
Yi5Yin1BYi

,

for every 1< i<M . We defineCX , NX , andNY as

CX5^BXi
BXj

& for everyiÞ j ,

NX5DBXi

2 for everyi ,

NY5DBYi

2 for everyi . ~8!

Like in Sec. II A, we have
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@BXi
,BYj

#52@Xin ,Yin# for everyiÞ j , ~9!

@BXi
,BYi

#50 for everyi . ~10!

We can defineL for any real numberl by

L5BX1
1l(

i 52

M

BXi
. ~11!

It follows straightforwardly from Eqs.~9! and ~10!, that

@L,BY1
#52l~M21!@Xin ,Yin#. ~12!

For the variances, it implies

DLDBY1
>ul~M21!N0u. ~13!

ComputingDL2 directly from Eq.~11!, we have

DL25DBX1

2 1l2(
i 52

M

DBXi

2 12l(
i 52

M

^BX1
BXi

&

1l2 (
i , j .1

iÞ j

^BXi
BXj

&. ~14!

Using the definitions~8! in Eq. ~14!, we obtain

DL25@11l2~M21!#NX

1@2l~M21!1l2~M21!~M22!#CX . ~15!

If l522/(M22), this expression is simpler and become

DL25
M2

~M22!2
NX , ~16!

which can be injected in Eq.~13! to obtain the 1→M clon-
ing limit

NXNY>S 2~M21!

M D 2

N0
2 . ~17!

This limit is also valid forM52 as written in Eq.~5! and for
the trivial caseM51.

Assuming that theM copies have phase-independe
noise, i.e.,NX /N05NY /N05Nad52(M21)/M , it is simple
to show from Eq.~6! that the corresponding fidelity limit for
coherent state cloning is

F1→M5
2

21Nad
<

M

2M21
. ~18!

As previously stated, a perfect 1→M symmetrical cloner can
be implemented using a linear amplifier andM21 beam
splitters@17#.

C. The 1\` cloning and classical measurements

When a classical measurement is performed, the meas
ment result can be copied an arbitrary number of times
1-2
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should thus be clear that the limit corresponding to a cla
cal measurement isF1→`51/2, or Nad52. On the other
hand, making only two copies comes at a smaller price,
corresponds toF1→252/3, orNad51. We will show below
that this distinction is crucial as far as quantum teleportat
is concerned.

III. TELEPORTATION AND NO-CLONING

A. Quantum teleportation criteria

Suppose Alice~a! sends a quantum state to Bob~b!, who
wants to be certain that Alice cannot have kept a better c
of the input state than the one she has given to him. T
requirement means to be sure that Alice’s copy is destroy
i.e., that quantum teleportation according to@1# has occurred.
Alice will be able to cheat if her equivalent noise is smal
than Bob’s, that is,

NXb
>NXa

opt and NYb
>NYa

opt , ~19!

whereopt denotes the optimum result for Alice. Since th
best Alice can do is limited by the Heisenberg-like inequa
ties ~5!, one has

NXb
>N0

2/NYb
and NYb

>N0
2/NXb

~20!

and thus

NXb
NYb

>N0
2 . ~21!

If Bob’s noise variances are symmetrical, i.e.,NXb
5NYb

, one

recovers the limitF<2/3 for teleporting coherent state
Thus the only way for Victor to warrant that Alice is no
cheating is to obtain a measured teleportation fidelity lar
that 2/3. It is worth noticing that when the associated con
tion NXb

NYb
,N0

2 is fulfilled, then Eq.~5! imposes thatNXb

,NXa
andNYb

,NYa
, and thus Alice will have both quadra

tures worse than Bob.

B. Security in quantum teleportation

It should be clear now that as long asF<2/3, Alice can
cheat teleportation by keeping a better copy than the one
has received. The simplest way to do that is first to duplic
the input state, then to keep one copy, and to teleport
other one to Bob. As an example, if Bob’s teleported out
has a fidelityFb50.58, orNb51.45, and if Alice has a per
fect teleporter than she claims to be imperfect, she can k
a copy with a fidelityFa50.74, orNa50.7. This is clearly
not acceptable according to the definition of@1#.

We point out that the same condition applies when Al
is honest, but when quantum teleportation is used to se
quantum state from Alice to Bob for quantum cryptograp
purposes. In that case, one must worry about the amoun
information that can be eavesdropped during the telepo
tion process. For simplicity, let us consider a teleportat
scheme using light beams exhibiting Einstein-Podols
Rosen~EPR! correlations, with a finite degree of squeezin
and transmission losses. It is assumed that Eve is abl
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perfectly eavesdrop the classical channel, and that she
full access to the losses along at least one ‘‘transmiss
arm’’ of the EPR beam~this is a strong hypothesis, but it i
usually done for evaluating the security of standard quan
cryptography!. The simplest solution for Eve is to build he
own teleported state, and she will be successful if this s
has an equivalent noise smaller than the one achieved
Bob. It can be shown simply, and it is physically obviou
that as long as the EPR channel efficiencyh is smaller than
1/2, Eve can obtain a teleported copy of the input state tha
betterthan the one obtained by Bob. More generally, this c
be also seen as a consequence of the 1→2 cloning limit: if F
is larger than 2/3, Bob can be sure that a malicious Eve
not be able to eavesdrop the teleported state@10#. Thus the
F.2/3 limit appears also as a crucial security condition
teleportation is used as a quantum communication tool.

C. Discussion

In order to clarify the issues involved, it may be wor
summarizing the physics involved in the respective crite
F.1/2 andF.2/3.

As said above,F51/2 is actually a classical measureme
limit, associated with the 1→` cloning limit. It has been
shown in@18# that purifications procedure can be initiated
soon asF.1/2, and may lead to high fidelity values. How
ever, the purpose of teleportation criteria is to characteriz
given experiment, and not what it might be by adding pu
fication procedures. We note also that recently demonstr
entanglement criteria@19# are fully compatible with theF
51/2 limit. It is thus clear that theF.1/2 criterion charac-
terizes a threshold for the appearance of quantum effe
related to entanglement in the teleportation process@5,7#.

On the other hand, the main virtue of theF.2/3 criterion
is that it warrants that no other copy of the input state c
remain, that would have a better fidelity than the one B
has received. This has obvious advantages if quantum

FIG. 1. Table illustrating the fidelity values associated to t
number of allowed copies of the input state. The valueF51/2
corresponds to the threshold for the use of quantum entanglem
while the valueF52/3 corresponds to the enforcement of n
cloning. For distant operations, the region betweenF51/2 andF
52/3 is called ‘‘quantum fax,’’ because the original kept by Alic
may have a higher fidelity than the teleported copy. The no-clon
region F.2/3 corresponds to tranferring quantum states betw
different systems for local operations, and to quantum teleporta
~as defined in@1#! for remote operations.
1-3



fo

e
e

va

ic
n
is

at
e
cr

be

pl

ha
.
a
g

ver-
ed.
hing

e-
re-

re

ar-

ult

t in
an-

o-

RAPID COMMUNICATIONS
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portation is used as a secure way to transmit quantum in
mation. It is worth pointing out that theF.2/3 criterion is
more demanding technically, and can be fulfilled only wh
the transmission of each beam distributing the entanglem
resource is higher than 50%, and enough squeezing is a
able @9,10,20#.

In @9,10# it was argued that theF.2/3 criterion is also
related to the so-called EPR nonseparability argument, wh
was introduced in@21# and implemented experimentally i
@22#. This argument requires that ‘‘conditional squeezing’’
obtained on one EPR beam, given a measurement th
done on its entangled partner. By changing the measurem
one can get conditional squeezing in both quadratures,
ating an apparent violation of Heisenberg’s relations@21,22#.
It was shown in@9# that F.2/3 is a sufficient condition to
warrant that such conditional squeezing can be obtained
the EPR beams. Though the status of this EPR-Heisen
argument is a subject of debates@9–11#, these various re-
marks strongly suggest that theF52/3 limit is related to
inferences made using conditional measurements, which
an essential role both for QND measurements@14–16# and
for the noncloning theorem@12,13#.

Finally, the status of the local or remote operations t
can be performed on the input state is summarized in Fig
The wording ‘‘quantum fax’’ for remote operations with
fidelity between 1/2 and 2/3 means that a quantum entan
J.

ck
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ment resource must be used to reach that region, but ne
theless that the no-cloning theorem is not yet enforc
Therefore, as in a fax machine, Bob has received somet
that is not so bad, but a better copy may still exist som
where. Obviously, this does not happen any more in the
gion aboveF52/3.

IV. CONCLUSION

As a conclusion, it should be clear that the criteriaF
.1/2 andF.2/3 have different physical contents, and a
both legitimate. Based upon the definition given in@1#, and
on the no-cloning theorem, we showed that in order to w
rant the destruction of the initial state one should requireF
.2/3. However, it should be clear that though the res
Fexp50.58 reported in Ref.@3# falls below that value, this
experiment is nevertheless a very significant achievemen
defining and using the concept of continuous variables qu
tum teleportation.
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