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We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating
light. This state is obtained from a pulsed nondegenerate parametric amplifier, which produces two
intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired
two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of
the measured state is clearly negative. We developed a detailed analytic model which allows a fast and

efficient analysis of the experimental results.
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Quantum properties of light beams can be described in
terms of amplitude and phase or, in Cartesian coordinates,
in terms of the “‘quadrature components’ of the quantized
electric field, associated with noncommuting operators %
and p. The corresponding observables, often called ““quan-
tum continuous variables,” are analogous to the position
and the momentum of a particle, and from Heisenberg’s
inequalities they cannot be determined simultaneously
with an infinite precision. As a consequence, one cannot
define a proper phase-space distribution II(x, p) for the
electric field, but rather a quasidistribution W(x, p) called
the Wigner function. This function can be reconstructed by
quantum homodyne tomography [1], which consists of
measuring several quadratures Xy = Xcosf + p sinf with
a homodyne detection and applying an inverse Radon
transform.

The most conspicuous property of the Wigner function
is that it may take negative values for specific quantum
states, as a signature of their nonclassical nature. This is the
case for Fock states, which contain a well-defined number
of photons. Such states can be generated by using “twin”’
beams, which are produced by optical parametric amplifi-
cation and contain perfectly correlated numbers of pho-
tons. Counting n photons in one mode projects the other
mode in an n-photon Fock state, which can then be ana-
lyzed using homodyne tomography. This was recently
demonstrated for n = 1 [2,3]. However, up to now this
method could not be applied for higher photon numbers,
since the probability to generate simultaneously more than
1 photon pair was extremely low.

In this Letter we present a detailed analysis of a free-
propagating light pulse prepared in a two-photon Fock
state (n = 2). The measured Wigner function presents a
complex structure and takes negative values. In addition to
standard methods, we will also present a novel analytic
model of the experiment, allowing an in-depth physical
interpretation of the experimental results.

Our experimental setup is presented in Fig. 1. A pulsed
Ti:sapphire laser produces 180 fs nearly Fourier-limited
pulses with an energy of 40 nJ and an 800 kHz repetition
rate [4]. The high pulse peak power allows us to increase
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the pair production rate beyond what was available pre-
viously [2,3]. The 850 nm pulses are frequency-doubled
[second harmonic generation (SHG)] by a single pass in a
100 wm thick noncritically phase-matched potassium nio-
bate (KNbOj;) crystal. The frequency-doubled beam
pumps an identical crystal used as an optical parametric
amplifier (OPA), generating a two-mode squeezed state
[5]. To align the setup, a probe beam is injected in the
OPA with an angle of 5° to the pump direction. It allows
one to measure a classical phase-independent gain g =
1.07. The homodyne detection is aligned on the idler
beam, whereas the signal beam, after spatial and spectral
filtering, is split between two avalanche photodiodes
(APDs) operating in a photon-counting regime. The detec-
tion of a coincidence by the APDs means that at least 2
photon pairs were created in the OPA by the same pulse.
Since the gain g is still relatively low, the probability to
create more than 2 pairs is small in this case. Therefore, a
coincidence detected by the APDs conditionally prepares a
two-photon state in the idler beam. Single-photon states are
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FIG. 1 (color online). Experimental setup and Wigner function

of the two-photon state propagating in the experiment (corrected
for homodyne detection losses, see text).
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FIG. 2 (color online). Experimental quadrature measurements
and quadratures reconstructed using our model (see text).

conditioned by single APD events. The prepared states are
analyzed by a homodyne detection operating in a time-
resolved regime. It samples each individual pulse, measur-
ing one quadrature X, in phase with the local oscillator.

In previous n =1 state reconstruction experiments
[2,3,6], it was generally admitted that the generated states
are phase independent. In our case, the production rate of
single photons is very high, and we can record the full n =
1 quadrature distribution in less than 1 s, during which
phase drifts are negligible. Therefore we did check experi-
mentally that both the unconditional (thermal) and singly
conditional (n = 1) probability distributions do not depend
on 6. Then it is quite reasonable to assume that this is also
the case for the n = 2 state, as it was done for the n = 1
state in older experiments.

In a 2 h experimental run, we acquired 105.000 homo-
dyne data points conditioned on two-photon coincidences
(40 s were enough to acquire 180.000 single-photon
events). Dividing the data into 64-bin histograms, we
obtained the quadrature distributions presented on Fig. 2.
With a numerical Radon transform, we reconstructed the
Wigner functions associated with the measured states (see
Fig. 3), both clearly negative. Their minima and their
values at the origin are presented in Table I. To determine
the Wigner functions of the generated states, presented in
Fig. 4, we correct for the homodyne detection losses by
using a standard maximal-likelihood (MaxLik) algorithm
[7,8], taking into account an independently measured ho-
modyne efficiency 7 = 80%.
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FIG. 3 (color online). Wigner functions of the measured uncor-
rected states, reconstructed by a standard Radon transform, com-
pared to those obtained using the model described in the text.

The negativity of the Wigner function can be rapidly lost
with experimental imperfections. Above all, we must en-
sure that the prepared state belongs to the mode analyzed
by the homodyne detection. This modal overlap ¢ is de-
creased by the imperfections of the filtering system, by the
APD dark counts, and by the limited spectral and spatial
qualities of the optical beams. As a result, we may consider
that the state is prepared in the right mode with a proba-
bility &, and in an orthogonal mode with a probability 1 —
&. A second source of decoherence is excess noise in the
OPA, producing uncorrelated photons. The actual OPA can
be represented by an ideal nondegenerate amplifier with a
gain g = cosh?(r), producing a pure two-mode squeezed
state, followed by two phase-independent amplifiers on
signal and idler beams, each one with a gain h =
cosh?(yr), where 7y is the ratio between the undesired
and the desired amplification efficiencies (ideally y = 0).
Finally, the homodyne detection presents a finite efficiency
7 and an excess noise e. From the measured optical trans-
mission 7, = 97%, quantum detection efficiency n, =
97.5%, and mode-matching efficiency n,, = 92%, we es-
timate n = n,nqnf,, = 80%. Since m and e are not in-
volved in the preparation but only in the analysis of the
state, we can correct for their effects in order to determine
the actual Wigner function of the generated state. The
overall efficiency w of the APD detection channel,
although rather low (6%), is not a limitation in this experi-
ment (see the Appendix).

In order to obtain a more physical analysis of our
data, we have constructed a complete—but nevertheless
simple—analytic model of the experiment (see the
Appendix). Apart from predicting the performance of the
setup, it allows one to extract much more information from
the experimental data than the numerical methods pre-
sented above, although it is, of course, less general. It
uses a generic parametrized expression of the Wigner
function, derived in the Appendix, which accounts for all
the experimental defects:

,RZ/O.Z

e
Wa(x, p) = —

oR?> &°R*
4+
o? 20* }

where R> = x> + p%, (1)

[(1 — S 4201 - 8)

o2 =2nhg—1)+1+e, ()

TABLE I. Critical values of the Wigner functions correspond-
ing to the measured uncorrected data (raw, obtained from the
Radon transform), to the state corrected for homodyne detection
losses (corrected, obtained from the MaxLik method), and to the
ideal state (ideal).

2 photons 1 photon
min(W,) W,(0) min(W,) = W,(0)
Raw —0.009 = 0.003 0.012 = 0.003 —0.052 = 0.003
Corrected —0.034 £ 0.003 0.062 = 0.003 —0.123 = 0.003
Ideal —0.13 0.32 —0.32

213601-2



PRL 96, 213601 (2006)

PHYSICAL REVIEW LETTERS

week ending
2 JUNE 2006

W(R)| 1-photon W(R) 2-photon
state state "
005 Maxtike 1 0.05 MaxLike

Model Model

FIG. 4 (color online). Experimental Wigner functions cor-
rected for losses in the homodyne detection, reconstructed by
a standard maximal-likelihood (MaxLike) method, compared to
those obtained using the model described in the text.

8 =2&nh’g(g — 1)/[o*(hg — 1)) 3)
The associated quadrature distribution is described by
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The density matrices of these states are diagonal in the
Fock basis, the nonzero coefficients given by

2(g% — 1)"2

T D [S2 — 2n(n + 1)8%c*],  (7)

(nlpyln) =

(nlpiln) = 28,(0* = )" /(a® + 1)"*2, (8)

(nlpolny = 2(0* = 1)"/(a> + 1)**1, ()]

where S, = o*(1 — 8) + 0?8(1 + 2n) — 1, and p, corre-
sponds to the thermal unconditioned state (obtained by
taking 6 = 0 in any of the above equations).

These states are completely described by the two same
parameters o> and 8. Here o is simply the variance of the
nonconditioned Gaussian thermal state. The nonclassical-
ity of the conditioned states is determined by &, which
varies between 0 for a nonconditioned state and 2 for the
ideal case. When 6 > 1, both W; and W, become negative,
and a central peak appears on W,. These parameters, which
are very useful to optimize the experiment, can be directly
extracted from the second and fourth moments of the
measured distributions:
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2 phot
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FIG. 5 (color online). Main density matrix coefficients of the
states conditioned on 0, 1, and 2 photons (corrected for detection
losses).

1 photon

&2 = o*(1+ 68)/2
&M, =30%(1 +28)/4

2 photons

(x?), = (1 +268)/2
(x*), =30*(1 + 46 + 6%)/4

We used one-photon conditioning during the optimiza-
tion, so that o2 and & could be determined in a few
seconds, 300 times faster than in the two-photon case.
The two-photon state, described in principle by the same
parameters, was ‘‘automatically’’ optimized in this pro-
cess. We found that the values deduced from one- and
two-photon state tomographies are exactly the same for
o?, and differ by less than 2% for §.

In addition, the quadratures reconstructed using the
parameters o and & extracted from raw data are in ex-
cellent agreement with the measurements (see Fig. 2), and
the reconstructed Wigner functions of the measured states
are very close to those obtained by the Radon transform
(Fig. 3). Equations (2) and (3) also allow one to determine
the modal overlap ¢ and the excess gain parameter y. The
obtained values (¢ = 0.9 and y = 0.4) are fully compat-
ible with experimental evaluations, which are difficult to
do but were carried out by using independent classical
amplification and photon-counting techniques.

Since the results obtained with this method appear to be
completely consistent, both within themselves and with in-
dependent measurements, we can assume that the Wigner
function of the generated state, which we would measure
with an ideal homodyne detection, can be simply calcu-
lated by taking 7 = 1 and e = 0 in our expressions, keep-
ing all other parameters unchanged. The obtained results
are again in good agreement with those provided by the
MaxLik method, as shown in Fig. 4. The main density
matrix coefficients of the generated states are represented
in Fig. 5. This gives us confidence that our method provides
a very fast and reliable way to interpret the experimental
data, which is more ‘“constrained” than the Radon trans-
form but also much closer to the physics of the experiment.

The present experimental and theoretical results dem-
onstrate simple techniques to generate and analyze sophis-
ticated nonclassical states of propagating light fields,
which have been considered almost out of experimental
reach during many years. Similar methods can be used to
create photon-subtracted entangled states with two-mode
negative Wigner functions, which should improve the fi-
delity in teleportation experiments [9—11] and allow one to
implement loophole-free Bell tests [12,13]. The avenue of

=1 = H Homodyne
v Detection
STy T=1/2 :
opa HHZ ) A APDA
B APDB
P sqz Ploss P mix pcond P2

FIG. 6 (color online). Modeling of the experiment.
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manipulating negative Wigner functions now seems clearly open for quantum communications.
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Appendix.—The model for the experiment is represented in Fig. 6. The OPA produces a two-mode noisy squeezed state

with a density matrix p,, associated with a Wigner function

(=% +(pr+p2)* _ (1 +x)*+(p; = p))?

exp(—

(hs+h—1)

(h/s+h—1) )

quz(xl’ P X2, pZ) =

where s = e~ 2" is the two-mode variance squeezing factor

associated with a gain g = cosh?(r), and h = cosh?(yr) is
the excess gain. Mode 1 is directed towards the homodyne
detection, whereas mode 2 is sent into the conditioning
channel. The homodyne losses can be represented by mix-
ing mode 1 with vacuum on a beam splitter (BS) with a
transmission 7 = 7). Since we are interested only in the
transmitted mode H, we trace over the reflected mode to
obtain the resulting density matrix. The same holds for the
APD losses, with a transmission 7 = u.

The resulting Wigner function W is calculated by
convolution of Wy, with the Wigner functions W, of
two vacuum modes, using W, (x, p) = exp(—x> — p?)/ .
Then, the mode transmitted through the APD channel is
mixed with another vacuum mode on a 50/50 beam split-
ter, producing a density matrix p;, involving three modes
H, A, and B, and associated with the Wigner function:

XA T Xg pat pp
Wmix = Wloss<xH’ Pu> )

V22
Xpo —Xp Pa— PB)
V22 )

Modes A and B are detected by the APDs A and B, which
realize, respectively, the projective measurements I, 5 =
Id — 10, )0, | with a probability ¢ (“matched clicks™),
and II, = Id with a probability 1 — ¢ (““‘unmatched
clicks’”). The density matrix becomes

Peond = NaE T o L4 T g + (1 = €)? prgi
+ Nl f(l - g)(HApmixHA + HBpmixHB))
where Ny = 1/Tr(Il4ppix) = 1/Tr(Ilgpmi) and N, =
1/Tr(I1 411 5 p,nix). Finally, the density matrix of the mea-

sured two-photon state is obtained by tracing out the two
APD modes A and B:

>< anc (

P2 = Tty pPcond
= [N2€2 + 2N E(1 = &) + (1 = €)*]Trp pPmix
= [N2€2 + N E(1 = E)]Trg(04l pmixl04)
— [N282 + N E(1 = )] Tra05| prmixlO5)

+ N2E%0405| piix|0405). (A2)

The associated Wigner function can be calculated using

m(hs + h— 1)(h/s +h—1)

, (A1)

[

TrK Wmix = meixdeder

(O Wiiel0) = 277 [ Wi Wyedgd .

where K = A, B. As expected, it has no definite phase and
depends only on R?> = x%, + p%,. It has the form

ae R/ BeTRIT (1—a+ B)e R/
W, = 2 T 2 )
703 ToT o

(A3)

where «, 8, and o; are functions of the parameters above.
This linear combination of Gaussian functions looks quite
simple, but & and 8 diverge when the OPA gain or the APD
efficiency is small, which is our case. This leads to nu-
merical instabilities when this expression is used for data
analysis. To avoid this problem one can simply take the
limit 4 — 0 in Eq. (A3), obtaining Eq. (1) quoted in the
main text above. In our range of parameters, these two
equations are numerically indistinguishable.
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