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Conditional quantum logic using two atomic qubits

I. E. Protsenkd;>® G. Reymond. N. Schlosset,and P. Grangiér
ILaboratoire Charles Fabry de I'Institut d’Optique, UMR 8501 du CNRS, F91403 Orsay, France
2Lebedev Physics Institute, Leninsky Prospect 53, Moscow, Russia
3Scientific Center of Applied Research, JINR, Dubna, Russia
(Received 2 June 2002; published 9 December 2002

In this paper we propose and analyze a feasible scheme where the detection of a single scattered photon from
two trapped atoms or ions performs a conditional unitary operation on two qubits. As examples we consider the
preparation of all four Bell's states, the reverse operation that is a Bell's measurement, and a cambolled-
(cnoT) gate. We study the effect of atomic motion and multiple scattering by evaluating Bell's inequalities
violations and by calculating thenot gate fidelity.
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[. INTRODUCTION ments are studied quantitatively in Sec. IV. In Sec. V we
describe a&NOT gate based on the Bell’s states created by the
Implementing a quantum controlleebT (CNOT) gate is a  procedure of Sec. |, and we calculate the fidelity of this gate,
key step in present attempts towards quantum computatioﬁaking into account the motion of the atoms in the traps and
Many different schemes faaNOT gates using atoms or ions the possible Spontaneous emission of two phOtOﬂS. Finally
have been proposdd—6], and some of them implemented We discuss these results and suggest developments of the
[7-9]. These schemes generally require a strong quantumoposed scheme.
interaction between the particles that are used to carry the
physical qubits. Though there are still many difficulties on || PREPARING FOUR ORTHOGONAL BELLS STATES
the way, very promising results have been obtained recently
using that approach, both with trapped iga8] and neutral We consider two atoms=1,2, trapped in two separate
atoms[11]. dipole traps and prepared in one of two std&s or |g); of
Another possible way is to give up the requirement for athe ground-state hyperfine structure. We represent four initial
direct interaction between the qubits, and rather use an inteptates of the two-atom system as a vector column
ference effect and a measurement-induced state projection to
create the desired operatigda2]. This provides “condi- {laB)}="]g0).|ge),|eq),|ee)}, a,B=eg. (1)
tional” quantum gates, where the success of the logical op-
eration is heralded by appropriate detection events. Undarach atom can be excited to one of the upper statas or
some conditions, such gates can also be exploited for fullrg’); by resonant--polarized laser fields of Rabi frequencies
fledged quantum computirid-2]. Qg4i,Q;, as shown in Fig. 1. The fields are weak, so that the
Another type of conditional scheme was proposed inprobability to excite both atoms is much smaller than the
Refs.[13,14), for creating an entangled state of two atoms,probability to excite only one atom. An excited atom may
simply by detecting a photon spontaneously emitted by th@mit spontaneously a photon, with the wave vedtoand
atorrl pair. This is done by avoiding to leave any “which certain polarization, onm-polarized |g’);—|g); or |e’);
path” information, so that the emitting atom cannot be iden-_, |e), transitions. Occasionally, a photon passes through the
tified. In such a scheme there is no direct interaction betweegptical system shown in Fig. 2 and it is registered by the
the two atomic qubits, that can in principle be located verypnhotodetector. We assume that the polarReéransmits only
far from each other. , w-polarized photons, and thus-polarized photons emitted
In this paper we propose to extend the ideas of Refspn the |e’'),—|g); and |g’);—]|e); transitions will not be
[13,14, to realize a fullcNoT gate, or a Bell's-state measure- rggistered.
ment, or more generally to implemenonditional unitary After the excitation, the wave function of the two atoms is
operations Our scheme.wnl be bgsed on an.expenm_entqlchanged fromaB) to | )1|W 5)a,
setup using two atoms in two neighboring microscopic di-
pole traps[5,15,16, but it can be readily applied to other
systems. In Sec. | we will describe how to realize a condi-
tional unitary transformation that maps the four factorized
states of two qubits onto the four maximally entangled Bell’s
states. Since a convenient experimental signature of en-
tanglement is the violation of Bell's inequalitié8l) [17],
we will evaluate the result of a test of Bl on the “trans-
formed” pair of qubits, taking into account imperfections due
to the motion of atomgéSec. I) and to the spontaneous emis-
sion of two photons by two atom&ec. Ill). Bl measure- FIG. 1. Scheme of the relevant atom transitions.
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|Wo)i=|e);+b|g’)e'editeed, |k)B|gg) = k)|Bgyq),

[Wg)i=|g)i+ble’)eta®i* ), .
|ng>:(1/\/5)“ge>e|[qg‘$r2+k|2(k)+‘/392]
— 0
Oui =Ky Ti+ 0%, 2 +|eg)ellie?a K0+ eqil) 3)
where ér; describes fluctuations in the position of atom
near the equilibrium due to the motion of the atom in theyhere q,=k,—k, k=|k|, andl;(k) is the optical length
trap,r; is the atom position at equilibriunk, 4 are the wave  which a photon travels through the optical system towards
vectors of thoe laser field resonant to eitleer-g” org—e’  the photodetector. The optical system is set in such a way
transitions,¢,; is the phase of the laser fiefd,;, b<1lisa thatthe images, 2’ of atoms 1 and 2 perfectly coincide on
real constant. ~ the photodetector. This means thgtk) is the same for all
The registration of a photon means that the wave functionegistered photons, and therefoké(k)=kl;. Introducing
|V ,)|¥p) is projected to a Bell's statfB,z)=|k)B|aB),  the vector column{|B,z)}="|Bgg).|Bge):|Beg):|Bee)} Of
where |k) is the state of the field with one spontaneouslythe Bell’'s states we can express them in terms of the initial

emitted photon. For exampl W) is projected to states(1) as{|B,z)}=[B]'{|aB)}, where
g/l *g B
|
0 ei(qgﬁr2+<p92+klz) ei(q95r1+<pgl+kll) 0
1 ei(Qe5r2+§De2+k|2) 0 0 ei(qg‘srl+€0gl+k|1)
f—
[B] - \E ei(Qe5r1+<Pel+kll) 0 0 ei(q95’2+‘992+k'2) ' (4)
0 o (e 1+ 0e1+KIp)  oi(0edro+ weptKlp) 0
|
is a matrix of Bell's operatoB. 0=(BegBge) = Wyge'(¢o1~ g2 Kl1=kl2)

In general, the wave functidiB)(|Bge)) is not orthogo- (0op— _
! W* 2~ @ertklp—klyp)
nal t0 |Beg)(|Beg)). In order to make sure that all Bell's W ez e ’ ©6)
states are orthogonal, one has to satisfy two conditions, WhereWaﬁzei(qaarl—qﬁarz)_ If the atoms are very cold in a

steep trap, so that they are deeply in the Lamb-Dicke regime,
(0o pug t Kla—Kig) one should tak&V,;=1 in Egs.(5) and(6). But we point
0=(BeeBgg) = Wgee't¥or ™ ez a7 out that the resulting conditions are actually independent of
+V\/’efgei(¢gz_‘/’el+k|2_kll), ) the atoms motion. Indeed,

<Waﬁ> :<WZB> :VaV,BE 1- D(T),

< (-D"
Vo= 2 G {(@e 0N - ()

where(- - )y and(---), mean, respectively, the average

2,0 over the atom motion and over directions of registered pho-
i,e[[) tons. We average separately over symmetrical and statisti-
Z cally independent motion of each atom, drop indéx or; ,
and introduce the paramet®(T), 0<D(T)<1, whereT is
B ) the temperature associated with the random motion of the
FIG. 2. Proposed scheme for conditional quantum logic. Atomsatoms. One can see thaNaB> and <W§15> disappear from

1,2 are placed in a focal plane of the input ldn®f the optical . - '
system. The atom pair is excited by the laser field with the Waveo_rthogonallty conditions(5),(6), which are reduced to a

vectork, , circularly polarized in the/z plane, and emits a photon single condition

with the wave vectok on thex-polarized transition. The polarizer 0_ o0 0_ .0 _ 1=

P selectsx-polarized photons that are transmitted through an inter- g2~ ¢t Pez” Pert (Ket ko) (r2=r1) +2k(lo= 1) 7{8)
ferometerl towards a photodetector. A mirron of the interferom-

eter is tilted so that the images,2’ of the two atoms coincide on  |n our geometry we havebgl: ¢22, and thus this condition
the photodetector. The unit vector in the direction af-®olarized  pecomes

atomic dipole is denoted a and 6, is the aperture angle of the

lensL. (ke+kg)(rz_r1)+2k(|2_|1):7T. (9)
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There are various ways to fulfill this condition. If one ll. BELL'S INEQUALITIES
choosek.=—Kg, i.e., theo, ando_ lasers are propagat-
ing in opposite directions, the condition for orthogonality of
the Bell's states is obtained by adjusting the interferomete
path difference so thadt(l,—1,) = 7/2. But it is also possible
to take ke=ky=k_, together withk, (r,—r;)=m/2, ob-
tained by adjusting the trap’s positions. Assuming then tha
kl,=Kkl;=2nm for simplicity, taking (here and everywhere
below) the origin of the coordinate system on the atom 1 an
definingg=k_—k, the Bell's operator matrix can be written,

When the atoms are prepared in a Bell's state, the statis-
tical behavior of measurable quantitiesich as the popula-
fion of state|a);) is governed by the entangled wave func-
tion |B,g). Here Bl will be used as a simple experimental
{:haracterization of the degree of entanglement of the atom
pair. As we will see below, either atoms motion or simulta-
Jreous excitation of the two atoms may reduce or even sup-
press the BI violation.

In order to test Bl we carry out the following sequence of

0 jelddry  @igor; 0 operations.
st s (1) The atoms are prepared in one of the stdlgs
B1 = ie!9or2 0 0 4o (2) Atoms are excited by weak laser pulses under the con-
[B]'= E elddry 0 0 jeiddrs | ditions of Eq.(9).

(3) One spontaneously emitted photon is registered. If
there is no photon after some delay, the sta@eg2) are
repeated until one photon is registered.

(4) Raman transitions for each atom are carried out so that

0 eiq&rl ieiq5r2 0

which converts four initial atom states to four Bell's states,
which are orthogonal in average over the atom motion.
Though the condition for the orthogonality in average de-
pends only on the atoms equilibrium positions, the final fi-
delity of the conditional unitary transformation will obvi- .
ously depend on the atoms motion, due to éhgand ér, in |€)i—cod ;) e)i +sin(6)[g); (12
the[B]’ matrix. )

In order to simplify the local operations used in the rest of (5) Populations of); states are measured.
the paper, it is convenient to perform two phase transforma- (6) Operations(1)—(5) have to be repeated until a full
tions for atom 2, that make the chanps,— —ile), just statlst|c_:al en;emble of results for the population |af;
before the photon observation af&},—i|e), right after it. ~ States is obtained.

|g)i—cod 6;)[g)i—sin(6;)|e);

Taking into account such transfornations as {fiagi,1 (7) The stepg(1)—(6) are repeated for four different Ra-

—i}[B]'diag 1,i,1i}=[B], where diag means diagonal ma- Man transitions with four pairs of anglég,,6,}, {6;,65},
trix, we find {01,0,}, and{6,,65}.

After the operationg1)—(6) are carried out, the state of
0 —edr glan 0 atoms and a photon i&k)RB|aB), where the operatoR

1 | el9or2 0 0 giadry describes Ram_an ;rans@tioﬁEZ) for t\_/vo atoms. We note that

[B]= E e 0 0 _eiwr | (10 the wave function is writteron the rightto the operator. We

_ _ preserve the same convention for matrix notations, so that

0 ¥ ¥z 0 RB|ap) is an element of RB]{|aB)}, where{|aB)} is the

. _ _ vector columr(l). It is shown in Appendix B that in this case
which has real elements in the absence of atom mafion o atrix [RB] of RB operator is the matrix product

=0. In a geometry where the ph_asqa%i can be indepen-  gjR(g,)]; the matrix| R(6,)] for the Raman transitions is
dently controlled, one can obtain the matrit0) more given by Eq.(B2) of Appendix B, andB] is given by Eq.
straightforwardly, for example by choosing in E@) kI, (10). Here and below we denote the dependence&)pand
=kly=2nm, ke=kg=k_, r;=0, and 6, as a dependence ah, when it does not lead to confu-
0 0 0 0 sion.
¢g1= Pe1=0, ¢eo=—KL T2, @g=m—Kk.T5. (11 Let us callP(;(6;) the probability to find atoms in state
|v8), while the initial atom state i$a8). By taking the

Below we refer tqB] as a Bell's operator matrix supposing modulus square of each matrix elemenfRB] one can find

either that conditior{9) is true and the Bell's operation is the
photon observation procedure with the two phase transfor-

(99 py=pdg\—pEd g )= pEd g
mations for atom 2, or that there is only the photon observa- Pag (61)=Pge”(6)=Pge” (61)=Pyq”(61)

tion, but conditiong11) are satisfied. = 0.5 sird( 6, — 6,)+0.5Q(T, 6))],
In order to get a physical understanding about the quality
of the Bell's-states preparation, we will now look in detail 99— P8/ n\—pd/ o\ pEd/ n
whether the prepared states can violate Bell’s inequalities. In Pge (01)=Pgq"(61)=Pgg”(61)=Pye"(61)
these calculations we will use the expressidf) corre- =0.9cog(0;,— 6,)—0.5Q(T,6,)],
sponding tok,=ky=k_, but similar results could be easily
obtained in the case wherk.=—k, (the fully phase- PE9(9)=pPE9(g)=PLI(9)=PLI (g,
matched situation where the atoms’ positions would cancel eg 2T ee AT ee AT T eg AT
out is not accessible with our experimental geometry =0.9co(0,+6,)+0.5Q(T,0)], (13

062306-3
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PG (6)=PEY(0)=PEP(6)=PL2(6)
=0.5sir’(6,+ 6,)—0.5Q(T, 6,)],

whereQ(T, 6;) =D(T)sin(26,)sin(26,) andD(T) is given by
Eq. (7). One hadD(T)=0 in the absence of atoms motion, in
this case the maximum violation of Bell's inequalities is ob-
tained. In the oppositéhigh-temperatunesituation, where
D(T)—1, one obtains from Eq$13),

P9 6,)— 0.5 SinP(61)CoS( 6,) + SirP( 6)coF(61)] )

and similar expressions for the other probabilities. This cor-

responds to a “classical” limit where Bl cannot be violated.
ThusD(T) is a “decoherence parameter” which grows up
with the temperature fror®(0)=0 to maxD=1.

For each atom=1,2 we define a random variablg,
with values+1 or —1 depending on whether an atom is

PHYSICAL REVIEW A 66, 062306 (2002
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90/75
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FIG. 3. Critical temperature as a function of the aperture angle
of the optical system.

found, respectively, irlg); or |e); state after registering a complicate the precise calculation Bf(T), which will be

photon and carrying out the Raman transition. With the helgcarried out elsewhere. Here we will consider a simple order-
of Egs. (13) one can find(£,)=(£&,)=0, (£2)=(£)=1, of-magnitude estimation, using anharmonic approximation
where the average is made over the results of a sequence fof the trapping potential. The procedure carried out in Ap-

operationg1)—(6). The correlation functions are given by

_{&6)—(6)(&)
(E1(&5)

=2[PP(6) - PSP ()],

E.p(0) =(£1€2)

so that
Ege(0i)=—Egq(6i)=c032(6,— 0,)]—Q(T, ),
Eeg(0i)=—Eed 0))=c0g42(0,+ 0,)]+Q(T,6;). (15
As usual we define the quantity

Sep(6;,0])=Eop5(0) —E,p5(0105)+ E, 5(6016,)+ Eaﬂ(?i,%)
1

for each initial statéa,8), then the Bell's inequalities read
[18]
—2<S,45(6;,6/)<2. a7

The resultg13)—(16) are similar to ones obtained for the Bl
test with polarization-entangled photon pdit€], the differ-

pendix A(see also Refl20]) leads to

2.2

h<y
D(T)~1-e TTer, KgTer=—=—,
R

(18

where T, is a critical temperature such th&(T>T.,)
~1, vess is an effective frequency of atom motion in the
trap. For the aperture angé,= =/4, as it is in our case,
ver~1.250 *+0.750 %, wherev, andy are the frequen-
cies of the motion of atoms i, y, and in z directions,
respectively; Eg=%2k?/(2my)=hvg is the recoil energy,
and kg is the Boltzmann constant. Usingy=3.6 kHz for
Rb?” atoms and our estimations, =200 kHz and V)|
=50 kHz, we obtainvgs =55 kHz and T.,~20 uK. In
general,v.s; and T, depend ond, and the direction of the
laser field. The maximuny, is reached wheh is parallel to
k_ for the most of the emitted photons. For the geometrical
arrangement displayed in Fig. 2, the variationTf as a
function of 6, is given by Eqs(A8) of Appendix A, and it is
displayed in Fig. 3.

Let us choose parameters of Raman transitions
0,=X, (19

01=2x, 0,=3X,

ence is that here the decoherence is taken into account by

means ofD(T). In the following section we look for the
violation of inequalitieg17) for each initial state of the two-
atom system.

IV. EFFECT OF ATOM MOTION ON BELL'S
INEQUALITIES TEST

In order to predict accurately the value $f4(6; , ;) we
have to calculate the factdd(T), which depends on the
trapping potential and the aperture angjeof the input lens

andT/T,=0.5, for such case facto¢(x) = — Sy((X) and
Seg(X) = —Sy¢(X) are shown in Fig. ).

One can observe the violation of E}Baﬂ(x)|>2 for
Sge(X) and Sg((x), while Bl are satisfied forS.(x) and
Syg(X). This situation can be inverted by choosifig=0,
0,=—x, 07=2x, and#,= —3Xx, so that Bl will be violated
for Sgg(x) and Sy4(x) but satisfied forS;e(x) and S¢e(X).
Therefore, all four states do violate Bl, but the combination
of angles to be used depend on the state in the pairwise
fashion just described. Figure(b} shows the maxima of

of the optical system. In general, the trapping potential i§S,g| versus the normalized temperature of the atom motion

anharmonic, nonsymmetric arfy is not small. All of these

found for 6, ,,6; , given by Egs(19). The condition to vio-

062306-4
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e T . LT R T e maXS
S 28

FIG. 4. (8 Sye(X)=—SedX)
(solid ling) and Sg¢(x) = — Syg(X)
(dashed ling at T/T.,=0.5 and
anglesé,, 6,, 61, 6, given by
Egs. (19). Bell's inequalities are
violated forSye(x) = — See(X). (b)
The maxima of S, | for different
T/T.,. Dotted lines in(a) mark
|S|=2 and|S|=22.

26

24+

22

3 L L I ) ' L )

0 02 04 06 08 x/; 1 0 05 1 15 2
a b T/ Ter
late BI for all four states(for suitable choices of Raman =2=n. It may also happen that one atom emits the missed
angles is therefore thal <T,, . photon first, and then the registered photon comes from an-
other atom. In that case, one has to change the field state
V. EFFECT OF MULTIPLE SCATTERING ON BELL'S [k,k") in Eq. (20) to [k’ k). After registering a photon and
INEQUALITIES TEST performing the phase transformatioe),—i|e),, the state

. L |gg) is projected to the state
Now we take into account the excitation of two atoms

together and examine how it influences the Bl violation. Let
us first consider the case of only three levels in each atom
shown in Fig. 5.

We examine a possibility that a photon emitted by one
atom is registered, while another atom also emits a photon on X (k' K)+|k,k' )], (21)
|e’)—|e) transition, but this photon is missed. After the ex-
citation to |e’); state the wave function of atoin=1,2 is

1 ) )
J—N[<e'q5flleg>—e'q5f2|9e>)|k>+<§>1’2f|ee>

given by Eqgs(2), where ¢=(b/a)?. Taking into account that the field state
_ |k’,k) is orthogonal tolk,k’), and calculating(|f|?)r=2,
W) =alg),+ble’), e, one obtains the normalizing factdr=2[ 1+ 2¢£].
_ After carrying out the Raman transitions, the atom states
¥ ),=alg),—ble’),e* o, in the right part of Eq(21) are changed in accordance with

. L the transformatior{12). Following the procedure of Sec. llI
where we suppose that conditiofikl) are satisfied. If the we find

photonk is emitted by one atom and registered, while an-
other photonk’ is emitted by the other atom and missed,

then the atoms go frone’e’) to |ee) state and we have . . COs 20, C0s 26,
go frorfe’e’) to |e€) Eqg(#1) = —[1=D(T)Isin 20 8in 20,~ —— 5

eik,_(&r1+ 6r2)|e/e/>_>eikL(6r1+5r2)(efik5rl|eer> (22)

+e k2je’e)) k) —flee)|k,k'),
Figure 6 showsS,4(x) calculated with the help of Eq$16)
f=gl(A0r1+a'dr2+¢3) | @i(A0rp+q"0r + ) (200 and(22) for T/T,=0.5, 6;, 6,, 6;, and 6, given by Egs.
(19 and variousé. If the state|e’); is excited by a weak
whereq’ =k, —k’, ¢/ is the phase of a missed photon emit- “square” pulse, so thaf)y; is constant during the excitation
ted by atomi=1,2 and we suppose, as usulill;=kl, time and zero otherwise, th®=|Qgi|2/52<1, wheresd is

FIG. 5. This scheme represents the event
where both atoms are transferred together to the
|e) state, but one emitted photon is missed.

|g>1

062306-5
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actually also realized using the same scheme. Here we will
evaluate the efficiency of a whole sequence, including the
preparation followed by the measurement—two successive
clicks will be therefore required.

By carrying out the step$l)—(3) of the procedure de-
scribed in Sec. Ill we prepare a Bell's std®,z) of two
atoms. TheriB,, ;) can be projected to the pure sthtgs) of
two atoms, or “measured,” by proceeding the stéps-(3)
with the phases of the laser fields,

0 0 0 0
Per=T—KLAl,  ¢g1=0e1=0, @go=—K_AT.

Taking into account the multiple scattering, one arrives to the
final state of two atoms and spontaneously emitted photons
after the Bell's-state preparation frgmg) state followed by

the Bell’'s-state measurement,

FIG. 6. FactorS;4(x) for Raman transition parameters given by

Egs.(19), T/T.,,=0.5 andé=0 (curve 1, £=0.05(2), £=0.15(3) MRS LT T\R(2) 2 NR(2)
and&=1 (4). Bl violation is observed fog up to 0.13. IN(k)B+ [k, k")BE)([k)B+ [k K" )BE) ah), (25)

0 02 04 06 08 x /T 1

the detuning from the resonance |gn;— |e’); transition. Bl
are violated for|Q4|%/ §?<0.13 if T=0.5T,, as it can be > L ~ Lo
seen on Fig. 6. tor B is [B]~* with &, replaced byor; , operator8®) is the

It is convenient to write the final two-atom state, taking Same for the Bell's-state preparation and the measurement.
into account simultaneous excitation of two atoms for eacheince the preparation and the measurement of a Bell's state

whereN is the normalizing factor. A matrikB] of an opera-

initial state|a), under the following matrix form: are separated in time, all field states in E2p) are orthogo- _
nal to each other and the average over the atom motion
V2IN([K)B+ |k, k'Y B@)|ap), (23 vyields(dr;- or;)=0, i,j=1,2, because the atom motions on
different time intervals are not correlated.
where the statgk,k’) is orthogonal tdk) and normalized to The Bell's-state measurement is not perfect due to the

1, the matrixB] of the operatoé is given by Eq.(10), and  atom motion and the multiple scattering, so that the s2fe
the matrix of the operatdi:s(z) is is, in general, a linear combination of four stafds. If a
fidelity of the Bell's-state measurement is high, the probabil-

ity to find atoms injaB) initial state after the measurement
approaches 1, while the probabilities to find any other atom

(24) states go to 0. A matrix for the transformation of the vector
column of stategl) after the Bell's state preparation and the
measurement is

[B®]=\2¢

=~ O O O
O B, O O
o O -, O
O O O K

V1IN B OB (2) (2)72

VI. BELL'S STATE MEASUREMENT UN(BI[B]+[BIB]+[BI[B™]+[B™]Y). (26
In the preceding section we have shown that four orthogoJ@king the square modulus of each element in the matrix

nal Bell's states can be prepared from four initial factorized(26) and calculatingN=[1+ 2£]2 one converts matrix26)

states, under the condition of detecting a single photon. Thto a matrix of probabilities to find atoms iy é) final state

reverse process, usually known as a Bell's measurement, &arting with|ag) initial state,

1—f,+4& 2¢ 2¢ fy
1 2¢ 1—f,+4& fq 2¢
(142¢&)2 2¢ fy 1-f,+4& 2¢ ’ @0
f, 2¢ 2¢ 1—f,+4&

f(T)=D(T)—D*(T)/2.
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FIG. 7. (a) Fidelity Fg for Bell's-state mea-
surement as a function @i/ T, for £=0 (curve
1), £=0.05(2), £=0.15(3), and¢é=1 (4); (b) F
as a function of¢ at T/T.,=0 (curve 1, T/T,,
=0.2(2), TIT,=0.5(3), T/T,,=1 (4).

03 1 . 1 1 03 1 1 1 1
0 02 04 06 08 1 0 02 04 06 08 g 1

T/ Ty

In the case of perfect Bell's-state preparation and the mea- (3) Atoms are excited and a spontaneously emitted photon
surement, the matrix27) has diagonal elements equal to 1 is registered. If there are no photons registered for a time
and other elements equal to 0. Thus, we can take the diagty>T~! operations1)—(3) have to be repeated.

nal element of the matrix27) as the fidelityFg(&,T) of (4) The local operatiorr, is carried out. Let us suppose,
Bell's-state measurement, for a while, that atoms do not move, so that the Bell's op-
5 erator iséo, where matrix[ By] is given by Eq.(10) with
Fo(£T)=1— 46+D(M-DbAM)2 (28  Ori=0. By definition[ C]=[H,][Bol[H.], where[H ] are
(1+2¢)? the matrices of local operations; ,, and therefore

Fidelity Fg is shown in Fig. 7a) as a function ofT/T, for [H{]=[C][H,] YBo] (30)

various &, it is shown in Fig. Tb) as a function of¢ for

variousT/ T, . Taking the matri H,] ! as a general local transformation

Small increase irFg for large é&~1 is because of the for two-level atom, inserting it in Ec(.3_0) with the require-
contribution of processdsta)—|BB8)—|aa), a# B grows  ment that the matrix product on the right of E§0) should
up with &£ due to the multiple photon scattering. However, be a local transformation, we obtain
this is not so important for practical cases, whérel. | S
-1 1 1 -1

[ [

VII. QUANTUM CNOT GATE

N -

[Hi]=
We have shown so far that conditional Bell's-states prepa-

ration and measurement can be successfully achieved. Our -1 1 -1 1
result is actually more general than that, and shows that ar-
bitrary conditional unitary transformations on two qubits can 0o -1
be achieved by using Raman rotatiofapplied locally to 1 i 0
each atom and the detection of a single click. In order to [Hy]= —
demonstrate this we will now show that the four Bell's-states \/5 0 -1

preparatiodBaB)=l§|a,B) can be turned into anoOT opera- —-i 0
tion C, described by the matrix

(31)

= O +—» O
o

0

Details of the procedure of determining [dfl, ,] are given

1 0 O O in Appendix B. As it can be seen from Eq®9) and (B10)
01 0 0 of Appendix B, operatiorﬂl is the phase transformation
[C]= 00 0 1 (29 |g),—i|g),, after which the Raman transitjc(rlZ) with 64
=l4, 6,=— /4 is carried out. Operatioil, starts with
0 010 the Raman transitiof12) with 6,= — /4, 8,= — x/2 after

o R which one makes the phase transformatipg)s— —i|e),
We prove that in our case=H,BH,, whereH, , are some |g),— —i|g),.
local (single-atom operations and the matrix of Bell's opera-  Now we take into account the atom motion, the simulta-
tion B is given by Eq.(10). ThecNnoT operation can thus be heous excitation of two atoms and find a fidelity of threoT

realized by the following procedure. operation. We suppose thﬁtm transformations are much
(1) One of the initial state§l) of atoms is prepared. faster than a period of the atom motion in the trap, in such
(2) The local operatiord, is carried out. caseH , does not depend at all on the atom motion. Indeed,
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FIG. 8. (a) Fidelity F for quantumcNoOT gate
as a function of /T, for £&=0 (curve 1, &
=0.05(2), £&=0.1(3) andé=1 (4); (b) Fas a
function of £ at T/T,,=0 (curve 3, T/T,=0.2
(2, TIT,,=05(3), T/T,=1 (4).

01

. L . L 04 L . L .
0 02 04 06 08 1 0 02 04 06 08 E, 1

T/ Ty b

by carrying out a fast local operation with atamone can  atoms in the traps down to the temperatures of fei; or
choose the origin of the coordinate system in that atomby increasing the atom oscillation frequencies. This can be
which meansr;q+ 6ro=0. Thus, using formula(10) with  done, for example, by using standing-wave trapping fields,

5r,#0 and Eq.(23) we obtain an operatdt of a nonperfect that separate a trapped potential into several narrow wells

CNOT transformation, with oscillation frequencies much higher than the present 50
kHz obtained for the longitudinal motion in a tightly focused
C= \/ﬁqk)é(l)ﬂk,k')ém), (32)  beam. Multiple scattering gives a rather small contribution,
as long as the saturation parameter remains below a few
where matrices of operatoé(l'z) are percents. An important characteristics of the fidelity of the
CNOT gate operation is the decoherence paranig(dr). For
[CW]=[H][B][H,], [C®]=[H][B@][H,]. a reliable theoretical determination 8f(T), one needs to

(33 know accurately the trapping potential. However, before do-
ing experiments on Bl violationD(T) can also be deter-
mined experimentally by looking at the interference fringes
on the light emitted by the two atoms, irradiated on a closed
transition[20].

Neutral atoms in a dipole trap are not the only candidates
for implementing our conditionaNoT gate. In principle, the
gate can be realized with other resonant objects such as, for
example, trapped ions, or quantum dot molecyl@®Ms)
incorporated in a solid matrip21,22. Each QDM consists in

The matricesiH, ,] are given by Eqs(31), and matrices
[B],[B,] are given by Eqgs(10),(24), respectively.

We can now build matricef|C*?|?], whose elements
are the square modulus of respective elementsGt?],
and calculate the matrixC,] of probabilities to find atoms
in |yé8) state after theeNOT operation, whilela8) was the
initial atom state,

2
[Cpl= S{[ICWH|Z]+[|CW)2]} two closely positioned quantum dots with the ground state of
N each dot split into two or more close states. The advantages
1+4F 1-F 0 0 of QDMs are their fixed positions in the matrix and the pos-

siblity to prepare the initial states electronically. The diffi-
< culty, however, is in providing the coherence during the gate
2 0 0 1-F 1+F |’ operation, which is quickly destroyed by the electron-phonon

1| 1-F 1+F 0 0

interaction.
0 0 Ik 1-F The proposed simple scheme can be generalized straight-
where forwardly to more complicated schemes with many elemen-
tary gates, which may be called “integrated conditional
1-D(T) quantum logic blocks,” or ICQLB. They can be constructed
= 1+—2§ (34) by the increase of the number of atoms dad the number

of ground states available in a single atom. There gte
0<F<1 is the fidelity of thecNOT operation(32). The value  initial states ofn atoms, if an identical photon can be emitted
of F is shown in Fig. 8) as a function ofl/T,, for various ~ On transitions te different ground states. However, because

& and it is shown in Fig. &) as a function oft for various the photon observation process is not Hermitian, the maxi-
TIT . mum numbeN(n,p) of obtained orthogonal Bell's states is,

in general, less thap", thoughN(n,p) increases witm and
VIIl. DISCUSSION p. For example, only seven orthogonal Bell's states are pos-
sible for three atoms with the level scheme of Fig. 1, for any
An important problem in the experimental demonstrationchoice of phases of laser fields. DeterminationNgi, p)
of the conditional quantuneNOT gate operation is the sup- is an important question for the theoretical modeling of
pression of the atom motion, which can be done by coolingCQLB.
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Another theoretical problem is how to find local transfor- Z ho ke
mations, which convei(n,p) X N(n,p) matrix of the gen- <5r§)T=2 cotr( oK lfl_) ~ 5 (A3)
eralized Bell's transformation, obtained by the photon obser- Mar@¢ B My

vation procedure, to the matrix of desirable logic .
transformation. The procedure of Appendix B can be gener@t #w¢/(kgT)<1. Taking w,=wy=2mv, and w, =27y
alized, in principle, to higher-dimensional cases, however V& obtain

seems too cumbersome, and the development of a simpler

procedure would be quite helpful. We underline that even ((q8r)2)7=K2 ksT

. . 1
(1+sinf6—2 sin6 cose) —

complicated ICQLB operate in the same five steps as the 27%my, v?
CNOT gate described above. The stdpis the preparation of

initial N(n,p) states of atomg2) includes local transforma- 1

tions; (3) is the excitation of atoms by weak resonant fields, +cos'0 ﬁl (Ad)

repeated maybe several times until a spontaneously emitted

photon is registered#) is another local transformatioii%) The average
is the determination of final populations of atomic states.
Each step can be carried out simultaneously for all atoms 2m b

together, so that the operation time of ICQLB is not much (u(0,<p))q=f d(pf sin@do P(6,0)u(6,¢), (A5)
longer than for the elementagnoOT gate. The increase in the 0 0
operation time of complicated ICQLB can happen, however

because the probability far atoms to emit more than one whereu(f,¢) is some function and

photon increases with, so that lower intensities of the ex- P(6,¢)=Co(1—sirPd code) (A6)
citing fields are required in order to avoid multiple scatter- '
Ing. is the probability that a photon is emitted within the optical

Finally, using conditional gates in a quantum computersystem with a directiork. The normalizing constar€, is
requires to “store them aside” once they are known to work,given by

and to teleport them in the calculation at a later sfddg#. A

similar scheme might be possible with atomic qubits, as pro- 1 27 by _
posed in Ref[23]. Though we do not propose here a specific C.- f d@f sin#df(1-sinf 6 coSe)
S o Jo 0
way to make the present scheme scalable, a further direction
of research is clearly to study up to which point quantum A 1
computations may be realized using conditional logical ele- =3 |1 (3 costy+ cos’p) |- (AT)

ments such as the ones described above.
Eqg. (A6) is obtained from the relation
APPENDIX A

Here we show thaD(T) can be given by Eq18) within 7?(0,<p)=C0)\2212 [d-ex(k/k)]?=Co[ 1~ (d-k)?/k?],
some approximations, and we estimate the critical tempera- ’
ture T, . We consider an atom in the trapping potential as ayheree, (k) is the unit wave vector along one of the two
harmonic oscillator, with a deviation from the eq_uilibrium possib|e po|arization$:1,2 of a photon’ andl is a unit
position given by orj={ér,,or,,dr,}. Then (e'91)r  wave vector along ther-polarized atomic dipolex axis on
=e (@12 which is the consequence that the thermalFig. 2).
fluctuations of the position of a harmonic oscillator are de- Thus, in order to find (T) one has to insert E§A4) into
scribed by the Gaussian distribution function, and thereforeEq. (A1) and calculate(- - - ), from Eg. (A5). For a high-

input aperture of the optical system, this procedure can

1_D(T)E<eiq(5rl—5r2)>:<e_<(q5r)2>T>q. (A1) hardly lead to an analytical result, and we use the approxi-

mation
In the coordinate system shown in Fig. =k sin #cose, (e‘<(q5')2>T>q~e‘<<(q5f)z>T>q,
ky=ksin@sing, k,=kcos# and k ,~k, k =k ,=0, so
that which improves aD(T) gets smaller. Thus, we obtain fi-

nally D(T)=1—e" "Ter(%)  that is Eq.(18) where

2\ _ .2 o 2 2 H H 2
((qér)?)7=K?[(1—sin 6 cose)*(or )7+ Sin* 6 sino(Sry) h22, (6) L A +AL(00)

2Bp ngf( 6o) Vﬁ VE

+cog0(Sr2)1]. (A2) kgTer(60) =

(A8)
For the one-dimensional quantum harmonic oscillator with

the massm,,, which oscillates along the axeswith the . 4mCo(6) 5 cosfly— c0S
B ; vl A (6y)=1+ - ,
frequencyw,, §=X,y,z in the thermal equilibrium 5 4
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8mCq( o) 5 coS 6+ 3 cosh,
15 a 8 '

A (bo)=
andCy(6y) is determined by EqA7).

APPENDIX B:

In this paper we use the relatig®B]=[B][A], where
[AB] [A], and[B] are the matrices of the operat(fké A,

PHYSICAL REVIEW A 66, 062306 (2002

|g)i—(ci€'%ai|g); — sie'Peie);) e'fo,

|e);— (cie'%eile); + s;e' %ai|g);) e'te. (B1)

They consist of the phase transformation which changes the
phase of the stat¢a); —¢'%ad|@);, the Raman transition
given by Eq.(12) with c,-cos(&) s,=sin(4), and another
phase transformatmrha),ae ¢ai| ). For our purposes,
however, it is enough to consider transformatidB4) (or
their reversgwith ¢,;=0. The matrix of the local transfor-

and B, respectively, acting on the wave functions from themations carried out with two atoms is, therefore,

vector column(1). Let us prove this relation. We name the

wave functions from the vector columfl) as |¢;), i
=1,...,4 and use theelationL|;)=Si_;Li|¢), where

L, is the matrix element of the matrfx] of the operatoi.
in the basig{|#;)}. So that we can write

4 4 | 4
AB|¢i>:gl [B]ikAwfk):gl (kzl [B]ik[A]k|) l4n)

4
Z [ABJi|#),

where[Aly, [Blik, and[AB]; are the elements dfA],
[B], and [AB], respectively, which proves[AB];
=Zﬁ=1[B]ik[A]k| and therefor¢ AB]=[B][A].

Now we find the matrix of the local transformations,

which mixes the stately); and|e); of the two-level atom

[LCOi€ai) I=IM (€0 ITR(6) =M (£4i)]

CiCy —C1S; —S1C2  $19

CiS C1C; =818 —S1C2
8 S1C2  —851S;  C1C2  —C1Sp

$1S2  S1C2 C1S2 C1C2

(B2)

where

[M(&a)1=IM(Eg1€ens€g2i€en)]
=diag{e'¢os,e'Coe,e'Ceg el bee}, £ =&, + Epy,
(B3)

is the diagonal matrix of the phase transformation and

[R(6,)]1=[R(6,65)] is the matrix of the Raman transfor-

i=1,2. Such transformation is necessary for the calculatiomation(12) used in the calculations of the probabilitigs3).

of the probabilitieq13) and in order to solve Eq30). Gen-
eral local transformations can be written in the form

In order to solve Eq. (30, we take [H,] !
=[L(6;,&,)], insert it into Eq.(30) and find

Clsz_ SlCZ C1C2+ SlSZ Clcz - 5152 - Clsz_ SlC2
—C1C2—S1Sy C1S—S1C» C€1S;+S1Cy  C1Co— 1Sy
[Hi]=[M1(&ai)] _ _ : (B4)
C1S;—S1Cs  S1Sp+C1Cy S$1S,—C1Cy  S1C2+C1Sy
$1S5+C1Cs  $1C2—C1Sy S1CrtC1S,  C1Co—$S)
where [M,(&,)] is a diagonal matrix obtained by inter- gléos el —glées —eléay
changing the_z two last elgments [A (&)1 _ _eifge  gifge cifge  _gifge
Our goal is to determin®@; and&,;, such that the matrix [H,]= _ _ . . (B6)
; 1 giee giee giee giee
given by Eq.(B4) can be represented as
gfes  —glfeg glfes  —glteg

[Hil=[L(8 E)] (B5)

with somed, 5, &, . By comparing the matrices given by
Egs.(B2) and (B4) we see that Eq(B5) can be true only if
|ci|=]si|, that is wheng,= = x/4, 6,=+3m/4; or whenc;
=0 or 5;=0, while [¢;|=[s|, j#i. We choose&l—w/4
6,=m/2, from which we getc;=s;,=12,c,=0, s,-1

and therefore

We can see now that the matfik (4 ,€,;)] is very similar
to the matrix(B6) if we take 8, = 7/4 and#,= — /4, so that

s el —elfes —eitog
_ —eifge glfge glfge  —glége
T ifeg  gifeg gifeg  pifeg
_plee gifee _gifee  glee
(B7)
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with (B2). Inserting theref,;=w/4, 6,=w/2, and the values of

o &,i given above we obtain

Eap=Eart Epo- (B8)
Apart from the notations for phases, the only difference be- [Ho]=[R(= w4, m/2)IM(O,~ m/2, 77/2,0)],(810)
tween the matrices in Eq$B7) and (B6) is the opposite
signs of the elements in the last rows. The simplest way tQuhere we take into account thaf R(/4,m/2)] 1
eliminate this difference by choosidge= 7 is not permitted  =[R(—#/4,—7/2)] and [M(0,7/2,7/2,0)] *=[M(O,
by relations(B8). However, by the examination of E(®86)  — 7/2,— 7/2,0)]. The matricegH ,] satisfying Eq/(30) are
and (B7) one can see that they are equivalent fgg=m,  given explicitly by Eqs(31). We note that the matrices given
foe=Eqg= T2, £ge=0, and Eoq=Egq= /2, Ege=E0e=0. by Egs.(B9) and(B10) are not the only ones which satisfy
Such a choice does not contradict with E@3) and(B8), it  EQq. (30), but other possible ones will have a similar form.
corresponds 10, =0, §go=m/2, {e1=m/2, {,=0 and

31=0¢p=1/2, £ =£,,=0. Inserting such values &, ACKNOWLEDGMENTS
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