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Modeling and design of passive electric
networks interconnecting piezoelectric
transducers for distributed vibration control

M. Porfiri*?, F. dell’Tsola®>* and E. Santini®

*Dip. di Ing. Strutturale&Geotecnica, “La Sapienza”, 00184 Rome, Italy

bEngineering Science and Mechanics Department, Virginia Tech, Blacksburg, VA 24061-0219, USA
“Dip. di Ing. Elettrica, “La Sapienza”, 00184 Rome, Italy

Abstract. In the literature collocated or distributed arrays of piezeoelectric patches are employed to actively control structural
vibrations. In the present work in order to damp beam vibrations a completely passive electric controller is designed, exploiting
distributed piezoelectric transduction. In this way a simultaneous multimodal vibration suppression is obtained. The optimal
electric network (interconnecting the piezoelectric transducers) is synthesized as a finite differences approximation of the derived
distributed (infinite dimensional) optimal controller. A prototype of the proposed novel smart structure (Piezo-ElectroMechanical
beam) is designed, allowing for appreciating its technical feasibility and effectiveness.

1. Introduction

The recent technological developments in the production of piezoelectric transducers, and the relevant
consumers’ attention towards the suppression of structural vibrations, increased the research efforts in
their effective exploitation in control systems for actual engineering structures. An efficient control of
structural vibrations leads to other benefits, such as the precision in mechanisms manoeuvres, the reduced
fatigue loads, the reliability and durability of machineries. These were the main reasons to attract the
interest of both mechanical and aerospace industries in this topic.

The aim of this paper is to prove that simultaneous multimodal beam vibration suppression is techni-
cally feasible, when exploiting purely passive electric networks and available piezoelectric transducers.
Indeed the authors prove that multimodal damping of mechanical vibrations by means of truly passive
electric circuits can be obtained by uniformly distributing piezoelectric transducers on the host structure
and suitably designing an optimal interconnecting electric passive network (the resulting smart structure
is called Piezo-ElectroMechanical structure, PEM for brevity). This concept seems an interesting devel-
opment of the method of “piezoelectric shunting” proposed by Hagood and von Flotow in [1] for single
mode and extended by some other authors to multimodal control ([2] and [3]). Indeed, the method here
presented is based on the shunting of an array of distributed piezoelectric transducers with a multitermi-
nal terminals passive electric network: more precisely, instead of coupling each piezoelectric transducer
to a single (eventually multifrequency) electric resonator, the whole set of transducers is coupled to a
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Fig. 1. Flow chart describing the adopted methodology for the synthesis of the electrical interconnecting network.

distributed electric network. It has to be remarked that the presented electric dynamic controller evolves
with second order differential equations in time gyroscopically coupled to those governing the evolution
of the mechanical system to be controlled, and therefore the concept introduced here differs from that
studied in [4-6] and [7]. Indeed, in the quoted papers the distributed array of piezoelectric transducers
1s actively driven by a voltage field, which is the output of a suitable feed-back loop (in this way one
gets a smart structure which is in general active). Instead, the piezoelectric controller here introduced is
completely passive, so that PEM structures are passive.

In Section 2 a refined (microscopic) model for PEM beams is introduced, in which the lumped nature
of the electric network, the material discontinuities introduced by the piezoelectric laminae and the
localization of piezoelectric applied couples are accounted for.

In Section 3 the homogenized model is deduced from the previously introduced refined model. Such
a homogenized model:

is valid when the number of transducers positioned on the host structure is sufficiently large,
is more handleable when optimizing distributed controllers,
is sufficiently detailed to suggest design criteria for truly lumped PEM beams.

W=

In Section 4, the modal analysis of homogenized PEM beams is addressed, without specifying
completely the evolution equations of the electric controller, which is assumed to belong to a rather wide
class of (local) differential controllers.

In Section 5, the pole placement technique is exploited to determine — in the class previously specified
— the optimal passive electric controller, which establishes a multimodal critical damping. Moreover,
by means of a finite differences scheme and by exploiting the results in [8] and [9], a lumped electric
circuit representing a finite dimensional approximation of the optimal homogenized (infinite dimensional)
controller is presented. The methodology is summarized in Fig. 1.

In Section 6, the set of electromechanical mode shapes and modal frequencies of the optimally
controlled PEM beam are determined.
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Fig. 2. Geometry of the problem.

In Section 7, the theoretical results previously established are exploited to start the design of a prototype
of a PEM beam. The limits of the homogenized models are analyzed and the need of a more refined
model is established. This last model will necessarily account for the lumped nature of the electric
controller and will be studied in future works.

2. Refined model for PEM beams

We consider a host beam of length I, width w and thickness ~ on which an array of N periodically
distributed bender (see e.g. [8]) piezoelectric transducers is positioned ! as shown in Fig. 2. The length of
the transducers is assumed to be equal to [ p» While the width is assumed to be equal to that of the beam;
d denotes the distance between the adjacent patches.

These transducers will be interconnected by an electrical network which will be synthesized in order
to accomplish given optimality conditions on the mechanical vibration decay. '

By introducing the set of nodes {z; };=1 . n, representing the geometrical centers of the transducers,
and defined by:

wi:(lp+d)<i—%> i=1,...N, (1)

the bending moment M at the section labelled by the abscissa z, over the beam span, may be expressed
as the sum of mechanical and piezoelectric contributions as follows [8]:

N
M (z,t) = | EpIy + kpm Z (RECT,, (z — wz))] u" (z,t)
i=1
N (2)
+hme Y (RECTy, (2 — 24) 6 (1)),
i=1
where:
RECT;, (x —z;) = H (a: —z; —"‘%’) - H (:L' -z 4 %) ; (3a)

"The piezoceramic laminae are on both the beam surfaces. They are polarized in the transverse direction.
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h2wé hwds .
kmm = —=, ) — . (3b)
23‘191 me sﬁ

H is the Heaviside function, ¢; is the flux linkage? of the i-th transducer measured with respect to a
common reference ground for every transducer, w is the beam deflection field, Ey, is the Young modulus
of the materlal of the beam, j, is the beam section moment of inertia (I, = h3w/12), 4 is the transducers
thickness®, s¥;, is the piezoelectric mechanical compliance, d3; is the piezoelectric coupling coefficient,
t denotes the time variable and superimposed dot and prime respectively mean time and space derivative.
In the literature, see e.g. [10], several models of beams hosting piezoelectric transducers have been
proposed leading to different estimations of the constants in Eq. (3b).

The distributed inertia can be accounted for by introducing the following constitutive equation for the
applied load (external mechanical forcing is excluded):

§ & )
br (z,t) = —wh (pb + QE ; (RECTlp (x — ;) pp) i (z,t), “)

where pp, and p,, are respectively the mass density per unit volume of the beam and transducer materials.
The balance equations for the considered electrically excited vibrating beam yield:

M (z,t)" — by (2,t) = 0, (5)

where M (z,t) and by (z, t) are given by Egs (3) and (4) respectively.
Assuming, as in Fig. 1, the beam to be simply supported, the mechanical boundary conditions to be
considered are:

w(0,t) =u(l,t) =0
{M(O,t):M(l,t):()' (6)

From a purely electrical point of view, the i-th piezoelectric bender transducer can be described as
a capacitor in parallel connection with a “mechanically driven” current source, which injects into the
electrical circuit the current J; driven by its mechanical time rate of deformation (see Fig. 3) [8]:

Ji = ke (W (s + 1p/2,t) — ' (2 — /2, 1)) -
The capacitance of each piezoelectric bender transducer can be estimated to be equal to [8]:

b — ol w (styes — d31)l
ee 811(5 p-

The electrical system interconnecting the electrical terminals of the bender transducers is assumed to
be a linear, time invariant, reciprocal, passive N + 1 terminals network (see [11]) the admittance matrix
[Y¢] of which, in the Laplace domain, is given by:

[ve] = (D] + - [K°), ™

2The flux linkage %; represents the time integral of the voltage V; of the 4-th transducer measured with respect to the common
ground, i.e. Y; = V;.
5The transducers thickness & is assumed to be much smaller than the beam thickness.

7?2
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Fig. 3. Mechanically fed electrical circuit.

where s is the Laplace transform variable and the residue matrices [K €| (electrical stiffness) and [D¢]
(electrical damping) are symmetric and positive definite. We emphasize that (see e.g. [11]) the admittance
Eq. (7) can be realized by means of an electric circuit constituted by transformers (eventually multiport),
resistors and inductors.

Thus, by Kirchhoff balance of currents at node i, the evolution equations for the variables 1 ; are given
by the following second order system of ODEs:

N N
ki + Y K§hs + > DEjahy — ke (& (@i + 1p/2,8) — & (2 — ,/2,1)) = 0,i = 1,... N.(8)
i=1 j=1

3. Homogenized model for PEM beams
3.1. Homogenized beam

When it can be assumed that the number of piezoelectric transducers is sufficiently large, the methods
of homogenization techniques may be applied to the considered electromechanical system (see e.g. [4]
and [7]). Therefore, a continuous flux linkage field ¢ (z, t) can be introduced and the bending moment
constitutive relation Eq. (2) becomes:

M = khomu” + ghom¢7 9

where the homogenized bending stiffness kpomy, and piezoelectric coupling gnom have been introduced.
These effective constant are estimated by the following relations

SRS RS S S ! (10a)

=l —-c¢f) 55 +cfe"7, a
Khom By " T EoDy + ke

Ghom kame (10b)

khom B EbIb + kmm’
where the covering factor

1
=1y,
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appears. Equation (10a) states that the effective compliance is equal to the weighted sum of the compli-
ances of the homogeneous beam and of the beam covered by the piezoelectric elements. Equation (10b)
states that the ratio of the effective coupling to the effective stiffness is equal to the ratio of the piezoelec-
tric coupling times the covering factor to the stiffness of the beam covered by the piezoelectric patches.
The average of the above introduced flux linkage field + on the region covered by the i-th transducer is
equal to the the flux linkage ;. Similarly the applied load Eq. (4) may be written as:

bT = "Phomﬁn

where the homogenized linear mass density is given by the weighted sum of the linear mass densities of
the homogeneous beam and of the beam covered by the piezoelectric patches, i.e.

)
phom = wh (pb i 2cfﬁpp> . (1)

Thus the dimensionless form of the mechanical evolution equation becomes:

4 khom
4, 1V | p2 i « = 14 phomw?
i+ oy + 85 " =0, om®o , (12)
/82 _ Ghom¥0
12 promwoti

where a characteristic radian frequency wo, a characteristic length equal to the beam length [, a char-
acteristic deflection uq and a characteristic flux linkage 7)o have been introduced. As this cannot cause
misunderstanding, we have adopted the same symbols to denote both dimensional and dimensionless
differential operators and kinematical descriptors. Within the homogenized model (see e.g. Eq. (9)) the

mechanical boundary conditions Eq. (6) to be considered in the analysis of the simply supported PEM
beam are:

{u(O,t) =u(l,t)=0

. . 13
khomu” (07 t) + Ghom?¥ (0: t) = khomu” (17 t) + Ghom?¥ (1a t) =0, 3

The mechanical modal properties (mode shapes v,,,’s and eigenvalues )\,,’s) of the PEM beam when the
piezoelectric transducers are short-circuited to ground are obtained by solving the eigenvalue problem

oIV = .
where the boundary conditions are Eq. (13) with vanishing voltage. Therefore the mode shapes are
vm(z) = \/isin(mmc), m=12..., 14
and the corresponding eigenvalues are given by

A= (mm)t,  m=1,2... . (15)

4
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3.2. Homogenized circuit

Similarly, when the number of transducers can be assumed to be sufficiently large, the electrical system
can be described by a sole PDE which, expressed in terms of the dimensionless flux-linkage 1), reads:

5 K i _ 2 .1 — 2 — ghomuO

where the homogenized piezoelectric capacitance per unit length

crk
“Yhom = f e

b

appears, together with the two linear operators K and D accounting for the electric shunting network. In
the present work, it is assumed that K and D are spatial differential operators of the form

A . d(2i)
K] = 3 (~1) ant ¥
=0 dx (%)
. B L d@g (16)

where 2A and 2B indicate the order of the operators (being greater or equal than 2), and a ; and bo; are

nonnegative real constants with a4 and by greater than zero. The domains of the operators, D (K) and
D (D) are defined by

D(K) = {f e L2 f,f' ..., f®47Y are absolutely continuous,

FOY e L2, fRED) () = fRED) (1) = 0,0 = 1,... A} ,
and

D(D) = {f eL?:f,f,... ,f(zB;l) are absolutely continuous,
e e 12 fRE-1D) () = fRE- (1) =0,i=1,... B} .

The class of differential operators of the form Eq. (16) and the assumed boundary conditions have
been considered for the following reasons:

1. the electrical system piezoelectrically coupled to the flexible structure does not introduce any
spillover phenomenon among the mechanical vibration modes;

2. the synthesis of an electrical circuit governed by a discrete, finite differences?, form of these
operators is very easy, exploiting the methods adopted in [8];

3. it includes some interesting interconnection schemes for piezoelectric arrays, developed in the
vibration control literature ([12,13]).

“The relationship between the operators K and D and the matrices [K®] and [D®] in Eq. (7) depends on the adopted
discretization technique. Indeed different approximation techniques yield distinct residue matrices, and consequently distinct

optimal circuits. In this paper we refer to finite differences symmetric schemes and expressions for [K¢] and [D¢] may be
derived by the use of the techniques in [14].
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From the above assumptions, both the operators are self-adjoint and share the same electric mode
shapes, which coincide with the mechanical mode shapes of the PEM beam with grounded piezoelectric
elements given in Eq. (14). On the contrary, their eigenvalues may be different and depend on the
constants ao; and bo;. In particular, by substituting Eq. (14) into Eq. (16) we obtain

K [v] = (é ag; (m7r)2i> VU,
D [vy,] = (é boi (m7r)2i) U

b

therefore, the eigenvalues of the electric operators are
A % _ & i/2
Pg (m) = 3 agi (mm)™ = 3 agi (Am)
i=0 =0

B . A . ? m:1727"') (17)
Pp (m) = X by (mm)* = 3 agi (Am)”?

where the eigenvalues A,,’s in Eq. (15) have been used. We remark that the proposed differential
operators are linear combinations of powers of the fourth derivative operator (see e.g. [15]) as follows:

K[] = ao <(.)IV)0 tay <(.)IV)1/2 4 ay ((.)1v>1 bt ag ((')IV)A/Q
D[ =bo () 45 (™) 00 (O™) 4o+ bam (7).
As an example, we notice that when
A=B=1  ag=by=0,
the electric operators become

K[]=a, ((')Iv)m = —az ()"

D=t (0")" =50

In this instance, each piezoelectric transducer is connected to the adjacent one by a floating inductive-
resitive impedance, providing a second order transmission line piezoelectrically coupled to the vibrating
structure ([12] and [13]). In what follows, we will see that when only a single mode suppression is
needed. This techniques is extremely efficient and (see e.g. [16]) allows a substantial reduction of the
needed nominal inductance with respect to the classical piezoelectric shunting of [1].

3.3. Homogenized PEM beam

The dimensionless evolution electromechanical equations of the resulting PEM beam are:

. - 4 khom
ﬂ+a4ulv+ﬁ21/}”:0 (0% —m
¢+K[¢]+D{¢]—52u”:o’ 8 = g, 1 \/—1* (18)
om l2w0 “Yhom Phom

76
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where, in order to preserve the form of a gyroscopic coupling, the characteristic flux linkage and
displacement are chosen to satisfy the following relation:

Yhom __ U0
Phom 1,00

The choice of the electrical boundary conditions implied by the definition of the domains of the electrical
operators decouples the mechanical boundary conditions from the electrical system. Indeed the voltage
field vanishes at the beam ends, and the boundary conditions Eq. (13) reduce to those of the PEM beam
when all the transducers are grounded.

4. Modal analysis of homogenized PEM beams

In this Section a modal analysis for the simply-supported PEM beam, based upon the Galerkin method,
is performed.

The set of basis functions chosen to represent the deflection u (z,t) and the flux linkage v (z,t) of
the PEM beam is constituted by the eigenfunctions v,,(z) specified in Eq. (14) of the fourth derivative
determining the mode shapes for both the electrical and mechanical distributed systems Eq. (18).

Consequently, it is useful to consider a Fourier expansion for the solution of Eq. (18):

S8l ] e

in terms of the mechanical and electrical Fourier coefficients p,,(¢) and ¢,,(¢) of the expansion. With
simple algebraic manipulations the following system of ODEs governing their time evolution, in which
unitary dimensionless modal masses appear, is obtained:

[1 O} {]’)’m(t):l n (amm)t 0 } {pm(t)] " [ 0 —B32 (mx)? [ﬁm(t)] _ {O
01 (jm(t) 0 PK (m) Qm(t) ,82 (mW)Q PD (m) ‘jm(t) 0}’
where the polynomials Py (m) and Ppy (m) are defined by Eq. (17).

Let us explicitly remark that the chosen boundary conditions and basis functions lead to a set of
uncoupled evolution problems for each electromechanical pair of Fourier coefficients, hence it is possible

to easily derive an analytical solution for the generic m-th pair.
Each set of equations for the Fourier coefficients p,, and g,,, can be conveniently rewritten as:

3] BT [557 ] [2004 p 50 [26 -[3] o
with

(wy (m) = (amm)*

w2 (m) = Pg (m)
{ e my = Pl 0)

2P (m)
(¢ (m) = (Bmm)*
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Fig. 4. Electric equivalent scheme of the coupled 2 DOF electromechanical system.

Letus remark that wy, (m) and w, (m) are respectively the natural angular frequency of the mechanical
and electrical m-th modes, while c (m) denotes the m-th gyroscopic coupling coefficient and Cq (m) the
damping factor of the m-th electrical mode.

4.1. An electrical analog circuit for Eq. (19)
From an electrical point of view, following [17], the set of ordinary differential Eq. (19), can be

regarded as the governing equations of the two nodes circuit in Fig. 4, where the dimensionless electric
components are given by:

Cp (m) =C, gm) =1
< Lq (m) = wg (m)

: 1 1

B () = 3 e ) iog ()
LG (m) = elm)

Thus, it is clear that the piezoelectric effect introduces a gyroscopic coupling (an electrical gyrator)
between the m-th electrical and m-th mechanical modes; furthermore, because of the simply supporting
conditions, the electrical and mechanical modal shapes coincide, and the evolution of the m-th pair
of modes is completely independent of the one of a different pair of modes. The electric analog
depicted in Fig. 4 represents a valuable tool when designing prototypes of Piezo-ElectroMechanical
beams. Indeed, a purely electric representation of the whole electromechanical system allows for

straightforward simulation of real electric networks by means of widely spread commercial codes (e.g.
PSpiceAD, [18])

4.2. Closed-loop interpretation of Eq. (19)

A control engineer may view the electromechanical system in a different perspective. In particular for
every pair of modes it is conceivable to define a mechanical system Sz’," to be controlled and a passive

/8
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Cq(m), Lq—l(m),Rq “l(m) «— 1

Fig. 5. Closed-loop intepretation of the piezoelectrically coupled electromechanical system.

electrical controller with second-order dynamics Sg" as:

1
system to be controlled S} : Cy (m) P (t) + mpm(t) = ug'(t), yp' (t) = Pm(t),
P

passive controller S7* : Cy (m) Gm/(t) + Eq—tmqm(t) R, ( )qm(t) = ug'(t),yq (t) = gm(t),

where_ (u;n, y;n) , and (uf]n, y{ln) are, respectively, the (input, measurement) of the mechanical and
electrical systems.
Furthermore the following relations between the inputs and measurements of the coupled system hold:

{uz”‘(t) = G (m) y™(t)
uM(t) = G (m) yo(t)

According to [19], the electrical system connected to the flexible structure is a controller having a
second-order dynamics, introducing a velocity feedback.

The closed-loop poles of the system can be determined as the four zeros s7?, ... sj* of the following
polynomial:

P™(s)=s"+ 2(q (m) wq (M) s3 + (wf, (m) +c(m) + wg (m)) 52
+2(4 (M) wg (M) wg (m) s+ wf, (m) wg (m).

5. Design of the passive optimal controller

In this Section we design the optimal passive distributed controller following the pole placement
technique applied to the evolution of each pair of electrical and mechanical modes. In particular, we
determine an optimal expression for the stiffness and dissipative polynomials Py (m) and Pp (m)
appearing in the time evolution of the m-th electrical mode; consequently, we establish the forms of
the operators K and D. Once these operators are determined, an electrical circuit governed by a finite
differences approximation of such operators is synthesized.
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The chosen optimality condition requires the determination of the values of wq (m) and {4 (m) in
order to maximize the exponential time decay rate 7™ of the solution of the fourth order system Eq. (19),
governing the time evolution of the m-th pair of electrical and mechanical modes, defined as:

7" = min {|Re[s]"][}.

In order to maximize the exponential time decay 7™, the optimal values of wq (m) and {; (m) are
found by requiring the four roots of the closed loop polynomial P™ (s) to be coincident (pole placement
technique, see e.g. [1] and [20]).

Hence, we enforce the polynomial P™ (s) to be factorized as:

2
P™(s) = (32 + 20 (m)s+ (0 (m)? + w (m)2)> .

Equating the coefficients of the above mentioned polynomials the following set of conditions is
obtained:

2Cq (m) wg (M) = 40 (m)

(wp (m) +c(m) + w2 (m)) = 60 (m)? + 2w (m)?

2(q (m) wg (m) w2 (m) = 4o (m)* + 4o (m) w (m)? - 1)
W} (m) g (m) = (o (m)? +w (m)?)

The previous set of relations imposes the following matching conditions on the electrical controller:

wg(m) = wp(m), (22a)
Cg(m) = Tm (22b)

Condition Eq. (22a) establishes that in order to maximize the time rate decay of the m-th pair of
electrical and mechanical modes, the electrical m-th mode has to be resonant at the mechanical resonance
frequency wg, (m).

Thus, by the use of Eq. (20), the following conditions on the values of the polynomials Pk and Pp
in correspondence with the mode number m under control are stated:

{ Pk (m)
Pp (m)

= (amn)*
= 2(Bmm)?” 3

Consequently, from Eq. (21) the values of the real and imaginary part of the coincident roots are found
to be:

Ve(m)

o(m)=Y5—

w (m) = \Juy (m)? — <m)

(24)

80
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Hence, the damping ratio (defined as the sine of the phase of the coincident roots measured from the
imaginary axis) becomes:

om) _ Jem)
\/w (m)? + o (m)? 2wy, (M)

Introducing the relations Eq. (20) into Eq. (24), we get the following expressions for the real and
imaginary parts of the placed roots:

¢(m):=

w(m) = (mm)? /ot — g

Taking into account the definitions Eq. (18) of the parameters a and 3, we get the following relations
in terms of the properties of the piezo-electromechanical beam:

o(m) = 1 (m7)” ghom 1
wo 2 12 “YhomPhom

khom ghom ) 7
wlm -
( ) \/phom \/ 4 “YhomKhom

Jhom

2 V Yhom khom '

and:

s (m) = (25)

Equation (25) clearly indicates that the optimal damping ratio is independent of the mode under control
and is an increasing function of the electromechanical coupling coefficient g om, and a decreasing function
of the stiffness kyom and of capacitance per unit length ypom.

Conditions Eq. (23) provide the values of the m-th eigenvalues of the electrical eigenvalues for
optimally damping the m-th mechanical mode. When one is concerned in damping out only one
mechanical mode, for every choice of A and B in Eq. (16) it is possible to find constants a 9; and by;
satisfying conditions Eq. (23). In order to simultaneously damp every mechanical mode, conditions
Eq. (23) should be fulfilled for every choice of the index m. This may be accomplished by selecting the
electrical operators as

K (1] = otV
D ['l,b] — —‘2,82121" ) (26)

with domains:
D(K)={feL?: f,f,f" f" are absolutely continuous,
Ve j0)=f1y=f"(0)=f"(1) =0},
and

D(D) = {f € L?: f, f’ are absolutely continuous, f” € L?, f (0) = f (1) = 0}.
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Fig. 6. Internal and external modules of the optimal electrical circuit interconnecting the bender transducers.

The optimal distributed passive circuit to be mechanically fed by the piezotransducers has to be
governed by the following PDE:

¢+KWLHDW]=Q 27

where the stiffness and damping operators are defined in Eq. (26). We remark that the self-adjoint
operators K and D satisfy the relationship

K o D2. : (28)

The found electrical circuit can be thought as the analog circuit of a simply supported vibrating beam,
with an internal dissipation proportional to the curvature velocity @”. The synthesis of alumped electrical
network governed by a finite differences approximation of Eq. (27) with Eq. (26) has been addressed
in [8] and [9], leading to the circuit in Fig. 6.

The evolution equations for the free vibrations of the circuit in Fig. 6 are easily recognized to be:

f C; + oz (Yj42 — dtpj1 + 695 — dthj 1 +1j_2) — % (¢j+1 — 2; + %bj—l) =0,
j=3,...,N—=2;

Cipr + g (506 — by + ha) — & (s — 202) = 05

Cn—1+ 727 (5%N-1 — 4N—2 + PN-3) — & (—2¢N-1 + ¢N—2) =0

P =0

(¥~ =0;

representing a central finite differences approximation of Eq. (27) with Eq. (26), if the used electrical
elements satisfy the following set of conditions:

, (29

C = kee
1 1\4 _ Ekhom
i ()" = b . 30

2

We explicitly remark that Eq. (30) establishes that the choice of the sole parameters L and R allows for
multimodal vibration suppression. Nevertheless, Eq. (30) stem from the finite-differences approximation
of the optimal operators in Eq. (26). Therefore the problem of the convergence of the solution of Eq. (29)
to the corresponding solution of Eq. (27) is an important issue, as the self-resonance properties of
considered PEM beam are greatly sensitive to small variations of constitutive parameters. In future, an
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accurate analysis of the lumped electrical network in Fig. 6 will be performed, addressing the problem
of the convergence of the discrete circuit to the homogenized model and drawing comparisons between
the natural frequencies and modal shapes predicted by the homogenized model and the ones achieved by
the discrete system.

6. Eigenvalue problem for the optimized PEM beam

When the dissipative operator in Eq. (27) is discarded, a conservative PEM beam is obtained. Namely,
the time evolution equations for the conservative simply supported PEM beam are:

,(/) + a4,¢IV . IBQ,&II =0 ’

where the following boundary conditions are imposed:
w(0,t) =u(1,t) =" (0,t) =" (1,t) =0 (32)
¥ (0,1) =9 (1,1) =¢" (0,1) =¢" (1,£) =0~

The electromechanical modal properties are obtained by looking for a solution of Eq. (31) together
with the boundary conditions Eq. (32) in the form

u(z,t) =m(z)exp(nt), ¢ (z,t) =e(z)exp(nt),

where m and e indicate the electrical and mechanical parts of the electromechanical mode shape, and 7
the eigenvalue. Therefore the following eigenvalue problem is obtained

7?’m + o*m!V +nB%e” =0 (33)

with boundary conditions directly obtained from Eq. (32). By adapting the results obtained in [21] to
the (generalized Sturm-Liouville) eigenvalue problem we obtain:

R I
2 _ . Mk | _ ) ™My ) T = .
= tiwy, = + 1 , k=1,2,...;
CES el SR SV Y
R I
wg € IRT, {mﬁ},{mf}EIRz;
€k €k
Migk

where wy and are the angular frequency and eigenvector of the k-th electromechanical mode

of vibration of the distributed gyroscopic system, given by:

2

Nk
(1)) 7r262 (_1)k+ 1+(2£;22>2 |

R I
m,c 1 me | 0 . _
{e}? 0 sin mkz, {ei}_{(—l)k}smﬂkx’ k=1,2,...

wlb—‘
Do~
l.\D
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Table 1

Properties and dimensions of the host beam

Coefficient Value Units
l 31071 [m]
w 21072 {m]
h 21073 [m]
Ey 7010° [Pa]
Pb 2700 [kg m~3]
Table 2

Properties and dimensions of the piezoelectric trans-
ducers (Piezo System T110-H4E-602, made of PSI-
5H4 piecoceramic)

Coefficient Value Units
oo 7800 kg m™3]
s8)7 62 10° [Pa]
da1 —320107*2 mVv~1
s 38008.85 10712 [Fm™']
5 2.67107* [m]
Iy 2.51072 [m]
d 2.273107° [m]

7. Design of a prototype

In order to assess the physical realizability and

aluminum beam, the geometry of which is presented in Table 1.
We position 10 bender transducers constituted by piezoceramic patches,

zirconate titanate [PZT] (for more details on the different kinds of piezoele
characteristics of these piezoceramic transducers are listed in Table 2.

The stiffness, cou

Thus, the covering factor can be estimated to be:

¢ = 91.67%.

the efficiency of the proposed device, we consider an

from [22], made of lead

ctric actuations see [23]). The

While, the capacitance and the coupling coefficient of the bender transducers are:

kee = 2
. hwd31
- E

me

be:

Ghom =

4
khom -

w (sﬁeg — d?ﬂ)

511

511

Es

b

= 184.9 nF

— 1.4361073 NmV !

pling and mass per unit length of the homogenized PEM beam can be evaluated to

Eply + kmm

(1 —cy)

EbIb + kmm

EyIy

cfkme

= 1.926 Nm?
+ Cf

(1-

0
Lphom = wh (pb + 2Cfﬁpp> = 0.2462 kg m_l

cf)

EpIy + kmm

Eply

= 1.1891073 NmV ™! .
+ Cf
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RootLocus — A Im|[s] RootLocus — B In[s]

1.4 T

1.2 1.2 fm.

. /J‘/"":.-;:::.:’- . ///__-,

0.8

s o 2

—-—-—-———--—-—-—--—-——-9

0.6 Re [s] 0.6 Re [s]

“015 -0l -005 0 “015 01 -005 0
Fig. 7. Root loci of P'(s) for increasing values of {;(1). Root Locus-A: dot-dash, wg(1) = 0.8w,(1); dash,

wq (1) = 0.9wp (1); solid, wq (1) = wp (1). Root Locus-B: dot-dash, wg (1) = 1.2w, (1); dash, wq (1) = 1.1w, (1);
solid, wq (1) = wp (1

In the following, we choose as the frequency scaling parameter the angular frequency of the first mode
of the simply supported beam without the piezoelectric patches:

_ T4 Boly
12 whpb

=322.4 s7L.

Hence the dimensionless parameters appearing in Eq. (18) can be numerically evaluated as

=1 1 s/ Fhom _ 510 1071
Phom

T / gh"m ,4/ —1.781 x 107!
“YhomPhom

From Eq. (30) it is easy to calculate the following values for the optimal resistance and inductance in the
interconnecting network:

L =0.5600 H, R =2643Q,

assuming unitary transformers (n = 1 in Eq. (30)).
While from Eq. (25) the damping ratio of any mechanical mode of the simply supported PEM beam
is determined to be:

¢ (m) = 16.46%.

In Fig. 7 we plot the root locus of P? (s) for different values of the ratio —%— as (4 (1) varies from 0
to 4-o0.

From the exhibited plots it is clear that the matching condition Eq. (22a) is a mandatory requirement
to obtain an efficient damping of mechanical vibration (high time rate decay). In fact, for a 10 per cent
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change of the ratio % from the unity, the maximum achievable damping ratio dramatically decreases
to one half.

As the proposed tuning procedure is simultaneously assuring the internal electromechanical resonance
for every mode, and the root locus branch relative to the m-th mode is obtained by that relative to the
first one by a homothetic transformation (which leaves the defined damping ratio unchanged), then the
sensitivity argument developed for one mode holds for all the others. All previous considerations allow
us to conclude that a multiresonance condition has to be achieved in order to guarantee an efficient
broadband mechanical vibration damping.

8. Conclusions

In the present paper the concept of piezoelectric shunting by means of a single transducer suitably
positioned on a structural member is generalized. Indeed we consider a beam hosting an array of N
piezoelectric transducers and look for a N + 1 terminals electric network shunting them in an optimal
way. If N is sufficiently large and waves with wavelength reasonably greater than the size of the used
transducers are considered, then we expect that the homogenized model for the controller may be suitable.
In Section 3 such an infinite dimensional model is found, while in the subsequent sections its electric
components are optimized to get the most efficient damping of mechanical vibrations. We have proved
that, in principles, a multishape, multifrequency (i.e. a complete multimodal) vibration suppression
is possible by means of a completely passive electric controller. This is obtained by synthesizing a
distributed electric circuit governed by the same PDE governing the beam flexural vibrations.

However, the synthesis is achieved by the use of lumped circuital components, therefore the follow-
ing problem arises: how efficient the finite dimensional circuit results are when compared with their
homogenized counterpart. This is a crucial issue when prototypes of PEM beams must be designed, as
sketched in the final section. Future works will be devoted to the comparison between the performances
of homogenized electric controllers and their lumped approximations.
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