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Energy distribution and cooling of a single atom in an optical tweezer
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We investigate experimentally the energy distribution of a single 87Rb atom trapped in a strongly focused
dipole trap under various cooling regimes. Using two different methods to measure the mean energy of the
atom, we show that the energy distribution of the radiatively cooled atom is close to thermal. We then
demonstrate how to reduce the energy of the single atom, first by adiabatic cooling, and then by truncating the
Boltzmann distribution of the single atom. This provides a nondeterministic way to prepare atoms at low
micro-K temperatures, close to the ground state of the trapping potential.
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I. INTRODUCTION

In the last thirty years, the manipulation of single quan-
tum objects has been the subject of considerable attention.
After the pioneering experiments of Dehmelt with a single
electron in a Penning trap �1�, a single ion was trapped in a
Paul trap �2�, which led to the observation of quantum jumps
�3,4�. Several techniques were then developed to cool the
single trapped particle, such as optical sideband cooling,
which was experimentally demonstrated in 1989 �5�. More
recently, the interest in the manipulation of single quantum
objects has grown with the recognition that they can carry
quantum information, and that they therefore can be a re-
source for quantum information processing �6�. In this con-
text, single trapped laser cooled ions have accumulated an
impressive amount of results in recent years �see, e.g., Ref.
�7��.

The trapping of single neutral atoms, on the other hand, is
more recent, owing in part to their weaker interaction with
the electromagnetic field. So far, the trapping of neutral at-
oms has been realized in tight magneto-optical traps �8,9� or
optical dipole traps �10–13�. As the trapping potentials are
typically less than a milli-K deep, laser cooling is the usual
starting point of the manipulation of single atoms. As is the
case for ions, it is tempting to further reduce the energy of
the trapped atom, to ultimately reach the ground vibrational
state of the trapping potential. In the framework of quantum
computing, for example, the entanglement of two atoms via
controlled collisions usually requires ground state cooling
�see, e.g., Ref. �14��.

The knowledge and control of the energy of a single atom,
trapped in a submicron optical dipole trap, is important for
many purposes. For instance, in a recent experiment �15�, we
have used two single rubidium atoms, trapped in two optical
tweezers separated by a few microns, as single-photon
sources. When the two photons �each photon coming from
one atom� are superimposed on a beamsplitter, we observe a
“coalescence” effect: the two �indistinguishable� photons co-
propagate from the same output of the beamsplitter, due to a
two-photon interference effect. We have shown that the ulti-

mate visibility of this effect is limited by the spread in fre-
quencies of the emitted photons, which in turn is due to the
spread in energy of the emitting trapped atoms. In another
experiment �16�, using Raman transitions we have prepared a
single atom in a superposition of two internal states of the
hyperfine manifold, and we have studied the dephasing of
this quantum bit. In this case, due to the fact that successive
atoms have different energies, each realization of the qubit
evolves differently with respect to a local oscillator. This
results in a loss of coherence, that we were nevertheless able
to compensate for by applying rephasing “spin-echo” tech-
niques. For this application, a lower energy spread of the
trapped atom would also increase the dephasing time, thus
avoiding the extra “spin-echo” sequence.

In the present paper, we analyze in more detail the meth-
ods used in these previous works to determine the mean en-
ergy of a single atom in the optical tweezer �15–17�. Similar
or complementary techniques have been reported by other
groups �12,18�. We then exploit these temperature measure-
ments to characterize several cooling methods to further de-
crease the temperature of the atoms, and we show how to
approach the ground state level in the two radial directions of
the trap, which exhibit the strongest confinement.

The paper is organized as follows. We describe in Sec. II
the experimental setup. In Sec. III, we present a release and
recapture technique used to measure the temperature of the
atoms. In Sec. IV we develop a cooling sequence used to
laser-cool the atom in the tweezer. In Sec. V, we perform the
spectroscopy of the energy distribution of the atom in the
tweezer and find that this distribution is very close to a Bolt-
zmann distribution. Section VI describes how the mean en-
ergy of the single atom can be decreased by truncating this
Boltzmann distribution. This provides a nondeterministic
method to prepare a single atom close to the ground state of
the trapping potential. In Sec. VII we reduce further the tem-
perature of the atoms by adiabatically lowering the potential
trap. Finally, we conclude by discussing some implications
of these results.

II. EXPERIMENTAL SETUP

Figure 1 shows a schematic of the experimental setup. A
beam of 87Rb atoms is slowed using a Zeeman slowing tech-*andrew.lance@institutoptique.fr
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nique �19�. The counterpropagating laser beam at �780 nm
�denoted �1� is 18.7 � red detuned from the F=2→F�=3
cycling transition, and combined with a repumping laser
��2� that is 3.7 � red detuned from the F=1→F�=2 re-
pumping transition. Here, ��2��6�106 rad /s is the line-
width of the D2 transition.

We form an optical molasses at the intersection of six
counterpropagating cooling lasers that are 4.2 � red detuned
from the F=2→F�=3 transition �denoted �3�, together with
six repumping lasers ��4� resonantly tuned to the F=1
→F�=2 transition. This optical molasses is used as a reser-
voir of cold atoms from which the dipole trap is loaded.

We produce the optical dipole trap by focusing a
�850 nm laser in the center of the molasses, using a large
numerical aperture �NA=0.5� aspherical lens �17�. The opti-
cal dipole trap has a measured optical waist of w
=1.03�0.01 �m. A comprehensive characterization of the
optical system and of the dipole trap itself is presented in
detail elsewhere �17�. Assuming a Gaussian beam profile in
the transverse direction for the dipole trap and a Lorentzian
profile along the propagation axis, we calculate the radial
and axial frequencies and find ���160 kHz and ��

�30 kHz, respectively, for 10 mW of laser power. The po-
tential trap depth, proportional to the laser power, is U
�2.8 mK for a 10 mW of laser power.

This optical tweezer allows us to trap single 87Rb atoms
via a collisional blockade mechanism, which prevents two or
more atoms from being trapped simultaneously due to inelas-
tic collisions �11,17,20�. The �780 nm fluorescence of the
trapped single atoms is detected using the same aspherical
lens that is used to create the dipole trap. This fluorescence is
filtered using a dichroic mirror, together with other spatial
and spectral filters, and then detected using a single photon
counter �avalanche photodiode�, with an overall collection
and detection efficiency that is estimated to be �0.5%. From

the output signal of the single-photon counter we distinguish
between the presence �or absence� of an atom in the tweezer,
within a 10 ms acquisition period, with a confidence better
than 99%. Each experimental sequence that will be presented
in this paper is triggered on a detected single atom in the
dipole trap. Our goal in the following sections will be to
investigate the energy distribution and temperature of the
atoms trapped in the optical tweezer, under various cooling
conditions.

III. RELEASE AND RECAPTURE TECHNIQUE

In this section we will describe a release and recapture
method that we use to determine the temperature of the at-
oms in the dipole trap �15,16�. We emphasize that what we
mean by the temperature of the atoms is a temperature ex-
tracted by averaging the energy over many realizations of the
same experiment with a single atom. The premise of this
method is that information can be obtained about the energy
distribution of a single atom by switching off the dipole trap
for a variable time 	t �as illustrated in Fig. 2�a�� and then
determining the probability of recapturing the atom, which is
denoted as PRR�	t�. On average, an atom with a high energy
is more likely to escape during the release time 	t, compared
to an atom with a low energy, as is well known in the context
of laser cooling of atomic samples �21,22�. In the single
atom regime used here, this method is particularly robust,
since on each repetition of the experimental sequence the
result is binary: either the atom has escaped the trapping
region, or it is recaptured. This binarization of the measure-
ment outcome makes it immune to various noise sources, in
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FIG. 1. �Color online� Schematic of the experimental setup. A
beam of 87Rb atoms, originating from an oven, is slowed using a
Zeeman coil �not shown� and counter propagating slowing ��1� and
repumping ��2� lasers at �780 nm. An optical molasses is formed
at the intersection of six counter propagating lasers ��3� and re-
pumpers ��4� operating also at �780 nm. An aspherical lens is
used to tightly focus a �850 nm laser ��5� in the region of the
optical molasses. The fluorescence of the atom, due to the molasses
and Zeeman lasers, is collected using the same aspherical lens. A
dichroic mirror together with other spatial and spectral filters are
used to filter the fluorescence signal, which is detected using single-
photon counting avalanche photodiode �APD�.
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FIG. 2. �Color online� Measurement of the temperature of the
atoms using the release and recapture method. �a� Schematic of the
experimental sequence �see text�. �b� Experimental results showing
the probability of recapturing the atom PRR�	t� as a function of
release time 	t. �i� �Circles� Temperature of the atoms just after the
loading in the dipole trap. Each data point is the accumulation of
100 sequences. Superimposed on this data is a fit by the Monte
Carlo simulation of the release and recapture method, which is the
average of 200 trajectories for each release time. The temperature is
168�6 �K for a trap depth of �2.8 mK. �ii� �Diamonds� For com-
parison we have also plotted the results for the temperature mea-
surement using the same method, but after the atom has been laser
cooled in the tweezer. Each data point is the accumulation of 200
sequences. The best-fit temperature is 31�1 �K for a trap depth of
�2.5 mK.
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particular to fluctuations in the fluorescence level of the
atom, which is used to decide on the presence of the atom.

Figure 2�a� illustrates a schematic of the release and re-
capture sequence, which goes as follows. �i� After the atom is
trapped, the cooling and loading lasers ��1, �2, �3, and �4�
are switched off. �ii� The dipole trap laser ��5� is then turned
off for a time 	t. �iii� Finally, we perform a fluorescence
detection by switching all the cooling and loading lasers
back on, thus determining whether the atom has escaped or
not. Figure 2 shows typical experimental results for the re-
lease and recapture technique, where the probability of re-
capturing the atom is plotted as a function of the release time
	t �more details about this experiment will be presented in
the following section�.

In order to extract the temperature from these measure-
ments, we perform Monte Carlo simulations of the trajecto-
ries of the single atoms, to determine the probability that the
atoms are recaptured after a release time 	t. This simulation
requires the knowledge of the energy distribution of the atom
in the trap. We assume that we are in the harmonic approxi-
mation of the trapping potential, and that the position-
velocity distribution of the atom follows a thermal Maxwell-
Boltzmann law. The standard deviations of the position of
the atom in the axial and radial directions of the trapping
potential are 	x� =�kBT /m
�

2 and 	x�=�kBT /m
�
2 , respec-

tively, while the standard deviation of the velocity is 	v
=�kBT /m, where T is the temperature. The parameters of the
optical trapping potential have been determined previously
�17�, and take into account the tilt due to gravity, which
creates a local maximum in the potential along the gravity
axis. The effective trap depth is defined as the height of this
potential barrier with respect to the minimum of the poten-
tial.

The simulation goes as follows: using the Maxwell-
Boltzmann distribution we randomly generate the three-
dimensional position-velocity vector �xi ,yi ,zi ,vx,i ,vy,i ,vz,i�
of the atom in the potential for a given temperature. We then
calculate the trajectory of each atom during the release time
	t in a single time-step calculation. The position of the atom
after this release time is �xi+vx,i	t ,yi+vy,i	t−g	t2 /2,zi
+vz,i	t�, where the potential gradient due to gravity along
the y axis has been included. We finally determine the energy
of each atom when the trap is turned back on. If the total
energy of the atom after the time-of-flight is smaller than the
effective trap depth, we consider that the atom is recaptured,
otherwise it is considered to have escaped.

By simulating many trajectories of the single atoms for
each release time 	t, we can numerically determine the prob-
ability of recapturing the atom as a function of this release
time. These simulations are repeated for a range of different
temperatures. We calculate the weighted least square value
��2� between the experimental data and the simulated results
for each temperature. The chi-square value is defined as �2

=	i
�f i− PRR�	ti��2 /�i
2�, where PRR�	t� is the experimental

data that has an uncertainty � and f is the value predicted by
the model. The best-fit temperature corresponds to the
Boltzmann distribution that minimizes this least square
value.

We performed the release and recapture technique to de-
termine the temperature of the atoms just after they were

loaded in the trap. Figure 2�b� shows the Monte Carlo simu-
lation that best fits the corresponding experimental data. In
this example, the best fit temperature is T=168�6 �K in a
trap depth of U�2.8 mK. The ratio between the trap depth
and the temperature of the atoms is 15, indicating that we are
approximately in the harmonic regime of the trapping poten-
tial.

Due to experimental miscounts and losses, the probability
of recapturing an atom for zero release time was less than
unity, being instead typically 0.95. We scaled the Monte
Carlo simulation by this factor to achieve a better fit to the
experimental results. The uncertainty on the temperature that
minimized the chi-square value is defined as �T

=�2��2�2 /�T2�−1, assuming that the �2 function varies har-
monically around this minimum point �23�. Furthermore, we
have included in the error budget for the temperature, the
statistical uncertainty in fitting a parabola function to this
chi-square minimum.

We will use this release and recapture technique through-
out the rest of the paper as a diagnostic to measure the tem-
perature of the atoms in the optical tweezer.

IV. RADIATIVE COOLING OF A SINGLE ATOM

In this section, we discuss the laser cooling of a single
atom after it has been captured in the dipole trap. For that
purpose, the cooling sequence was optimized by controlling
the molasses lasers parameters �cooling time, frequency de-
tuning, intensity�, as well as the trapping laser intensity. This
was done by maximizing the recapture probability of the
single atom after a release and recapture experiment with
	t=10 �s.

Figure 3 shows the optimized laser cooling sequence. Ini-
tially, all lasers are on and the molasses cooling lasers are
detuned by 	1=−4.5� to maximize the loading rate of the
molasses and optical dipole trap. �i� The sequence is trig-
gered on the detection of an atom, where the dipole trap laser
power is �10 mW. �ii� The Zeeman laser and the Zeeman
repumper laser are switched off. At the same time, the cool-
ing lasers are linearly detuned from 	1=−4.5� to 	2=−2� in
�1.2 ms. During this time, the intensities of the molasses
lasers are reduced from I1�2 mW/beam, to approximately
one third of their initial intensity. After this cooling period
the cooling and repumping lasers are switched off.

Using this optimized laser-cooling sequence we were able
to significantly reduce the temperature of the atoms. Figure
2�b� shows the release and recapture experimental results
after the laser cooling, together with the best-fit simulation
results. This corresponds to a temperature of 31�1 �K for a
trap depth of �2.5 mK, which yields the ratio U /T�81.
This represents more than a factor 5 reduction in the tem-
perature with respect to the temperature of the atoms directly
loaded from the optical molasses.

We note that the optimized cooling sequence is achieved
when the laser detuning is brought closer to resonance with
respect to the atomic transition. This fact may seem incon-
sistent with the sub-Doppler theory of laser cooling �see,
e.g., Ref. �24��, which predicts that the temperature is lower
for larger detuning. However, one has to take into account
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that when the atom is trapped in the tweezer, the resonance
frequency is light shifted by about 10� with respect to the
free space case. Therefore the detuning experienced by the
trapped atom varies only from −14.5� to −12�. The extra
cooling effect is then attributed to the decrease �by a factor
3� in the intensity of the laser beams, rather than to the fre-
quency change, now in reasonable agreement with sub-
Doppler laser cooling.

This optimized cooling technique is the starting point for
each experiment presented throughout the rest of the paper.
We will now turn our attention to validating the assumption
about the thermal distribution. In addition, we would like to
cross-check the temperature results using an alternative
method.

V. ENERGY DISTRIBUTION OF A SINGLE ATOM IN AN
OPTICAL TWEEZER

In this section we determine the energy distribution of the
single atom in the dipole trap. Provided that this distribution
is indeed thermal, the corresponding temperature can be
evaluated. To achieve this, we apply a type of spectroscopy
method proposed and experimentally demonstrated by Alt et
al. in Ref. �18�.

This method involves the adiabatic lowering of the trap
depth to a point where the atom can potentially escape. As
shown in Fig. 4�a�, by lowering the trap depth, an atom with
initial energy Ei in a trap of depth Ui will eventually have an
energy Eesc that is equal to the final trap depth Uesc and hence
the atom will escape the trap. Thus, measuring the depth at
which the atom escapes the trap yields information about the
initial energy of the atom.

Figure 4�b� shows a schematic of the experimental se-
quence for this method, which goes as follows: �i� The single
atom is trapped and laser cooled. �ii� The dipole trap depth is
then adiabatically lowered from Ui�2.8 mK to Umin. The
lowering time is approximately �2.5 ms. The trap depth is
held constant for a duration of �20 ms, to allow an atom
with an energy greater than the trap depth sufficient time to
escape �30�. �iii� After this waiting time, the trap depth is
adiabatically raised to the initial trap depth Ui in �2.5 ms.
Finally, the laser beams are switched back on to determine if
the atom has escaped or not. We leave to Sec. VII the dis-
cussion about the adiabaticity of this process. Here we as-
sume that the hypothesis for the adiabatic change of the po-
tential is fulfilled. Figure 4�c� shows the experimental
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probability of recapture for various minimum trap depths
Umin normalized to the initial trap depth Ui �31�.

It is now necessary to map the minimum trap depth Umin
back to the corresponding energy in the initial trap Ei. To
perform this mapping we calculate the one-dimensional ac-
tion that can be expressed as the integral S�E ,U�
=�0

xmax�2m�E−U�x��dx, where E is the energy, U�x� is the
potential and xmax is the position where the atom has zero
kinetic energy. In the adiabatic limit, the action of the atom
in the trap is conserved as the trap depth is adiabatically
lowered �25�. We solve the constant action equation
S�Ei ,Ui�=S�Uesc ,Uesc� in the radial direction of our potential
trap that includes the gravity potential gradient. The numeri-
cal results of the Uesc /Ui→Ei /Ui mapping is plotted in Fig.
4�e�. We subsequently apply the mapping Uesc /Ui→Ei /Ui to
our experimental data. Figure 4�d� shows the percentage of
atoms that have an energy less than Ei in the initial trap of
depth Ui plotted as a function of the normalized energy
Ei /Ui.

We now wish to compare the measured energy distribu-
tion to a thermal one. In the harmonic trap limit �i.e., when
the ratio of the trap depth to the temperature of the atoms
satisfies Ui /kBT1�, we calculate the Boltzmann energy dis-
tribution for a temperature T. We assume that the normalized
energy distribution of the atom is

f th�E� =
1

2�kBT�3E2e−E/kBT, �1�

where E2 corresponds to the three-dimensional density of
states. The probability that an atom has an energy less than E
is defined by Psurv�E�=�0

Ef th�E��dE� and is given by

Psurv�E� = 1 − 1 + � +
1

2
�2�e−�, �2�

where �=E /kBT. Equation �2� can be interpreted as the sur-
vival probability of the atom remaining in the dipole trap
after the truncation of the Boltzmann distribution.

Figure 4�d� shows a fit of the integrated Boltzmann dis-
tribution P�Ei /Ui� to the experimental data using Eq. �2�. To
achieve a better fit to the data, the maximum survival prob-
ability is rescaled to 0.95, to account for nonideal recapture
probability of our experiment when Umin=Ui. We find that
the measured energy distribution is well fitted by a thermal
distribution. This fact shows that over many realizations of
the experiments, the energy of successive atoms after laser
cooling is well described by a Boltzmann distribution, in
agreement with several previous theoretical and experimen-
tal studies �26�.

The Boltzmann distribution in Fig. 4�d� has a correspond-
ing temperature of T=33�2 �K for a trap depth Ui
�2.8 mK, where the error in the temperature corresponds
the statistical uncertainty in the fit. This temperature is in
good agreement with the release and recapture temperature
results presented in the previous section.

We point out that the adiabatic lowering of the dipole trap
depth is a powerful tool in manipulating the energy distribu-
tion of the atom. For example, at very low trap depths the
more energetic atoms will escape with a higher probability.

This adiabatic lowering indeed acts as a filter such that only
the coolest atoms will remain in the trap, as we will now
show.

VI. REDUCTION OF MEAN ENERGY BY TRUNCATING
THE BOLTZMANN DISTRIBUTION

We have shown in Secs. IV and V that we can cool the
atoms down to a temperature of approximately T=33 �K
using laser cooling techniques. It is possible to further reduce
the mean energy of the trapped atom by truncating the
Boltzmann distribution at an energy Utrunc. Here, we perform
this truncation by adiabatically lowering the trapping poten-
tial, to a point where atoms with a higher energy are likely to
escape, while atoms with a lower energy remain trapped.
This filtering via the lowering of the trap potential appears to
be similar to evaporative cooling, but a crucial difference is
that there is no collision-induced rethermalization, since the
experiment is done at the single atom level �27�.

Figure 5�a� shows a schematic of the experimental se-
quence that we use to investigate the energy distribution of
the truncated Boltzmann distribution. This experimental se-
quence is identical to the one described in Sec. V, but we
now perform a release and recapture sequence directly after
it. The entire temporal sequence is shown in the inset of Fig.
5�b�. The additional release and recapture sequence allows us
to determine the temperature of the atoms after the truncation
process and after the trap depth has been returned to the
initial depth.

To determine the truncation energy Utrunc in the trap of
potential depth Uf =Ui, we first calculate the truncation en-
ergy in the shallow trap of potential depth Umin �using the
measured minimum optical dipole trap power�. We then use
the numerical results that map Umin→Ei �see Fig. 4�e�� to
determine the truncation energy Utrunc in the trap of potential
depth Uf.

In the case of a truncated Boltzmann distribution, it is not
sufficient to assume that the position-velocity vector of the
atom follows a Gaussian Maxwell Boltzmann distribution, as
we did for the release and recapture experiments in Secs. III
and IV. To account for this effect, in the following simula-
tions we consider that the energies of the atoms are drawn
from a truncated Boltzmann distribution corresponding to a
temperature T and a truncation energy Utrunc. The Boltzmann
distribution is discretized into N bins with energies Ej
equally spaced by 	U=Utrunc /N, for 	U /2�Ej � �Utrunc
−	U /2�. For each distribution, the number of simulations
with atoms with an energy Ej is weighted according to this
discretized Boltzmann distribution. For an atom with energy
Ej, we randomly distribute the energies among the three di-
rections given by the Cartesian axes. The period of motion of
the atom is then randomly chosen for each of the three Car-
tesian axes �ensuring that the total energy of the atom re-
mains Ej�. Finally, the trajectories of the atoms are simulated
during the time of flight as described in Sec. III. We typically
use several hundred atom trajectories for each release time
	t, and we discretize the Boltzmann distribution into 10
bins. When the truncation energy is very large with respect to
the temperature �i.e., the distribution is approximately not
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truncated�, this new model yields the same results as the
previous release and recapture model.

The experimental results are shown in Fig. 5. We repeated
the experiment several times for different minimum trap
depths Umin. The data were recorded over a span of several
days, where all other parameters were kept approximately
constant. For each minimum trap depth we measured the
recapture probability, PRR�	t=0�, the temperature T of the
truncated Boltzmann distribution and we calculated the asso-
ciated mean energy �E� of this distribution. The small day to

day variations in the experimental parameters result in a
small spread of the temperatures for a given value of Umin.
Nevertheless, Fig. 5�c� shows that the temperature of the
Boltzmann distribution remains approximately constant
down to very small trap depths, even when the distribution
becomes truncated.

In contrast, the mean energy is reduced markedly as the
distribution becomes more truncated, as we will now de-
scribe. The mean energy of a truncated Boltzmann distribu-
tion in a three-dimensional harmonic potential can be ex-
pressed as

�E� =

�
0

Utrunc

E3e−E/kBTdE

�
0

Utrunc

E2e−E/kBTdE

= 3kBT�1 − �1 + � +
1

2
�2 +

1

6
�3�e−�

1 − �1 + � +
1

2
�2�e−� � , �3�

where �=Utrunc /kBT. In the limit where the Boltzmann dis-
tribution is approximately nontruncated, i.e., �1, the mean
energy is given by �E�=3kBT. However, as shown in Eq. �3�
the mean energy is reduced significantly as the truncation is
increased, i.e., �→0. The probability that the atom survives
this truncation process is given by Eq. �2� as Psurv�Utrunc�.
Naturally, this probability drops quickly as �→0, thus re-
ducing the efficiency �or effective duty cycle� of this scheme.

Figure 5�d� shows the mean energy calculated using Eq.
�3� with the measured values of the temperature and the trun-
cation energy Utrunc. The solid line is a theoretical prediction
using Eq. �3� for a temperature T=33 �K.

For minimum trap depths above 10 �K, i.e., when the
energy distribution is approximately nontruncated, the mean
energy is �E��100 �K. For minimum trap depths below
10 �K, we see that the mean energy is significantly reduced.
For example, for a minimum trap depth Umin�0.4 �K, we
measure a mean energy of the atom at the end of this filtering
sequence of �E��30 �K, where the final trap depth is Uf
�2.8 mK. The truncation of the Boltzmann distribution thus
leads to a reduction of the mean energy by a factor of
100 �K /30 �K�3.3. At the same time, the probability of
recapture is reduced to PRR�	t=0��0.1.

In this section we have shown that if one is willing to
compromise on the probability of recapturing the atom �or,
correspondingly, the duty cycle of the experiment�, truncat-
ing the Boltzmann distribution is a good way to reduce the
mean energy of the atom.

VII. COOLING A SINGLE ATOM BY ADIABATICALLY
LOWERING THE TRAPPING POTENTIAL

Let us consider an atom in a trapping potential. By adia-
batically lowering the trap depth the occupation probabilities
of the vibrational levels are preserved �28�. For our optical
dipole trap this conservation of the vibrational number re-
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FIG. 5. �Color online� Investigation of a truncated Boltzmann
distribution using the release and recapture method. �a� Schematic
of the experimental sequence. �b� Probability of recapture for zero
release time PRR�	t=0� plotted as a function of the minimum trap
depth Umin. PRR�	t=0� is defined as the mean of the first four
recapture probabilities with the smallest release times of a given
data set �e.g., see, Fig. 2�b��, where the error bars are due to normal
statistics. Solid line is a theoretical fit to the data. The inset shows a
schematic of the temporal experiment sequence. �c� The tempera-
ture T plotted as a function of Umin. Solid line corresponds to a
constant temperature of 33 �K. Gray bar corresponds to the stan-
dard deviation of the spread in the measured temperatures for the
minimum trap depth Umin�2.8 mK. �d� The calculated mean en-
ergy �E� of the truncated Boltzmann distribution shown as a func-
tion of Umin. The solid line is a theoretical prediction of the mean
energy of a truncated Boltzmann distribution with a temperature of
33 �K.
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sults in T /�U being a constant. In this section we will ex-
perimentally demonstrate that by slowly lowering the trap
depth, the temperature of the atoms follows this relation, thus
reinforcing our assumptions about adiabaticity.

To test the adiabaticity of our lowering scheme we per-
form the same experimental sequence as in Sec. VI, but we
now implement the release and recapture sequence when the
trap is shallowest, i.e., we measure the temperature of the
atoms at the minimum trap depth Umin �32�. This is in con-
trast to Sec. VI, where the temperature of the atoms was
measured after the trap depth was returned to its initial value.

A schematic of the experimental sequence is shown in
Fig. 6, together with the recapture probability PRR�	t=0�
and the temperature T measured for various minimum trap
depths Umin. The data in Fig. 6�c�, shows evidence that the
temperature of the Boltzmann distribution follows closely an
adiabatic lowering behavior. For comparison, we have plot-
ted the adiabatic scaling law T /�U=const, where the con-
stant is equal to Ti /�Ui with Ti=33 �K and Ui=2.8 mK.

The criteria for adiabaticity states that the rate of change
of the oscillation frequency 
̇ must be lower than 
2 �
 is

the oscillation frequency� at all times during the evolution
�25�. Care must be taken to fulfill the adiabaticity criteria
when the trapping potential is very small, corresponding to a
small oscillation frequency. The rate of change of the oscil-
lation frequency must be sufficiently small in this case. In
our experiment, this is done by smoothly ramping up and
down the intensity of the dipole trap laser with acousto-optic
modulators. The behavior of the measured temperature in
Fig. 6�c� gives us a strong indication that indeed the adiaba-
ticity criteria is fulfilled when the trapping depth is small.

Figure 6�b� shows the probability of recapture for zero
release time PRR�	t=0� plotted as a function of the mini-
mum trap depth Umin, together with a theoretical fit. We re-
emphasize that for minimum trap depths less than Umin
�10 �K, the Boltzmann distribution becomes truncated.
This implies that we are no longer in the three-dimensional
harmonic approximation, and hence the density of states is
no longer described by ��E��E2. Nevertheless, for clarity in
Fig. 6, we have presented the results assuming that ��E�
�E2 for all data points.

As a typical result, we measure a temperature of T
=1.69�0.02 �K for the atoms in a trap that has been adia-
batically lowered to a depth of Umin�12 �K. In this case,
the Boltzmann distribution is only slightly truncated, imply-
ing that the quadratic density of states should still be valid.
This temperature corresponds to a one hundred fold decrease
in the temperature of the atoms compared to those that were
directly loaded from the molasses.

VIII. DISCUSSION

We have shown that the single atom cooling via filtering
techniques is quite efficient. Starting from an initial mean
energy of 100 �K after the laser cooling phase, we get a
final mean energy of the atom of 30 �K with a probability of
�0.1. On our experiment, the loading rate of single atoms is
on the order of 1 per second. If we are willing to comprise
our duty cycle, we could obtain on average one atom every
10 seconds with a mean energy of 30 �K in a �2.8 mK
deep trap, which corresponds to a ratio of the trap depth to
mean energy of �93.

Another parameter characterizing the external motion of
the atom in the trap is the mean vibrational number along
one axis, defined as the ratio of the mean energy of the atom
along this axis to the energy difference between vibrational
states. As the trap has two different oscillation frequencies
along the axial and radial directions, this corresponds to two
different mean vibrational numbers along these directions. If
we assume the equipartition of the mean energy among the
three axis, we get for the mean vibrational number along the
radial direction n�= �E� /3h��. For the mean energy of
100 �K that we obtained after laser cooling the atom, this
leads to n��4.3. By contrast, the lowest mean energy of
30 �K that we obtained after filtering leads to n��1.3,
which is 3.3 times smaller than the mean vibrational number
before filtering. This mean number, close to 1 along the ra-
dial direction, raises some questions about the validity of our
classical treatment for the temperature measurement for the
lowest trap depths. This analysis, albeit interesting, is beyond
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FIG. 6. �Color online� Investigation of the adiabaticity during
the change of the optical trap depth. �a� Schematic of the experi-
mental sequence �see text�. �b� Probability of recapture for zero
release time PRR�	t=0�, as a function of the minimum trap depth
Umin. The solid line is a theoretical fit to the data. Inset shows a
schematic of the temporal experimental sequence. �c� Temperature
T of the Boltzmann distribution plotted as a function of Umin. The
solid line is a theoretical prediction of the adiabatic scaling law
T /�U=const. The dashed line is the extension of the solid line to
minimum trap depths at which the density of states deviates from
that of a three-dimensional harmonic trap.
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the scope of this paper. This also places us in a good position
to further cool the atom down to the ground state, for ex-
ample by using Raman sideband cooling �5�.

In the framework of quantum information, there has been
proposed a protocol to entangle two atoms based on the
emission of a single photon by one of the two trapped atoms
�29�. A crucial feature of this proposal is the ability to local-
ize each atom within a distance smaller than the wavelength
of the emitted photon, the so-called Lamb-Dicke regime.
Reference �29� shows that for atoms described by a thermal
distribution at temperature T, this condition becomes �th
=�LD

�kBT /�
�1, with 
 being the mean oscillation fre-
quency of the atom in the trap, and �LD=�Er /�
 being the
Lamb-Dicke parameter �Er is the recoil energy�. In our case,
for a trap depth of �2.8 mK, we find �LD=0.20 and �th
=0.56 for a temperature of 33 �K, as measured above. We
are therefore in the right regime to apply this entanglement
protocol. We finally note that �th can be lowered when in-
creasing the trap depth adiabatically. In this case �th is re-
lated to the trap depth U by �th�U−1/4.

IX. CONCLUSION

As a summary of this paper, we have investigated the
energy of a single atom trapped in a tight optical dipole trap.

We have found that after applying laser cooling of the atom
in the tweezer, the energy of the trapped atom follows a
Boltzmann distribution. We have extracted the temperature
of the atoms from the measured energy distribution. We have
also described a release and recapture method to measure the
temperature of the atoms assuming a truncated Boltzmann
distribution. This second method is in good agreement with
the first one.

We have shown that by adiabatically lowering the trap
depth we have reduced the temperature of the atoms down to
several micro-K. Finally, we have cooled the atom by filter-
ing the hottest atoms over many realizations of the same
experiment, the equivalent of evaporative cooling but at the
single atom level. This leads to an atom close to the ground
state in the radial direction of the trap.
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