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ABSTRACT 

Usher syndrome type II is the most common form of Usher syndrome. USH2A is the main 

responsible gene of the three known to be disease causing. It encodes two isoforms of the 

protein usherin. This protein is part of an interactome that plays an essential role in the 

development and function of inner ear hair cells and photoreceptors. The gene contains 72 

exons spanning over a region of 800 kb. Although numerous mutations have been described, 

the c.2299delG mutation is the most prevalent in several populations. Its ancestral origin was 

previously suggested after the identification of a common core haplotype restricted to 250 kb 

in the 5´ region, which encodes the short usherin isoform. By extending the haplotype 

analysis over the 800 kb region of the USH2A gene with a total of 14 intragenic SNPs, we 

have been able to define 10 different c.2299delG haplotypes showing high variability but 

preserving the previously described core haplotype. An exhaustive c.2299delG/control 

haplotype study suggests that the major source of variability in the USH2A gene is 

recombination. Furthermore, we have evidenced twice the amount of recombination hotspots 

located in the 500 kb that covers the 3´ end of the gene, explaining the higher variability 

observed in this region when compared to the 250 kb of the 5’ region. Our data confirm the 

common ancestral origin of the c.2299delG mutation.  
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INTRODUCTION 

Usher syndrome type II (USH2) belongs to a genetically and phenotypically heterogeneous 

group of recessively inherited disorders that combine hearing loss and retinitis pigmentosa 

(RP). More specifically, USH2 displays moderate to severe hearing loss, postpubertal onset of 

RP and normal vestibular reflexes. Although three genes are responsible for USH2, USH2A 

accounts for more than 75% of USH2 cases1, 2. Usher syndrome type IIA (USH2A; MIM 

276901) represents the most common form of inherited deaf-blindness and is estimated to 

affect 1 in 17 000 individuals3. 

The underlying USH2A gene was isolated by positional cloning4. It was initially described as 

including 21 exons, with the first exon being entirely non-coding, spanning a region of 250 kb 

and it was predicted to encode a 1 546 amino acid protein of 171 KDa. Today, this protein is 

recognized as the short isoform of usherin and is predicted to be a secreted extracellular 

protein4, 5.   

Because mutation detection rates obtained in mutation screening studies were lower than 

those expected, the existence of additional uncharacterised exons of USH2A was postulated. 

van Wijk et al.6 identified 51 novel exons at the 3´end of the gene increasing its size to 800 

kb. These authors also provided some indications for alternative splicing. The predicted 

protein encoded by the longest open reading frame (5 202 residues) is a member of the protein 

network known as the Usher interactome. This interactome plays an essential role in the 

development of the stereocilia of the hair cells in the organ of Corti. In photoreceptors, the 

Usher interactome localises in the periciliary region and could be involved in the cargo 

transport between the inner and outer segment7- 9. 

Since the identification of the USH2A long isoform, a small number of mutation screenings 

have been reported, which indicates that the study of all 72 exons is mandatory for efficient 
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molecular diagnosis1, 2, 10-13. As a result of these studies, together with the mutations of the 

short isoform reported before 2004, more than 210 mutations have been described. A great 

majority of these mutations are private or present in a few families14. However, a prevalent 

mutation located in exon 13, designated as c.2299delG, is frequently found in European and 

US patients but also in isolated cases from South America, South Africa and Asia. The allele 

frequency distribution of c.2299delG varies geographically in Europe. This mutation accounts 

for 47.5% of USH2A alleles in Denmark and for 36% in Scandinavia2; while an allelic 

frequency of 31% was found in the Netherlands15; 16 to 36 % in the UK16, 17, 15% in Spain10 

and 10% in France (unpublished results). A common ancestral origin has been hypothesised 

for the c.2299delG mutation on the basis that alleles bearing the c.2299delG mutation share 

the same core haplotype, restricted to the first 21 exons of the USH2A gene18. In this study, 

we carry out an exhaustive analysis of the 51 additional exons of the long isoform which 

reveals high variability in numerous associated intragenic Single Nucleotide Polymorphisms 

(SNPs) giving rise to, at least, 10 different c.2299delG haplotypes; but preserving the 

previously described core haplotype. All these data confirm the common origin of this 

ancestral mutation.  

 

MATERIAL AND METHODS 

Patients 

Twenty-seven patients were included in this study. Seventeen were of Spanish origin and 

were recruited from the Federación de Asociaciones de Afectados de Retinosis Pigmentaria 

del Estado Español (FAARPEE) and from the Ophthalmology and ENT Services of several 

Spanish hospitals. Ten patients were French and were recruited from medical genetic and 

ophthalmology clinics distributed all over France. The patients were classified as Usher type 
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II on the basis of ophthalmologic studies, including visual acuity, visual field and fundus 

ophthalmoscopy, electroretinography, pure-tone and speech audiometry and vestibular 

evaluation. For each patient, samples from parents were considered as well as siblings, when 

possible. This study was approved by both the Hospital La Fe and CHU Montpellier Ethical 

Committees and consent to genetic testing was obtained from adult probands or parents in the 

cases of minors. 

Controls 

97 control chromosomes were used to establish the distribution of USH2A normal alleles. 

They were generated from fifty trios (subject and both parents). Twenty-five of each were of 

French and Spanish origins and randomly chosen as the healthy control group. These trios did 

not refer symptoms or a history of Usher syndrome or related disorders.   

DNA analysis of USH2A gene 

Patient and control genomic DNA was extracted from peripheral blood samples using 

standard protocols. The 14 SNPs used to construct USH2A haplotypes of control and 

c.2299delG alleles were PCR-amplified using the primers and PCR conditions previously 

described5, 6. PCR products were directly sequenced on an ABI PRISM 3130xl (Applied 

Biosystems, CA, U.S.A). The polymorphism IVS17-8T>G was not considered in this study. 

Because this variant was included in the core haplotypes defined by Dreyer et al.18 we 

indicate it in brackets to avoid any confusion when referring to Dreyer’s data.  

Construction of haplotypes 

Parents and available siblings of the c.2299delG patients were used to infer the haplotypes 

linked to the c.2299delG mutation (M haplotypes). Similarly, control trios were used to 

establish normal USH2A haplotypes in a healthy population (C haplotypes). In all cases 

haplotypes were manually generated by inheritance. In some cases, the data were not 
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informative enough to establish the phase of the SNPs and some ambiguities remained. When 

possible, ambiguous haplotypes were ascribed to an already existing haplotype.  

Construction of phylogenetic trees.  

Relationships between haplotypes were inferred using two approaches with three different 

data sets: the complete set of SNPs, the first five SNPs included in the first 21 exons of the 

gene, and the last 9 SNPs located in the 3’ end of the gene (see table 1). In the first approach, 

we constructed phylogenetic trees using a variety of methods and evolutionary models. 

However, the high levels of homoplasy present in this dataset prevented the derivation neither 

of a single most reliable phylogenetic tree, neither with the whole set nor with any of the other 

subsets of SNPs. Among the different trees obtained, we present the results obtained with the 

neighbor-joining method19, using the uncorrected number of differences between pairs of 

SNPs as a measure of their genetic divergence. Bootstrap support values were obtained using 

version 4.1 of the MEGA software. 

Additionally, a median-joining network was obtained with the program Network 4.5.10 

(Fluxus Technology, http://www.fluxus-technology.com). A network represents all the 

alternative possibilities linking every haplotype considered through a minimum number of 

mutation steps and is not restricted to represent relationships as a single pathway. This is a 

more appropriate methodology than dichotomous phylogenetic trees for establishing 

relationships among closely related allele variants20. 

Dating the USH2A c.2299delG mutation 

To estimate the original date of the c.2299delG mutation in the USH2A gene three 

mathematical approaches were applied: a Monte Carlo likelihood method implemented in the 

program BDMC21 v2.121 (http://www.rannala.org/labpages/software.html), a Markov chain 
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method by means of the DMLE+ v2.2 software22-24 (http://www.dmle.org) and a moment 

method described by Bengtsson and Thomson25. 

The program BDMC21 v2.1 relies on the assumption that genetic variation among a group of 

highly linked polymorphic markers, defining a haplotype in which a novel non-recurrent 

mutation arose, is a function of the mutation frequencies of those linked markers and the time 

since the first occurrence of this unique mutation. To achieve this approach, we considered 

information from the three variable SNPs closest to the c.2299delG mutation: c.4714C>T, 

c.6506T>C and c.6875G>A. Confidence interval was estimated following the standard theory 

of maximum likelihood estimation26. The second analysis performed was using the DMLE+ 

program version 2.2, which takes into account the marker information from the entire 

haplotype on the basis of:  

5’_c.373G>A_c.504A>G_c.1419C>T_IVS15+35G>A_c.4457G>A_c.4714C>T_c.6506T>C_

c.6875G>A_c.10232A>C_c.11602A>G_c.11677C>A_c.12612A>G_c.12666A>G_c.13191G

>A_3’.  

This program allows Bayesian inference of the mutation age based on the observed linkage 

disequilibrium at multiple genetic markers. For both approaches, we used a carrier frequency 

of USH2 of 1/106, a proportion of mutation-bearing chromosomes in our sample f=1.7x10-5, 

and a population growth parameter d=0.05. Moreover, because the estimate of mutation age 

based on the DMLE+ v2.2 software seems to be sensitive to demographic parameters (growth 

rate, mutation frequency, and population size)24, we analyzed haplotype data considering a 

range of plausible growth rates (d=0.03-0.11) and proportion of chromosomes (f=1x10-6-6x10-

5). After this, in order to verify the estimated allele age, we decided to used a method 

described by Bengtsson and Thomson25 based on the algorithm: g=logδ/log(1-θ), that depends 

on the linkage disequilibrium (δ) and on the recombination frequency (θ), and therefore 
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insensitive to demographic parameters. For this analysis, we considered information from the 

3 SNPs showing significant LD index values (δ): c.4714C>T, c.6506T>C and c.10232A>C. 

SNPs c.373G>A, c.504A>G, c.1419C>T, IVS15+35G>A and c.4457G>A were not 

informative for this analysis because all disease chromosomes carried the same allele. SNPs 

c.6875G>A, c.11677C>A and c.12666A>G could not be used in this method because the 

proportion of disease chromosomes carrying the major allele (Pd) was lower than the 

proportion of normal chromosomes carrying that same allele (Pn). Finally, to set the genetic 

clock, we applied the Luria-Delbrück correction: gc= g+g0
27

 in order to avoid a possible 

underestimation28-30. 

 

RESULTS 

c.2299delG haplotypes 

The c.2299delG haplotypes were built for the 27 USH2A patients using the 14 SNPs 

represented in table 1. Seven of the patients were c.2299delG homozygotes (six were Spanish 

and one was French). A total of 10 different haplotypes were identified (M1-M10, see table 

2). The haplotypes were identical from exon 2 to 21, but the SNPs located along the 51 

additional exons of the USH2A long isoform were variable (Table 2). The variability rate of 

the SNPs was uneven. For five of the SNPs (c.4714C>T, c.6875G>A, c.11602A>G, 

c.11677C>A and c.13191G>A) the same allele was present on at least 8 haplotypes. 

Haplotype M1 was the most frequent in the Spanish population (8/23; frequency 0.35) 

followed by haplotype M2 (6/23; frequency of 0.26). Haplotype M1 was also the most 

prevalent in France, together with haplotype M8 (3/11; frequency 0.27). Haplotypes M4-M9 

were restricted to either the Spanish or French populations. Haplotype M1 was the most 

common with a frequency of 0.32 (11/34) when both populations were pooled.  
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Control USH2A haplotypes 

Fifty-four different haplotypes could be defined from the 97 control chromosomes 

(Supplementary Table 1).  Variation was found along the entire gene, however, this variation 

is significantly higher in the region encompassing from exon 22 to exon 72. Two SNPs 

remained invariable: c.4714C>T and c.11677C>A. In addition, the c.6875G>A SNP had the 

same G allele in 53 of 54 haplotypes. Interestingly, this variant corresponds to the only CpG 

dinucleotide identified among the 14 SNPs (Table 1). Haplotype C1 was the most prevalent 

among the Spanish control population with a frequency of 0.1 (5/51) and haplotype C6 was 

the most frequent among the French controls with a frequency of 0.09 (4/46). Combining the 

data from both populations, haplotype C1 was the most prevalent with a frequency of 0.07 

(7/97).  

Relationship of haplotypes 

The neighbor-joining tree for all the entire haplotypes was rooted with the corresponding Pan 

troglodytes haplotype. It did not present a well-defined structure, since none of the nodes 

were supported by bootstrap analysis. Nevertheless, a small cluster encompassing six 

haplotypes related to the disease (M1, M2, M5-M8) was observed. The remaining disease-

associated haplotypes did not group with this clade, but were not too distant from it 

(Supplementary Fig. 1A). This pattern was very different from that obtained when only the 5 

SNPs from the first 21 exons of the gene were analyzed. The common haplotype including 

disease-related alleles as well as many others from control chromosomes occupies an 

intermediate position between the oldest haplotypes, as inferred from their close relationship 

to the out-group, and the most recently derived, the group including C40-C46. Again, none of 

the nodes in this tree were supported by bootstrap analysis (Supplementary Fig. 1B). This 

topology is markedly different from the one inferred from the remaining SNPs, those located 
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at the 3’-end of the gene. Here, there was no longer a clear association between disease-

related haplotypes, except for a small group including alleles M5-M8. Most of the other 

disease-related haplotypes were more closely related to control alleles than to any other 

disease allele but, again, these associations were not supported by bootstrap analysis 

(Supplementary Fig. 1C). 

The apparent lack of congruence between the phylogenetic histories of these alleles when 

considering SNPs from the 5’- and 3’-ends may be due to frequent recombination events. This 

was further checked by reconstruction of median-joining networks for the same three data sets 

described above. The three networks, but especially those derived from the complete and the 

3’-end sets of SNPs, present a high level of connectedness with many alternative routes 

connecting every possible pair of haplotypes (see Supplementary Fig. 2A, 2B and 2C). There 

are also many haplotypes connected to several others with a minimum number of intermediate 

steps and only a few haplotypes are connected to the rest through a single intermediate. This 

pattern is still present, although at a much reduced level, in the network derived from SNPs in 

the 5’-end of the gene (Supplementary Fig. 2B), partly due to the reduced number of different 

haplotypes in this part of the gene. The ancestral (C19, which includes Pan troglodytes) and 

the most abundant haplotypes are connected through an intermediate haplotype (either C28 or 

C17) and two point changes in SNPs c.3157+15G>A and c.4457G>A. These observations 

easily explain the difficulties encountered in reconstructing a phylogenetic tree with well 

supported relationships as previously commented. Although it is certainly possible to invoke 

homoplasic point mutations to explain these patterns, they are more likely due to high level of 

recombination, with an apparently higher rate in the second part of the gene. 

Dating the c.2299delG mutation 
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We estimated the allele age of the USH2A c.2299delG mutation using three mathematical 

approaches. Haplotype data were analysed for the Spanish and French populations separately 

and also together in the pooled populations using both the BDMC21 v2.1 program and the 

DMLE+ v2.2 software. Results were quite similar for both mathematical methods (Table 3). 

Taken into account the whole studied population, the estimated age of the c.2299delG 

mutation resulted to be 245.4 generations (95% CI 245.2-245.6) and 231.3 generations (95% 

CI 204.8-245.6) for the BDMC21 v2.1 program and the DMLE+ v2.2 software, respectively. 

Assuming a generation time of 28 years31, these results indicate that the c.2299delG arose 

between 6 476-6 871 years ago. 

For the DMLE+ v2.2 approach, we found a high variability as a result of the oscillation of the 

growth rate values between d= 0.03 [g= 374.96 (95% CI 321.84-464.08)] and d= 0.11 [g= 

111.84 (95% CI 97.39-138.38)] that led to an estimated allelic age of 10 500 years for the 

former and 3 100 for the latter. The analyzed range of f  gave an oscilation of: g= 288.4 (95% 

CI 256.4-346.8) for f= 1x10-6, and g= 204.3 (95% CI 176.2-260.9) for f= 6x10-5, thus ranging 

from 8 000 to 5 700 years old respectively (Fig. 1A and 1B). 

Finally, we analysed LD data using the algorithm g= logδ/log(1-θ) and the Luria-Delbrück 

correction. These results showed that the c.2299delG mutation arose 95-206 generations ago 

and increased to 163-264 generations ago when applying the Luria-Delbrück correction. 

Assuming a generation time of 28 years31, this would indicate that the USH2A c.2299delG 

mutation could have arisen 2 700-5 800 years ago or 4 600-7 400 years ago with the 

correction (Table 4).  

 

DISCUSSION 
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The data obtained from the entire haplotypes of the control population reveal a highly variable 

genetic background, since 54 haplotypes could be identified in the Spanish and French 

populations with no evidence of a prevalent common haplotype (Supplementary Table 1). In 

2001, twelve core haplotypes were identified by Dreyer et al.18 in a Scandinavian control 

population. These were based on partial information since only part of the USH2A gene was 

then recognized. These authors identified a major haplotype “A-G-C-A-(T)-A” with a 

frequency of 0.60. This core haplotype is also the most frequent one in our control group (C1 

to C16), but overall represents less than 50%. The same core haplotype is found in all 

c.2299delG alleles within the first 21 exons, confirming the existence of high linkage 

disequilibrium in this 250 kb region.  

The C>T distribution of the c.4714 SNP is quite striking. The C allele is present in all control 

haplotypes, but it is carried by only two disease-associated haplotypes, M9 and M10, that 

represent less than 15% of the c.2299delG alleles. Linkage disequilibrium between the 

c.4714T allele and the c.2299delG mutation had already been noted in a French study1. 

Dreyer et al.2 identified this SNP in both the c.2299delG and control Scandinavian alleles. 

However, we do not know if the majority of the c.2299delG patients in Northern Europe also 

carry the T allele at this position. Extending the studies to Northern Europe and other 

populations should help to clarify this point. 

The variability observed in the additional portion of the gene covering from exon 22 to 72 

(i.e. about 500 kb) is quite puzzling, suggesting a high recombinational activity at the 3´end of 

the gene and a conservation of the 5´end. We analyzed the mutability rate of USH2A SNPs by 

looking at CpG dinucleotides (Table 1). Only one CpG was found in exon 36 at position 6 

875 and, therefore, cannot explain the variability observed in the 3’ region. The median-
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joining networks reconstructed in order to find the relationship between haplotypes showed a 

high level of connectedness, especially for the second part of the gene. These networks are 

more easily explained by the existence of high recombination rates than by point mutations. 

These analysis using formal methods confirm that recombination events represent the 

predominant source of variability in this gene. Subsequently, we looked for a common 

sequence motif CCNCCNTNNCCNC associated with recombination hot spots in humans32 

along the entire USH2A DNA sequence. Twenty motif locations were found, 4 within the first 

20 introns and 16 between introns 21-71. Therefore, twice amount of recombination hotspots 

are located in the most variable region.  

Three different mathematical approaches led to a wide range of estimated allelic age for 

c.2299delG mutation depending on the methods. When we applied BDMC21 and DMLE+, 

the estimated allelic age ranged from about 5 500 to 7 000 years old. When we used variable f 

and d to correct the sensitivity of these methods to demographic parameters, the allelic age 

ranged from 3 100 to 10 500 years old. Finally, using a method based on genetic parameters, 

we obtained an estimate of 2 700-5 800. Labuda et al.29  suggested that the genetic clock lead 

to an underestimation when it is applied to growing populations and used a correction (based 

on d and f) to avoid this underestimation. When we applied this correction, we obtained a 

range of ages from 4 500-7 500.  

The programs BDMC21 and DMLE+ are highly dependent on demographic parameters. In 

fact, when one uses a range of d and f, the estimated allelic age varies considerably, reflecting 

that these programs hardly consider genetic data. Results are strongly biased due to the 

c.2299delG allelic frequency estimation was only based on clinical data and current 

prevalence of the disease. Moreover, the overall demographic growth parameter for Europe 

could not be equivalent to the local growth rate for Spanish and French populations. Thus, 
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further studies are still to be done considering the rest of the European populations to estimate 

a more realistic figure for the original date of c.2299delG. 

There are no data concerning the c.2299delG frequency among North-Africans. However, 

c.2299delG is not a prevalent mutation in the non-Ashkenazi Jewish populations from the 

South and Near East regions11, 33, 34. This supports the hypothesis of the more recent migration 

fluxes across the Mediterranean Sea as a cause of the reduced frequency of the c.2299delG 

mutation within Northern Mediterranean populations. Another interesting point is the 

presence of c.2299delG in Asian patients. This mutation was found in isolated patients of 

Chinese origin15. The recent studies carried out by Dai et al.12 in China and Nakanishi et al.13 

in Japan indicate that c.2299delG is not common among Asian USH2 patients, although the 

authors only screened six and ten patients respectively. Further studies are needed in order to 

investigate the frequency of c.2299delG in this and other non-European populations. 

In relation to those territories with a history of European colonization, such as America and 

South Africa, it has already been pointed by Dreyer et al.18 that the recent waves of European 

migration to the New World and other countries would definitely explain the presence of 

c.2299delG in these populations.  

 

The exhaustive study of the 3´ region of the USH2A gene in our cohort of patients has 

revealed that haplotypes linked to the c.2299delG mutation show high variability, but 

preserve the previously described core haplotype “A-G-C-A-(T)-A”. This common haplotype 

is restricted to 250 kb in the 5´ region of this gene, which corresponds to the USH2A protein 

short isoform. By extending this study to the control population we have evidenced the 

existence of linkage disequilibrium restricted to this 250 kb region. The analysis of the 
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relationship between USH2A haplotypes suggests that the major source of variability in this 

gene is recombination. The higher variability observed in the 3´ region could be explained by 

the accumulation of recombination hotspots observed in specific intronic sequences of this 

portion of the gene. It is difficult to ascertain if the structural and dynamic differences 

observed between the 5´and 3´region of the gene could have a functional significance. Our 

data do not allow us to estimate a realistic allelic age for c.2299delG. Nevertheless, this 

mutation appears to have a European ancestral origin. 

 

ACKNOWLEDGEMENTS 

Authors are grateful to the participating patients and their relatives and to the FAARPEE for 

their help and co-operation. This work was supported by grants from the Fondo de 

Investigaciones Sanitarias (FIS07/0558) and from Ministère de la Recherche “PHRC National 

2004” (Protocole 7802). 

We also acknowledge Fabiola Barraclough for English corrections. 

 

REFERENCES  

1. Baux D, Larrieu L, Blanchet C et al: Molecular and in silico analyses of the full length 

isoform of usherin identify new pathogenic alleles in Usher type II patients. Hum 

Mutat 2007, 28(8):781-9.  

2. Dreyer B, Brox V, Tranebjaerg L et al: Spectrum of USH2A mutations in 

Scandinavian patients with Usher syndrome type II. Hum Mutat 2008, 29(3):451. 



                                                                                                                      17 

3. Kimberling WJ. Estimation of the frequency of occult mutations for an autosomal 

recessive disease in the presence of genetic heterogeneity: application to genetic 

hearing loss disorders. Hum Mutat 2005, 26(5):462-70. 

4. Eudy JD, Weston MD, Yao S et al: Mutation of a gene encoding a protein with 

extracellular matrix motifs in Usher syndrome type IIa. Science 1998, 

280(5370):1753-7. 

5. Weston MD, Eudy JD, Fujita S et al: Genomic structure and identification of novel 

mutations in usherin, the gene responsible for Usher syndrome type IIa. Am J Hum 

Genet 2000, 66(4):1199-210. 

6. Van Wijk E, Pennings RJ, te Brinke H et al: Identification of 51 novel exons of the 

Usher syndrome type 2a (USH2A) gene that encode multiple conserved functional 

domains and that are mutated in patients with Usher syndrome type II. Am J Hum 

Genet 2004, 74(4):738-44. 

7. Adato A, Lefèvre G, Delprat B et al: Usherin, the defective protein in Usher syndrome 

type IIA, is likely to be a component of interstereocilia ankle links in the inner ear 

sensory cells. Hum Mol Genet 2005, 14(24):3921-32.   

8. Liu X, Bulgakov OV, Darrow KN et al: Usherin is required for maintenance of retinal 

photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S 

A. 2007, 104(11):4413-8. 

9. Maerker T, van Wijk E, Overlack N et al: A novel Usher protein network at the 

periciliary reloading point between molecular transport machineries in vertebrate 

photoreceptor cells. Hum Mol Genet 2008, 17(1):71-86.  



                                                                                                                      18 

10. Aller E, Jaijo T, Beneyto M et al: Identification of 14 novel mutations in the long 

isoform of USH2A in Spanish patients with Usher syndrome type II. J Med Genet 

2006, 43(11):e55. 

11. Auslender N, Bandah D, Rizel L et al: Four USH2A Founder Mutations Underlie the 

Majority of Usher Syndrome Type 2 Cases among Non-Ashkenazi Jews. Genet Test 

2008, (2):289-94.  

12. Dai H, Zhang X, Zhao X et al: Identification of five novel mutations in the long 

isoform of the USH2A gene in Chinese families with Usher syndrome type II. Mol 

Vis 2008, 14:2067-75.  

13. Nakanishi H, Ohtsubo M, Iwasaki S, Hotta Y, Mizuta K, Mineta H, Minoshima S. 

Identification of 11 novel mutations in USH2A among Japanese patients with Usher 

syndrome type 2. Clin Genet 2009, 8. [Epub ahead of print]. 

14. Baux D, Faugère V, Larrieu L et al: UMD-USHbases: a comprehensive set of 

databases to record and analyse pathogenic mutations and unclassified variants in 

seven Usher syndrome causing genes. Hum Mutat 2008, 29(8):E76-E87.  

15. Pennings RJ, Te Brinke H, Weston MD et al: USH2A mutation analysis in 70 Dutch 

families with Usher syndrome type II. Hum Mutat 2004, 24(2):185. 

16. Liu XZ, Hope C, Liang CY et al: A mutation (2314delG) in the Usher syndrome type 

IIA gene: high prevalence and henotypic variation. Am J Hum Genet 1999, 

64(4):1221-5. 

17. Leroy BP, Aragon-Martin JA, Weston MD et al: Spectrum of mutations in USH2A in 

British patients with Usher syndrome type II. Exp Eye Res 2001, 72(5):503-9. 

18. Dreyer B, Tranebjaerg L, Brox V et al: A common ancestral origin of the frequent and 

widespread 2299delG USH2A mutation. Am J Hum Genet  2001, 69(1):228-34.  



                                                                                                                      19 

19. Saitou N and Nei M: The neighbor-joining method: a new method for reconstructing 

phylogenetic trees. Mol Biol Evol 1987, 4:406-25. 

20. Bandelt H-J, Forster P, Röhl A: Median-joining networks for inferring intraspecific 

phylogenies. Mol Biol Evol 1999, 16:37-48). 

21. Slatkin, M. and Rannala, B: Estimating the age of alleles by use of intraallelic 

variability. Am J Hum Genet 1997, 60, 447-58. 

22. Rannala, B. and Slatkin, M: Likelihood analysis of disequilibrium mapping, and 

related problems. Am J Hum Genet 1998, 62, 459-73. 

23. Reeve, J.P. and Rannala, B. DMLE+: Bayesian linkage disequilibrium gene mapping. 

Bioinformatics 2002, 18, 894-5. 

24. Rannala, B. and Reeve, J.P: Joint Bayesian estimation of mutation location and age 

using linkage disequilibrium. Pac Symp Biocomput 2003, 526-34. 

25. Bengtsson, BO and Thomson, G: Measuring the strength of associations between 

HLA antigens and diseases. Tissue Antigens 1981, 18, 356-63. 

26. Sorensen, D.A. and Gianola, D: Likelihood, Bayesian and MCMC methods in 

quantitative genetics. Springer-Verlag, New York. 2002. 

27. Luria SE, Delbrück M. Mutations of bacteria from virus sensitivity to virus resistance. 

Genetics 1943, 28: 491-511 

28. Labuda M, Labuda D, Korab-Laskowska M, Cole DE, Zietkiewicz E, Weissenbach J, 

Popowska E, Pronicka E, Root AW, Glorieux FH. Linkage disequilibrium analysis in 

young populations: pseudo-vitamin D-deficiency rickets and the founder effect in 

French Canadians. Am J Hum Genet 1996, 59(3): 633-43.  



                                                                                                                      20 

29. Labuda D, Zietkiewicz E, Labuda M. The genetic clock and the age of the founder 

effect in growing populations: a lesson from French Canadians and Ashkenazim. Am J 

Hum Genet 1997, 61(3): 768-71.  

30. Colombo R. Age estimate of the N370S mutation causing Gaucher disease in 

Ashkenazi Jews and European populations: A reappraisal of haplotype data. Am J 

Hum Genet 2000, 66(2): 692-7.  

31. Fenner JN. Cross-cultural estimation of the human generation interval for use in 

genetics-based population divergence studies. Am J Phys Anthropol 2005, 128(2): 

415-23. 

32. Myers S, Freeman C, Auton A, Donnelly P, McVean G: A common sequence motif 

associated with recombination hot spots and genome instability in humans. Nat Genet  

2008, 40:1124-9 

33. Adato A, Weston MD, Berry A, Kimberling WJ, Bonne-Tamir A: Three novel 

mutations and twelve polymorphisms identified in the USH2A gene in Israeli USH2 

families. Hum Mutat 2000, 15(4):388. 

34. Kaiserman N, Obolensky A, Banin E, Sharon D: Novel USH2A mutations in Israeli 

patients with retinitis pigmentosa and Usher syndrome type 2. Arch Ophthalmol 2007, 

125(2):219-24.  

 

TITLES AND LEGENDS TO FIGURES  

Supplementary Figure 1. Phylogenetic trees constructed using USH2A haplotypes data. 

A. Neighbor-joining tree constructed using the complete set of SNPs (Hamming 

distance).  
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B. Neighbor-joining tree constructed using the first 5 SNPs (Hamming distance).  

C. Neighbor-joining tree constructed using the last 9 SNPs (Hamming distance). 

Pan: Pan troglodytes  

 

Supplementary Figure 2. Median-joining networks representing all the alternative 

possibilities linking every USH2A haplotype. 

A. Median-joining network constructed using the complete set of SNPs (Hamming 

distance).  

mv1-mv12 nodes represent haplotypes that have not been found in the sample of 

study. These haplotypes are automatically generated by programme Network 4.5.10 in 

order to connect the haplotyes found in our study.  

PAN: Pan troglodytes.  

B. Median-joining network constructed using the first 5 SNPs (Hamming distance). 

M1 node includes haplotypes M1-M10 + C1-C15. 

C19 node includes haplotypes C19-C21 + C24-C26 + Pan (Pan troglodytes). 

C29 node includes haplotypes C29-C31. 

C33 node includes haplotypes C33-C35. 

C40 node includes haplotypes C40-C46. 
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C48 node includes haplotypes C48-C49. 

C50 node includes haplotypes C50-C51. 

C52 node includes haplotypes C52-C53. 

C.  Median-joining network constructed using the last 9 SNPs (Hamming distance). 

mv1-mv12 nodes represent haplotypes that have not been found in the sample of 

study. These haplotypes are automatically generated by program Network 4.5.10 in 

order to connect the haplotyes found.  

PAN: Pan troglodytes. 

M9 node includes haplotypes M9, C29 and C47. 

M10 node includes haplotypes M10, C14 and C37. 

C1 node includes haplotypes C1, C34, C40 and C48. 

C2 node includes haplotypes C2 and C25. 

C3 node includes haplotypes C3 and C49. 

C5 node includes haplotypes C5, C17, C33, C36, C48 and C41. 

C6 node includes haplotypes C6, C26, C42 and C53. 

C7 node includes haplotypes C7 and C39. 

C9 node includes haplotypes C9, C28, C35, C43 and C51. 
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C15 node includes haplotypes C15, C20, C31 and C46. 

C19 node includes haplotypes C19 and C45. 

C24 node includes haplotypes C24 and C54. 

 

Figure 1. Estimate of c.2299delG allelic age using DMLE+. 

A. Calculated using a variable proportion of mutated chromosomes (f) 

B. Calculated using a variable population growth rate (d) 

 

Table 1. Location and repartition of the 14 SNPs used to establish the USH2A haplotypes. 

The encoded short and long transcripts are indicated. Total distance between c.373G>A and 

c.13191G>A is approximately 730 kb. The distance between two SNP can be less than 1 kb. 

Entrez accession number is indicated for each SNP except for c.4714C>T, which is in linkage 

disequilibrium with the c.2299delG mutation and is not referenced in dbSNP. 

 

Table 2. Representation of the ten different c.2299delG linked haplotypes.  

Supplementary Table 1. Representation of the fifty-four different control USH2A 

haplotypes. 

 



                                                                                                                      24 

Table 3. Summarized results of c.2299delG dating using BDMC21 and DMLE+ programs.  

 

Results are given in number of generations with a confidence interval of 95%. 

 

Considered data: 

Population size: 64x106 (France), 42x106 (Spain), 106x106 (Total). 

Number of disease chromosomes: 11 (France), 23 (Spain), 34 (Total). 

Proportion of mutation-bearing chromosomes in our sample [f]: 9.109x10-6 (France), 

2.9024x10-5 (Spain), 1.7x10-5 (Total). 

 

 

Table 4. LD Analysis and Corrected Estimated Age (gc) of the c.2299delG (USH2A) mutation 

in South European patients. 

(1)  Assuming 900 kb/1 cM 

(2)  g= logδ/log(1-θ)  

(3)  go= -(1/d)ln(θfd),  [assuming d (growth parameter)= 0.05 and  fd= 1/d] 

(4)  gc= g+go 

(5)  Calculated with the assumption of  28 years/generation (Fenner  2005) 







SNP 
(nucleotide 

nomenclature) 

Entrez SNP 
accession 
number 

Exon 
Distances (kb) 

from the 
previous SNP 

CpG 

c.373G>A rs10779261 2  No 
c.504A>G rs4253963 3 3,3 No 
c.1419C>T rs1805050 8 95 No 

c.3157+15G>A rs1324330 15 106 No 
c.4457G>A rs1805049 21 27 No 
c.4714C>T  22 78 No 
c.6506T>C rs10864219 34 98 No 
c.6875G>A rs41277210 36 28 Yes 
c.10232A>C rs10864198 52 184 No 
c.11602A>G rs35309576 60 45 No 
c.11677C>A rs41303285 60 0,07 No 
c.12612A>G rs2797235 63 67 No 
c.12666A>G rs2797234 63 0,05 No 
c.13191G>A rs2009923 63 0,5 No 

 
 
 
Table 1. Location and repartition of the 14 SNPs used to establish the USH2A haplotypes. 
 
The encoded short and long transcripts are indicated. Total distance between c.373G>A and c.13191G>A is 
approximately 730 kb. The distance between two SNP can be less that 1 kb. Entrez accession number is  
indicated for each SNP except for c.4714C>T, which is in linkage disequilibrium with the c.2299delG mutation 
and is not referenced in dbSNP.  
 

c.2299delG 
Short 

transcript 

Long 
transcript 



 EXON 2 EXON 3 EXON 8 IVS 15 EXON 21 EXON 22 EXON 34 EXON 36 EXON 52 EXON 60 EXON 60 EXON 63A EXON 63A EXON 63B    
 p.A125T p.T168T p.T473T IVS15 p.R1486K p.L1572F p.I2169T p.R2292H p.E3411A p.M3868V p.P3893T p.T4204T p.T4222T p.E4397E Spain France TOTAL
 c.373G>A c.504A>G c.1419C>T +35G>A c.4457G>A c.4714C>T c.6506T>C c.6875G>A c.10232A>C c.11602A>G c.11677C>A c.12612A>G c.12666A>G c.13191G>A    

M1 A G C A A T T G A A C G A G 8 3 11 
M2 A G C A A T T G A A C G G G 6 2 8 
M3 A G C A A T T G A A C A A A 2 1 3 
M4 A G C A A T T G A A C A A G 0 1 1 
M5 A G C A A T T G C A C G G G 1 0 1 
M6 A G C A A T T G C A C G A G 1 0 1 
M7 A G C A A T C G C A C G A G 1 0 1 
M8 A G C A A T C A C A A G G G 0 3 3 
M9 A G C A A C T G C G C G G G 2 0 2 

M10 A G C A A C C G C G C G A G 2 1 3 

               TOTAL= 34 

 
 

Table 2. Representation of the ten different c.2299delG linked haplotypes.  

 



 

 
 
Table 3. Summarized results of c.2299delG dating using BMC21 and DMLE+ 

programs.  

Results are given in number of generations with a confidence interval of 95%. 

Considered data: 

Population size: 64x106 (France), 42x106 (Spain), 106x106 (Total). 

Number of disease chromosomes: 11 (France), 23 (spain), 34 (Total). 

Proportion of mutation-bearing chromosomes in our sample [f]: 9.109x10-6 (France), 2.9024x10-5 (Spain), 

1.7x10-5 (Total). 

 

 

 
 

 BDMC21 
Number of Generations (CI 95%)

DMLE+ 
Number of Generations (CI 95%) 

Spain 226.3 (225.93-226.67) 219.33 (185.44-279.46) 

France 234.9 (233.34-236.46) 222.03 (191.19-290.05) 

Total 245.4 (245.23-245.57) 231.29 (204.76-245.57) 



LD ANALYSIS δ DISTANCE GENERATIONS
MARKER ALLELE Pd Pn x 2 P value  (Pd-Pn)/(1-Pn) θ(1) g (2) go (3) gc (4) YEARS (5)

c.4714C>T T 0,853 29/34 0 0/97 106,258 <0,001 0,853 0,00167 95,12750483 67,98398758 163,1114924 4567,121788
c.6506T>C T 0,794 27/34 0,526 51/97 7,526 <0,01 0,565 0,00276 206,5729356 57,93584651 264,5087821 7406,245898

c.10232A>C A 0,676 23/34 0,392 38/97 8,202 <0,01 0,467 0,0051 148,9181824 45,65564931 194,5738317 5448,067289
c.11602A>G A 0,853 29/34 0,722 70/97 2,351 <0,5 NS
c.12612A>G G 0,882 30/34 0,866 84/97 0,06 <0,5 NS
c.13191G>A G 0,912 31/34 0,887 86/97 0,167 >0,5 NS  

 

Table 4. LD Analysis and Corrected Estimated Age (gc) of the c.2299delG (USH2A) mutation in South European patients. 

(1) Assuming 900 kb/1 cM 

(2) g=logδ/log(1-θ)  

(3) go=-(1/d)ln(θfd),  [assuming d (growth parameter) =0.05 and  fd=1/d] 

(4) gc=g+go 

(5) Calculated with the assumption of  28 years/generation (Fenner  2005) 
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