N

HAL

open science

Text adaptation using formal concept analysis

Valmi Dufour-Lussier, Jean Lieber, Emmanuel Nauer, Yannick Toussaint

» To cite this version:

Valmi Dufour-Lussier, Jean Lieber, Emmanuel Nauer, Yannick Toussaint. Text adaptation using
formal concept analysis. 18th International Conference on Case-Based Reasoning - ICCBR 2010, Jul
2010, Alessandria, Italy. pp.96-110, 10.1007/978-3-642-14274-1_9 . hal-00509030

HAL Id: hal-00509030
https://hal.science/hal-00509030
Submitted on 9 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00509030
https://hal.archives-ouvertes.fr

Text Adaptation
Using Formal Concept Analysis*

Valmi Dufour-Lussier, Jean Lieber, Emmanuel Nauer, and Yannick Toussaint

LORIA—UMR 7503 (CNRS, INRIA, Nancy-Université)
BP 239, 54506 Vandceuvre-les-Nancy, France
{valmi.dufour, jean.lieber, emmanuel.nauer, yannick.toussaint}@loria.fr

Abstract. This paper addresses the issue of adapting cases represented
by plain text with the help of formal concept analysis and natural lan-
guage processing technologies. The actual cases represent recipes in which
we classify ingredients according to culinary techniques applied to them.
The complex nature of linguistic anaphoras in recipe texts make usual
text mining techniques inefficient so a stronger approach, using syntac-
tic and dynamic semantic analysis to build a formal representation of a
recipe, had to be used. This representation is useful for various applica-
tions but, in this paper, we show how one can extract ingredient—action
relations from it in order to use formal concept analysis and select an
appropriate replacement sequence of culinary actions to use in adapting
the recipe text.

Key words: formal concept analysis, natural language processing, text
mining, textual case-based reasoning

1 Introduction

A case retrieved by a case-based reasoning (CBR) system in order to solve a
given problem may need adaptation in order to fit in. Adapting a textual case
may be as simple as replacing all the occurrences of a word with another word,
but one could want to do better. Contestants in the Computer Cooking Contest’
(CCCQC) use case-based reasoning with a recipe book as a case base to propose
ingredient substitutions as a solution to cooking problems (adapting a recipe to
given constraints) but so far are not making modifications to the recipe text.
This paper shows that using a method based on text mining and machine
learning, namely formal concept analysis (FCA), can be of great use for text
adaptation. Ingredient preparation prototypes are found and used to adapt a
recipe. Adapting a recipe by replacing ingredient o with 8 implies finding out
actions performed on « and replacing them with actions performed on 3.

* The authors would like to thank the reviewers for their helpful comments, as well as
Zeeshan Ahmed for his previous work on a related topic and Jenia Berzak, Le Dieu
Thu, and Ripan Hermawan for letting us use their corpus of part-of-speech-tagged
recipe texts.

! nttp://vm.liris.cnrs.fr/ccc2010

2 Authors Suppressed Due to Excessive Length

The work was achieved within the TAAABLE project [4, 8] and focuses on text
adaptation. TAAABLE is a textual case-based cooking system that participated
in the first and second (as WIKITAAABLE) CCC. It is built around a case-based
inference engine using a (minimal) propositional representation of recipes, a set
of known acceptable substitutions, an ontology of ingredients used to build new
substitutions on the fly, and a cost function to select the best adaptation for a
problem.

In this paper, we shall argue for a more thorough formal representation of
recipes, and show how it can be built with natural language processing (NLP)
techniques and used with FCA towards a more significant adaptation function.

Presupposing that TAAABLE is able to suggest a recipe from its case base
along with some substitution operations that consist in replacing a given ingredi-
ent by another given ingredient, our system is able to find an adequate sequence
of actions for the new ingredient and modify the recipe text accordingly.

While selecting texts with FCA and reusing them in the adaptation stage
of a textual CBR system is to our knowledge a novel approach, it fits within a
trend towards the maximal reuse of existing text in providing textual solutions to
problems (arguably initiated by [15, 14]). Using FCA for information retrieval or
CBR in itself is not a totally new idea either (see for instance [7,17] for retrieval,
and [10,9] for CBR).

In Sect. 2, we describe the kind of formal representation we expect to create
from recipe texts and the process to translate texts into this representation.
Then in Sect. 3 we show how FCA is used to adapt recipes, and we detail the
algorithms we developed as well as the strategy we used to generate new texts.
Finally we discuss our results and future work in Sects. 4 and 5.

2 Linguistic Processing of Recipes

Easy berry pancakes

Ingredients Preparation

*Six eggs Beat the eggs. Add the flour and mix with a
*2 cups of flour fork. Whisk in the milk.Pour batter in warm
*2 cups of milk pan, one ladleful at a time. Add some fruits,
1% cup of blueberries then cook for one minute. Flip and cook one
*¥5 cup of raspberries minute more.

Fig.1: A sample recipe text.

The main idea guiding this work is that some “common uses” of each ingre-
dient, that we call prototypes, can be extracted from the case base and used in
adapting texts. If for instance we want to substitute zucchini with aubergine in
a recipe, it would be more convenient to prepare the aubergine as done in some
aubergine recipes instead of blindly applying the same steps as for preparing

Text Adaptation Using Formal Concept Analysis 3

the zucchini. A prototype is understood as a sequence of actions applied to an
ingredient. To extract it, we need a formal representation of the recipe text. The
same linguistic processing that changes a text in its representation is performed
on the source recipe (the recipe to be adapted) and on all the recipes of the case
base. Those formal representations are then passed on to data mining algorithms
to extract the prototypes. The complete process will be illustrated on the recipe
in Fig. 1, yielding the representation shown in Fig. 2.

fo beat fs

egg egg add
f. f
\ 6 mix 7

add | 88 188 L whisk 7

fi |_——" flour flour \ s
flour egg

whisk i flour
" milk |

milk] |
-
| fs fs
55 egg pour egg
» flour flour
! milk milk add
[I— flO
: egg
3 add | flour cook
blueberry milk
a/ddv blueberry
f. raspberry
raspberry

Fig. 2: Tree representation of the recipe of Fig. 1.

2.1 Representing Recipes as Trees

Recipes are procedural texts composed of a sequence of actions through which
different ingredients are progressively combined in order to obtain one final prod-
uct, the dish. Each culinary action takes what we call food components in entry
(as its arguments) and produces some other food component in return.

To adapt a recipe, it can help to divide it in smaller “parts” so that some
parts can be replaced by new ones. Therefore the formal representation of a
recipe must make it easy to identify the different stages in a recipe and the
“regularities” across a set of recipes. Viewing actions as functions, it seems only
natural to model recipes as trees. Alternatively this can be seen as taking a rather
extreme stance in regards to Asher’s theory of dynamic semantics [1], considering
each verb as simultaneously a destruction and a construction verb (applied onto a
food component). Some situations would make trees inappropriate, such as when
whole eggs are split between white and yolk. We didn’t take this into account in
this work, but we think our approach could easily generalised to directed acyclic
graph representations.

4 Authors Suppressed Due to Excessive Length

In a recipe tree, leaves are food components corresponding to the raw in-
gredients, the root is the finished dish, and the other nodes are the subsequent
states of various food components. Trees are labelled (each node has a unique
label ¢) and a function Z(¢) is defined giving the set of ingredients that went into
the food component represented by ¢. For instance in Fig. 2, giving an example
of a very simple recipe tree, “fg” is a node corresponding to a food component
such that Z(fs) = {egg, flour}.

This tree structure is what the data mining process is applied to. However
it is also needed to solve some of the linguistic problems of recipe texts. The
tree is built iteratively: actions found in the text are treated one after the other,
each connecting a node to the tree, a process that requires using the information
already present in the partially built tree.

2.2 Why Recipe Texts Are Different

While recipe texts have the advantage of exhibiting little fanciness, there exist
specific difficulties inherent to their procedural nature:

1. They heavily make use of sentence structures such as imperative clauses that
are rare in most other texts, making tools based on machine learning using
generic corpora inefficient;

2. They massively exhibit a little-studied linguistic phenomenon known as evo-
lutive anaphora wherein a word in a text may be used to refer to an object
that exists at some given time and does not (yet or anymore) at some other,
requiring a special strategy to find out what this word can refer to at any
given moment e.g. “mix flour, eggs, and milk; pour the batter”;

3. In order to avoid tedious repetitions, they usually omit syntactic arguments
of verbs when they seem obvious, requiring a strategy to first determine
whether a word is missing, and finding out what this word should have been,
e.g. “cook potatoes; when done, add milk [implicitly: to potatoes]” (this is a
type of grammatical anaphora).

2.3 The Toolchain

The first few steps of the linguistic analysis can be solved using common, well-
researched natural language techniques. While we cannot use available annotated
corpora as much as we normally would, we still managed to obtain a small corpus
of about a hundred recipes annotated with the part-of-speech (e.g. verb, noun,
adjective) of each word, which was sufficient to train an error-driven, context-
sensitive, transformation-based tagger [6] with an accuracy a > .90, well below
the state of the art for regular texts, but sufficient for a prototype implementa-

Text Adaptation Using Formal Concept Analysis 5

tion.? The other preliminary steps (tokenization, clause segmentation, chunking)
were implemented using hand-crafted regular expressions.3

At this stage we know which words are verbs (and thus actions) and we are
able to identify their syntactic arguments, which should be sufficient to get on
with the task of building a formal tree representation of a recipe.

2.4 From Text to Tree

The problems described in paragraphs 2.2(2) and 2.2(3) cannot be solved at the
sentence level. On the other hand, if they are neglected, the final representation
of a recipe will not be a tree, but a set of trees, each representing a part of the
recipe, that cannot be connected. A specific post-processing step was developed
to handle those.

The idea is that at the beginning of the recipe, all ingredients are available
and the very first action will take some of them to produce a new food compo-
nent. In the same way, at any stage of a recipe, there are certain food components
available and the next action picks some of them and produces a new one.

The set of food components available for culinary actions is called domain.
The initial domain Dy contain one food component for each ingredient from the
recipe listings. The domain changes after each action is performed, hence the
domain after ¢ actions, noted Dy, is used to identify the arguments of the ¢ + 1"
action.

In the recipe of Fig. 1, the initial domain will look something be:

DO :{f()a fla f27 f37 f4}a
Z(fo) = {egs},
Z(f1) = {flour}, etc.

When an action that takes a single argument is encountered, it creates an
arrow with the action name and creates a new node. It also modifies the domain,
such that for a verb like “beat X”:

Dy =(Dia \{X}) U{t},

I(0) = I(X) , e

where £ is a new label. For instance the first sentence in the example recipe
is “beat the eggs”, which would have the effect of creating a new “egg” food
component (see Fig. 3):

Dy =(Do\{fo}) U {fs},
I(65) = Z(6y) .

2 Parts-of-speech tend to be even more ambiguous than usual in recipe texts because
of words such as “cream” or “salt” that can be both nouns or verbs, so an approach
based on a dictionary, even if it were a domain-specific dictionary, would be even
less effective.

3 For instance, the regular expression pattern for matching a noun phrase
is “N’((Comma N’)*(Comma|Conjunction)™#'N')*” with “N’” matching
“Predeterminer’ Determiner’ Adjective* Noun™”.

6 Authors Suppressed Due to Excessive Length

fo beat fs
egg egg

Fig. 3: Beaten eggs.

As for actions taking several arguments, they may have either a “union”
semantics, like “add X to Y”, creating a node with multiple edges,

Dy =(Dr\({X} U{Y}) U{f},

I(0) = T(X)UZ(Y) , @)

or a “complement” semantics, like “remove X from Y”:

Dy =(Di—2 \{Y'}) U{£},

(0) = T \X} | ®)

where /£ is a new label. For instance, the next sentence in the example recipe is
“Add the flour”, which is a union action (see Fig. 4):

Dy =(Di\({f1} U {f5})) U {fs},
I(fs) =Z(f1) UZ(f5) .

fo beat fs
egg egg |~_add

fs
dd egg
fi a flour

flour

Fig. 4: Some batter.

A subcategorization dictionary of actions tells which types of arguments are
required by each action in order to know whenever one is missing. In that case,
the last node added to the tree is assumed to be the missing argument, thus an
edge is created from this node to the new node. This is how one can infer that
it is to eggs that flour gets added (cf. Fig. 4).

The set-theoretical notation we used for food components’ ingredients is use-
ful to resolve the anaphoras. The two most frequent cases are presented below.

Existential References. Expressions such as “beef mixture” refer to some food
component that contain at least one specific ingredient, in this case beef, that
may have been mixed with others. It is therefore necessary to search the domain
for a food component containing this ingredient. A target set 7 of ingredients

Text Adaptation Using Formal Concept Analysis 7

expected in the food component is thus defined and used with a simple operation
to retrieve the food component being referred to by the expression:

zeD:JiieI(x)NieT . (4)

In the case of “beef mixture”, this is trivial: 7 = {beef}. But some cases
are more subtle, such as words similar to “batter”. We measured in a corpus of
recipes that the food component referred to by the word “batter” contains either
the ingredients egg or flour in over 99% of cases. To find the food component
referred to by this word, we will thus use 7 = {egg, flour}. Thanks to this the
“Pour batter” instruction of the recipe can be dealt with. Before dealing with
this instruction, the representation looks like Fig. 5, making it is obvious which
of the three food components in the domain is the one the word “batter” refers
to.

fo beat fs
egg egg add
fs . fi
} egg = ege whisk_in
fs fi | =" flour flour \ fs
blueberry flour egg
whisk_in flour
.]l ——"] miKk
fa milk
raspberry

Fig.5: Where is the batter?

Universal References. Other expressions obviously refer to a set of ingredients
that belong to a common class. Such is the case for the word “fruits” when the
ingredients listings of a recipe do not actually contain any “fruit” elements, but
do contain blueberries and raspberries. Since an ontology of ingredients already
exists in TAAABLE, it is used to retrieve the set of food component being referred
to by their class name. In any given recipe, the set of food components referred
to by the word “fruit” can be defined as:

{r € D:Viie€I(x)— iLC Fruit} ,

where “; C Fruit” means that ingredient 4 is a subclass of the “Fruit” class. So
when we process the instruction “Add some fruits” in our recipe, we know that
it refers to {f3,f4}.

3 Adapting Recipes with Formal Concept Analysis

At this stage, with recipes formalized as trees, for each ingredient in each recipe,
there exists a path (a sequence of actions) between this ingredient and the final
state of the recipe—the dish.

8 Authors Suppressed Due to Excessive Length

The adaptation process can now be redefined according to this structure. We
consider that adapting the preparation with respect to an ingredient substitution
consists in replacing a subtree corresponding to the preparation of an ingredi-
ent in the retrieved recipe with a subtree that is suitable for the substitution
ingredient.

The questions that need to be dealt with now are the selection of a subtree
to replace and a subtree to replace it with. This will be demonstrated with an
example using genuine recipes from a past CCC recipe base. Suppose the user
wants an aubergine coleslaw, and the system retrieved a zucchini coleslaw recipe
and suggested to replace zucchini with aubergine. We need to find the instance of
aubergine use in the available recipes that is the closest to the way the zucchini is
used in the zucchini coleslaw. FCA provides a conceptualization of the different
ways of preparing an ingredient, so that the concept closest to the zucchini can
be easily identified.

3.1 Extracting the Relevant Subtree

zucchini_0
zucchini cut mixture_0
zucchini
pepper 1] pepper \m‘ mixture_1 i i
pepper_ zucchini mlxtur§T3 mixtu r§T4
zucchini zucchini

pepper add
\ pepper pepper
oil toss. oil
beat cider_vinegar cider_vinegar

cider_vinegar_0 - add
eat oil salt salt

cider_vinegar
mayonnaise_0 mayonnaise

mayonnaise beat sugar

salt
sugar_0 beat,
sugar

beat

Fig. 6: Relevant “zucchini” subtree identified in bold.

We now need to extract the subtree referring to any ingredient of particular
interest from the representation (this will be done both for the substituted and
the substitution ingredient). Three types of actions are considered: actions ap-
plied to an ingredient alone, actions applied to many ingredients in parallel, and
actions applied to many ingredients together. The distinction between the sec-
ond and third types is important: while peeled apples and pears for instance are
still distinctively apples and pears, apple and pears cooked together make up a
mixture that has little to do with the original ingredients, and to which a wholly
different range of actions may be applied. Additionally, if all the information is
taken, the space gets too wide and there is not enough data concentration to
allow for efficient learning.

Text Adaptation Using Formal Concept Analysis 9

Because no linguistic clues are available to help classify actions between the
second and the third category, we simply use a list of possible actions with
their most likely category. Considering now a genuine recipe from the case base,
represented in Fig. 6, “toss” is an action of the third category hence the actions

applied to zucchini are considered as relevant up to “add”, making the zucchini

prototype: “zucchini cut, L shred 24y When making the substitution

later on, the zucchini prototype will therefore be detached from “mixture_3”
and the aubergine prototype chosen in Sect. 3 will be reattached at the same
point.

3.2 Formal Concept Analysis

FCA [11] takes as entry a binary table (such as the one shown in Table 1) de-
scribing a binary relation between objects (“aubergine_509”, “aubergine_667”...)
and attributes (“add”, “arrange”...), called a formal contezt,. Formally, consid-
ering a formal context K = (O, A, I), where O is a set of objects, A is a set
of attributes, and I C O x A is a binary relation such that (0,a) € I means
that object o owns attribute a, its Galois connection is defined by the following
functions: f : 29 — 24 and g : 24 — 29, where a subset of objects is mapped
to the subset of attributes it owns in common, and reciprocally.Formal concepts
are the O x A pairs that are closed under the Galois connection, creating the
concept lattice £(K).

Each node of a lattice such as the one shown in Fig. 7 represents a formal
concept, which is a pair (O, A) where O (the extent) is the set of objects owning
all the attributes in A (the intent) and A is the set of attributes owned by all
the objects in O. The lattice is partially ordered following the inclusion of the
extent. Any concept whose extent is included in the extent of another concept
is drawn below and connected to the latter—which is said to subsume it.

add|arrange|bake|beat|blend|boil|break| ...
aubergine_509
aubergine 667 | x X X
aubergine_981 X
aubergine_1030 X
aubergine_1387 X
zucchini X

Table 1: The formal context for the query space.

Since an ingredient’s mode of preparation is characterized by the culinary
actions applied onto it, the formal context that is generated uses culinary actions
applied to aubergines as attributes, with each aubergine recipe corresponding to
one object. The formal context, which in this case (with a tiny recipe base to

10 Authors Suppressed Due to Excessive Length

maintain lattice readability) has 15 objects and 55 attributes, will thus look as
in Table 1 with an object corresponding to the zucchini recipe merged along
with the relevant culinary actions. The resulting lattice is shown in Fig. 7.
Formal concept number 1, called “Top”, is the maximum of the lattice. Its
extent is the set of all objects and its intent is the set of the attributes shared by
all objects (in this case, the empty set). Concept number 58, called “Bottom”, is
the minimum of the lattice. Its intent is the set of all attributes and its extent is
the set of the objects that share all attributes (there again the empty set). From
top to bottom, the concepts are progressively more “specific’, meaning their
extent contains less objects but those share more attributes. Concept number
29 is the most specific one containing zucchini in its extent, so it shows all
attributes of this object. Concept number 16 is said to immediately subsume
concept number 29: it is the most specific concept having zucchini as well as
other objects in its extent (in this example there is only one concept immediately
subsuming concept number 29, but there could be more). From a certain point
of view, those objects are the ones that are the most closely related to zucchini,
insofar as they are the ones having the most attributes in common with it.

(<135 (<41> 23—69 <18>) <17> (1‘5@: <19> <12> sus <22>) (<25
“ ¥1={add, cut}

¥ E=(aubergine 509, 2ucchini, aubergine 981})”
@k S8 (<3250 27> % \<33> ' <37>293 <26> <4o (42>
.‘ =

4 ¥1={shred, add, cut} O\
- ¥E= {zucchini}

<48> B 0‘ x ‘“‘ <47> <50> <43>

(<57 (<53>

<58>

Fig. 7: The 58-concept query lattice.

3.3 Answering Queries in a Lattice

In the fashion of Carpineto [7], lattice-based ranking is used to retrieve an adap-
tation prototype. If one has a recipe with zucchini (say a zucchini coleslaw) and
wants to replace this zucchini with aubergine (because they want an aubergine
coleslaw), a first step will be to find an aubergine prototype that is compati-
ble with the way the zucchini is prepared, possibly including steps specific to
aubergines and excluding steps specific to zucchini. It makes sense to view the
zucchini recipe as a query in the document space of aubergine recipes.

Given the formal concept of which our query is part of the proper or reduced
extent (the “lowest”, or most specific concept in which the query appears), the

Text Adaptation Using Formal Concept Analysis 11

candidate answers are selected from the (full) extent of this concept itself, or of
the concepts immediately subsuming it, minus the query object. This heuristic
is different from Carpineto’s (who searches the whole set of subsuming concepts)
because the goal here is to reduce the adaptation effort required, hence minimize
the difference between the query’s and the selected object’s attributes. In this
very case, the recipe that has the least differences between the attributes of the
zucchini z and its replacement aubergine a is:

arg main ‘ (Int(CZ)\Int(Ca)> U (Int(Ca)\Int(CZ))

7 ()

where C, and C, are the most specific concepts of a and z, and Int(C) is the
intent of C.

3.4 The Adaptation Algorithm

All that is left to do to complete the tree adaptation is to obtain the zucchini
and aubergine subtrees using the technique described in Sect. 2.4, remove the
former (keeping parts that are required for the processing of other ingredients),
and merge the latter.

Existing partial-order case-based planning techniques such as [19, 13, 3] could
be reused to integrate the new preparation steps along the rest of the recipe. On
the other hand, not keeping the structure of the selected recipe intact would pre-
vent us from reusing its text as is, forcing us to use natural language generation
techniques and yielding results of poor textual quality, as argued in [12]. More-
over planning requires advanced knowledge of the domain: action pre- and post-
conditions must be known. For instance, a given ingredient may, when heated,
create froth that needs removing. In the absence of such knowledge, grafting
seems a safer approach. A simpler strategy that consists into connecting the
new subtree at only one point in the tree gives results that are satisfactory (as
shown in Fig. 8) and allows for easier textual adaptation, at a reduced compu-
tational cost.

We propose an algorithm for text adaptation that is very simple and parallel
to the tree adaptation process. It copies whole sentences of the selected recipe
text as much as possible, causing the resulting text to have a more “natural”
quality than if it has been machine generated. Actions related to zucchini are
removed: if a clause refers to zucchini only it is removed altogether, otherwise
only the word “zucchini” is removed (along possibly with the word “and” or a
comma). Then the text related to aubergine preparation in the selected recipe
is treated in the same way to remove references to all ingredients other than
aubergines. This “aubergine text” is inserted at the beginning of the original
text, except for the clause containing the last verb of the prototype (the one
that causes it to be merged with other ingredients), which is inserted at the
point where those other ingredients have been fully processed. This process is
exemplified in Fig. 9. All that is then left to do is minor grammatical (e.g. verb
agreement) and typographic (e.g. punctuation) adjustments.

12 Authors Suppressed Due to Excessive Length

aubergine_0 | cy | aubergine_1| hollow | aubergine_2 cho) aubergine_3 | add
aubergine aubergine aubergine aubergine

(a) The aubergine_981 subtree to be attached.

pepper_1| cut mixture_0
pepper pepper

mixture_1 _ _
pepper mixture_3 mixture_4
pepper pepper

oil oil
i i toss i N
cider_vinegar cider_vinegar [oo

beat

saltl_O mixture_2 y sugar sugar
salt beat oil salt salt

cider_vinegar

- - beat B
cider_vinegar_0 mayonnaise
cider_vinegar beat sugar

salt

beat

mayonnaise_0

mayonnaise

sugar_0
sugar

(b) The tree from Fig. 6 with zucchini subtree pruned.

aubergine_3
aubergine

mixture_3 mixture_4

aubergine 0| cy | aubergine_1| hollow aubergine_2
aubergine aubergine aubergine

pepper pepper
oil oil
cut cider_vinegar [1055 | cider_vinegar | g
mayonnaise mayonnaise
sugar sugar
salt salt

add,

beat

cider_vinegar_0 mixture_2
cider_vinegar beat oil
cider_vinegar
beat mayonnaise

mayonnaise_0 — sugar
mayonnaise salt
sugar_0 beat
sugar

salt 0
salt

(c) The final tree after adaptation performed.

Fig. 8: The subtree attachment process.

Cut the aubergines in half lengthwise. With a spoon, hollow out the center
of each half to make a boat like shell about 1/4 inch thick. Finely chop the
aubergine pulp and set it aside. Cut zuechini-and red pepper into match-
stick thin strips or shred in food processor; add the chopped aubergine
pulp. set aside. In large bowl, with wire whisk or fork, beat salad oil,
vinegar, mayonnaise, sugar, salt and pepper until mixed. Add vegetables;
gently toss to mix well. [...]

Fig.9: The original recipe text with removed parts stroke through and added parts
(copied from the retrieved recipe) underlined.

Text Adaptation Using Formal Concept Analysis 13

4 Discussion and Related Work

The adaptation process gives very satisfactory results when the data mined in
text was of good quality. The linguistic processing of recipes is thus the weak
link. The formal representation of a recipe is usually of high quality if the text
contained no spelling mistakes and no “less usual” phrase structures such as
negations (“do not peel the potatoes before boiling them”) or elaboration (“boil
the potatoes—but peel them first”). Those phenomena could be dealt with, with
more or less success, but would significantly complicate the implementation.

The worst problem though is the bad performance of the part-of-speech tag-
ger (the module responsible for saying which words are verbs, which are nouns,
etc.), given that it has access to only a very small and low quality training cor-
pus. But such a corpus is expensive to obtain: annotators can only process about
3000 words per hours [16] whereas hundreds of thousands of words are required
to achieve good performance as can be seen in [5]. Because of the reference prob-
lems described in Sect. 2.2, if one action is missed by the analyzer (because the
action verb was not tagged as a verb), it is very likely that many subsequent
actions applied to the same ingredient will be missed.

Circa 10% of the formal representations were actual trees, indicating that
those were near-perfect and totally usable representations. As for the others,
“correctness” is difficult to quantify, but we would say that the analysis is usually
very good for the first few actions (the one we actually use most) and decreases
as it goes on.

Evaluating a case-based reasoning system is generally very difficult, but can
be done through comparisions with other similar systems, which is the very
reason why the CCC workshop was created. Therefore the adaptation algorithms
described in this paper are being implemented in the TAAABLE system to be
evaluated during this year’s edition of the CCC.

FCA has already been used in CBR, for instance in [9] and in [2]. In [9],
the formal context is a representation of the case base (the objects are the cases
and their properties are binary properties of cases). The concept lattice obtained
by FCA structures the case base, and the retrieval process is done thanks to a
hierarchical classification in this lattice. Moreover, the lattice is used to assist
the user query formulation process. By contrast, in our work, FCA is used for
adaptation: the formal context is all about the vocabulary for describing cases
(the ingredients and the actions performed on ingredients). The objective of [2]
is to obtain structured cases from texts, using FCA. The formal context objects
are the texts and its properties are relevant terms of these texts. Contrary to
our problem though, in the reports they use, one document can be understood
as one case. In our case, the boundary is blurred by the presence of multiple
ingredients in any recipe, meaning that not all keywords found in a given text
are relevant for a given adaptation.

Many of the more interesting types of textual and non-textual cases have a
structure similar to recipes: assembly instructions, user’s manuals, pharmaceu-
tical directions for preparation are all examples of “procedural” cases that have

14 Authors Suppressed Due to Excessive Length

certain “preconditions” that could be lacking and thus in need of adaptation.
We believe that our approach would help solve this problem.

5 Conclusion and Future Work

This paper proposes a solution to adaptation in textual case-based reasoning
systems. It uses natural language processing techniques to build a rich formal
representation of texts, then data mining algorithms and formal concept analysis
to retrieve a text from which some parts are reused.

The formal representation we created is helpful in interesting ways at other
stages of the CBR process besides adaptation. For instance, a function using
some physical characteristics, such as the size or the texture, of a food compo-
nent in its rightmost state of the prototype sequence could be used to assess the
quality of the adaptation choices, or contribute to the adaptation cost function.
Moreover, the trees could be passed to a learning algorithm to ease the recog-
nition of certain recipe attributes: e.g., the sequence of action-ingredient pairs
that makes a dish a soup could be learned, a knowledge which might prove useful
to the CBR process.

According to the adaptation-guided retrieval principle [18], a source case re-
quiring less adaptation effort should be preferred over the others. In the current
implementation of TAAABLE, this adaptation effort is measured using a penal-
ization cost in the ingredient hierarchy. In the future, we will incorporate a cost
related to the adaptation of the preparation: if & and § are two ingredients, the
more prototypes that FCA shows they have in common, the least the adaptation
effort of substituting a with 3 will be.

References

1. Asher, N.: Events, facts, propositions, and evolutive anaphora. In: Higginbotham,
J., Pianesi, F., Varzi, A. (eds.) Speaking of events, pp. 123-150. OUP, Oxford
(2000)

2. Asiimwe, S., Craw, S., Wiratunga, N., Taylor, B.: Automatically acquiring struc-
tured case representations: The SMART way. In: Applications and Innovations in
Intelligent Systems XV. pp. 45-58. Springer (2007)

3. noz Avila, H.M., Weberskirch, F.: Planning for manufacturing workpieces by stor-
ing, indexing and replaying planning decisions. In: Drabble, B. (ed.) Proceedings
of the Third International Conference on Artificial Intelligence Planning Systems
(AIPS96). pp. 158-165. Edinburgh, Scotland (May 1996)

4. Badra, F., Bendaoud, R., Bentebitel, R., Champin, P., Cojan, J., Cordier, A.,
Després, S., Jean-Daubias, S., Lieber, J., Meilender, T., Meilender, T., Mille,
A., Nauer, E., Napoli, A., Toussaint, Y.: TAAABLE: Text Mining, Ontology En-
gineering, and Hierarchical Classification for Textual Case-Based Cooking. In: EC-
CBR Workshops, Workshop of the First Computer Cooking Contest. pp. 219-228.
Springer, Heidelberg (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Text Adaptation Using Formal Concept Analysis 15

Banko, M., Brill, E.: Mitigating the paucity-of-data problem: Exploring the effect
of training corpus size on classifier. In: Proceedings of the first international con-
ference on Human language technology research. Association for Computational
Linguistics, Morristown (2001)

Brill, E.: Transformation-Based Learning. Ph.D. thesis, Univ. of Pennsylvania
(1993)

Carpineto, C., Romamo, G.: Order-Theoretical Ranking. Journal of the American
Society for Information Science 51(7), 587-601 (2000)

Cordier, A., Lieber, J., Molli, P., Nauer, E., Skaf-Molli, H., Toussaint, Y.: WIKI-
TAAABLE: A semantic wiki as a blackboard for a textual case-based reasoning
system. In: 4th Workshop on Semantic Wikis (SemWiki2009), 6th European Se-
mantic Web Conference. pp. 88-101. Heraklion (2009)

Diaz-Agudo, B., Gervdz, P., Gonzilez-Calero, P.A.: Adaptation Guided Retrieval
Based on Formal Concept Analysis. In: Case-Based Reasoning Research and Devel-
opment: Proceedings of the Fifth International Conference on Case-Based Reason-
ing, [CCBR-03. pp. 131-145. Lecture Notes in Artificial Intelligence 2689, Springer
(2003)

Diaz-Agudo, B., Gonzalez-Calero, P.A.: Classification Based Retrieval Using For-
mal Concept Analysis. In: Aha, D.W., Watson, 1. (eds.) Case-Based Reasoning
Research and Development — Fourth International Conference on Case-Based
Reasoning (ICCBR-01). pp. 173-188. Lecture Notes in Artificial Intelligence 2080
(2001)

Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)
Gervas, P., Hervas, R., Recio-Garcia, J.: The Role of Natural Language Generation
During Adaptation in Textual CBR. In: 4th Workshop on Textual Case-Based
Reasoning: Beyond Retrieval, ICCBRO7 (2007)

Thrig, L., Kambhampati, S.: Derivation replay for partial-order planning. In: Pro-
ceedings of the 12th National Conference on Artificial Intelligence (AAAI-94). pp.
992-997 (1994)

Lamontagne, L., Bentebibel, R., Miry, E., Despres, S.: Finding Lexical Relation-
ships for the Reuse of Investigation Reports. In: 4th Workshop on Textual Case-
Based Reasoning: Beyond Retrieval, ICCBROT7 (2007)

Lamontagne, L., Lapalme, G.: Textual reuse for email response. In: Advances in
Case-Based Reasoning. pp. 234-246. Springer, Heidelberg (2004)

Marcus, M., Santorini, B., Marcinkiewicz, M.: Building a large annotated corpus
of English: The Penn Treebank. Computational linguistics 19(2), 313-330 (1994)
Messai, N., Devignes, M.D., Napoli, A., Smail-Tabbone, M.: Querying a Bioinfor-
matic Data Sources Registry with Concept Lattices. In: Dau, F., Mugnier, M.-L.
aud Stumme, G. (eds.) ICCS. pp. 323-336. Springer, Heidelberg (2005)

Smyth, B., Keane, M.T.: Using adaptation knowledge to retrieve and adapt design
cases. Knowledge-Based Systems 9(2), 127-135 (1996)

Veloso, M.: Planning and Learning by Analogical Reasoning, LNAI, vol. 886.
Springer, Heidelberg (1994)

