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Abstract

We discuss non-Euclidean deterministic and stochastic algorithms for optimization problems
with strongly and uniformly convex objectives. We provide accuracy bounds for the performance
of these algorithms and design methods which are adaptive with respect to the parameters of
strong or uniform convexity of the objective: in the case when the total number of iterations N
is fixed, their accuracy coincides, up to a logarithmic in N factor with the accuracy of optimal
algorithms.

1 Introduction

Let E be a (primal) finite-dimensional real vector space. In this paper we consider the optimization
problem:

min
x

{f(x) : x ∈ Q}, (1)

where Q is a closed convex set in E and function f is uniformly convex and Lipschitz-continuous
on Q. Recall that a function f is called uniformly convex on Q ⊂ E with convexity parameters
ρ = ρ(f) ≥ 2 and µ = µ(f, ρ) if for all x and y from Q and any α ∈ [0, 1] we have

f(αx+ (a− α)y) ≤ αf(x) + (1− α)f(y)− 1
2µα(1 − α)‖x− y‖ρ. (2)

The function f which is uniformly convex with ρ = 2 is called strongly convex. Uniform convexity
with 2 ≤ ρ ≤ ∞ and µ ≥ 0 implies usual convexity.

In this paper we discuss deterministic and stochastic first order algorithms for (large scale)
non-Euclidean uniformly convex objectives, thus extending non-Euclidean first order methods (see,
e.g. [7, 11] and references therein) to uniformly convex optimization.

Uniformly convex functions have been introduced to optimization in [14] and extensively studied
(cf. [1], [2], and [16]). The worst-case complexity bounds for the problem (1) with the exact
oracle of the first order oracle are readily available (see [6]). Namely, for any method tuned to the
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relative accuracy ǫ the number of calls to the oracle is not less than O(ǫ−1) (which is much better
than the corresponding boundO(ǫ−2) for much larger class of Lipschitz-continuous convex functions
equipped with the first order oracle). The corresponding bound for uniformly convex problems with

the convexity parameter ρ reads O

(
ǫ
− 2(ρ−1)

ρ

)
. Note that in the case of the stochastic oracle these

bounds holds also for problems with smooth objective. Though optimal Euclidean algorithms for
strongly convex optimization are readily available (see, e.g., [13]), they cannot be directly transposed
to the non-Euclidean framework.

The results presented in this paper are not very new, as they were developed by the authors
in 2004-2005. However, because of the immediate lack of application and, more importantly, due
to new first order methods based on smoothing of structured problems with better complexity
characteristics which were developed in [9, 10] at that time, the authors got an impression that
the proposed algorithms of black-box (non-structured) uniformly convex optimization are of very
limited interest. However, the developments of the last years clearly demonstrated that in some
situations the black-box methods are irreplaceable. Indeed, the structure of a convex problem may
be simply too complex for applying a smoothing technique. In particular, non-Euclidean first order
methods of convex optimization have attracted much attention lately in relation, in particular, with
very large scale applications arising in statistics and learning. For instance, some new applications
involving large scale strongly convex optimization has been recently reported (see, e.g., [4, 5, 15]).
These considerations encouraged the authors to publish the above mentioned results on subgradient
methods for uniformly convex problems.

In this paper we develop minimax optimal primal-dual minimization schemes for uniformly
convex problems as in (1) in the spirit of [11]. We also study the performance of multistage
dual averaging procedures when applied to uniformly convex stochastic minimization problems. In
particular, we show that such procedures attain the minimax rates of convergence on the considered
problem class. We also provide confidence sets for approximate solutions of stochastic uniformly
convex problems.

It is well known that performance of “classical” optimization routines for strongly (and uni-
formly) convex problems can become very poor when the parameters of strong (uniform) convexity
are not known a priori (see, e.g. Section 2.1 in [7]). In the case of deterministic and stochastic
optimization we develop adaptive minimization procedures in the case when the total number N
of the method iterations is fixed. The accuracy of these procedures (which do not require a priori
knowledge of parameters of uniform convexity) coincides, up to a logarithmic in N factor, with
the accuracy of optimal algorithms (which “know” the exact parameters). It is worth to note that
we do not know if it is possible to construct adaptive optimization procedures tuned to the fixed
accuracy with analogous proprieties.

The paper is organized as follows: in Section 2 we define the basic ingredients of the minimization
problem in question. Then we study the properties of the primal-dual subgradient algorithms in
the problem with an exact deterministic oracle in Section 3 and show how the dual solutions can be
produced in Section 4. In Section 5 we develop optimal algorithms for stochastic uniformly convex
optimization and show how confidence sets for approximate solutions can be constructed. Finally,
Section 6 contains some details of computation aspects of proposed routines.

2 Problem statement and basic assumptions

2



2.1 Notations and generalities

Let E∗ be the dual of E. We denote the value of linear function s ∈ E∗ at x ∈ E by 〈s, x〉. For
measuring distances in E, let us fix some (primal) norm ‖ · ‖. This norm defines a primal unit ball

B = {x ∈ E : ‖x‖ ≤ 1}.

The dual norm ‖ · ‖∗ on E∗ is introduced, as usual, by

‖s‖∗ = max
x

{〈s, x〉 : x ∈ B}, s ∈ E∗.

For other balls in E we adopt the following notation:

BR(x) = {y ∈ E : ‖y − x‖ ≤ R}, x ∈ E.

If a uniformly convex function f is subdifferentiable at x, then

f(y) ≥ f(x) + 〈f ′(x), y − x〉+ 1
2µ‖y − x‖ρ ∀y ∈ Q, (3)

where f ′(x) ∈ E∗ denotes one of subgradients of f at x ∈ Q. If f is subdifferentiable at two points
x, y ∈ Q, then

〈f ′(x)− f ′(y), x− y〉 ≥ µ‖x− y‖ρ. (4)

2.2 Problem statement

We consider the optimization problem (1) with the uniformly convex function f with convexity
parameters ρ(f) and µ(f). The basic assumption we make about the objective, and which is
supposed to hold through the paper, is that f is Lipschitz-continuous on Q:

Assumption 1. We assume that all subgradients of the objective function are bounded:

‖f ′(x)‖∗ ≤ L, for any x ∈ Q.

We are to study the performance of an iterative minimization schemes, and we consider two settings
which differ with respect to the information available to the method at each iteration.

– deterministic setting: let xk be the search points at iteration k, k = 0, 1, .... We suppose that an
exact subgradient observations gk = f ′(xk) and the exact objective values f(xk) are available;

– stochastic setting: the observation gk of the subgradient f ′(xk), requested by the method at the
k-th iteration, is supplied by a stochastic oracle, i.e. gk is a random vector.

To be more precise, suppose that we are given the probability space (Ω,F , P ) and a filtration (Fk),
k = −1, 0, 1, ... (non-decreasing family of σ-algebras which satisfies “usual” conditions).

Let
gk ≡ g(xk, ωk),

where
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• {ωk}∞k=0 is sequence of random parameters taking values in Ω, such that ωk is Fk-measurable;

• xk is the k-th search point generated by the method. We suppose that xk is Fk−1-measurable
(indeed, xk is a measurable function of x0 and observations g1, ..., gk−1 at iterations 1, ..., k−1).

We also consider the following assumptions specific to the stochastic problem:

Assumption 2. The oracle is unbiased. Namely,

Ek−1[g(xk, ωk)] ∈ ∂f(xk), a.s. xk ∈ Q, k = 0, 1, ...

Here Ek stands for the expectation conditioned by Fk (then E = E−1 is the “full” expectation).
Let us denote

ξk = gk − f ′(xk),

the stochastic perturbation. Note that Ek−1[ξk] = 0 a.s. for k = 0, 1, .... We suppose that the
intensity of the sequence {gk}∞k=0 is bounded.

Assumption 3. We assume that

sup
k

E‖ξk‖2∗ ≤ σ2 <∞ for k = 0, 1, ... (5)

We will also use a stronger bound on the tails of the distribution of (ξk):

Assumption 4. There exists σ <∞ such that

Ek−1

[
exp

{
‖ξk‖2∗σ−2

}]
≤ exp(1) a.s., k = 0, 1, ... (6)

Note that by the Jensen inequality (6) implies (5).

2.3 Prox-function of the unit ball

Assume that we know a prox-function d(x) of the ball B. This means that d is continuous and
strongly convex on B in terms of (2) with some convexity parameter µ(d) > 0. Moreover, we
assume that

d(x) ≥ d(0) = 0, x ∈ B.
Hence, in view of (3) we have

d(x) ≥ 1
2µ(d)‖x‖2, ∀x ∈ Q ∩B.

An important characteristic of the prox-function is its maximal value on the unit ball:

d(x) ≤ A(d), x ∈ B. (7)

Therefore,
µ(d) ≤ 2A(d). (8)

If the function d is growing quadratically, another important characteristics is its constant of
quadratic growth C(d) which we define as the smallest C such that

d(x) ≤ C‖x‖2. (9)

We have
µ(d) ≤ 2C(d) and A(d) ≤ C(d).
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Example 1. Let E = R
n and let B be a unit Euclidean ball in R

n. We choose the norm ‖ · ‖ to
be the Euclidean norm on R

n, so that the function d(x) = ‖x‖22/2 is strongly convex with µ(d) = 1
and C(d) = A(d) = 1/2.

Example 2. Let again E = R
n and let B be the standard hyperoctahedron in R

n, i.e. a unit
l1-ball: B = {x ∈ R

n| ‖x‖1 ≤ 1}, where

‖x‖1 =
n∑

i=1

|x(i)|.

We take ‖x‖ = ‖x‖1 and consider for p > 1 the function d,

d(x) = 1
2

(
n∑

i=1

|xi|p
)2/p

= 1
2‖x‖2p.

The function d is strongly convex with µ(d) = O(1)n
p−1
p , and for p = 1 + 1

lnn we have µ(d) =
O(1)(ln n)−1 (see, e.g. [6]). Further, we clearly have A(d) = C(d) = 1/2.

Note that norm-type prox-functions are not the only possible in the hyperoctahedron setting.
Another example of prox-function of the l1-unit ball B, which is very interesting from the compu-
tational point of view, is as follows:

d(x) = min{
n∑
i=1

[ ψ(u(i)) + ψ(v(i)) ] :
n∑
i=1

[
u(i) + v(i)

]
= 1,

x(i) = u(i) − v(i), u(i) ≥ 0, v(i) ≥ 0, i = 1, . . . , n } + ln(2n),

ψ(t) =

{
t ln t, t > 0,

0, t = 0.

(10)

In order to show that this function is strongly convex on the standard hyperoctahedron B = {x ∈
R
n| ‖x‖1 ≤ 1}, we need the following general result.

Lemma 1. Let Q be a bounded closed convex set in E containing the origin. If function f(x) is
strongly convex on Q with parameter µ ≥ 0, then its symmetrization

f0(x) = min
u,v,α

{f(u) + f(v) : x = u− v, u ∈ αQ, v ∈ (1− α)Q, α ∈ [0, 1]} ,

is strongly convex on the set Q0 = Conv {Q,−Q} with convexity parameter 1
2µ(f).

Proof : Consider two points xi ∈ Q0, i = 1, 2. Suppose that

xi = ui − vi, ui ∈ αiQ, vi ∈ (1− αi)Q, αi ∈ [0, 1],

f0(xi) = f(ui) + f(vi), i = 1, 2.

Let us choose an arbitrary α ∈ [0, 1]. Then,

x(β)
def
= βx1 + (1 − β)x2

= β(u1 − v1) + (1− β)(u2 − v2)

= βu1 + (1 − β)u2 − (βv1 + (1− β)v2).
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Denote γ = βα1 + (1 − β)α2. Then

1− γ = β(1 − α1) + (1− β)(1 − α2).

Note that ui = αiūi, and vi = (1−αi)v̄i for some ūi and v̄i from Q, i = 1, 2. Therefore, denoting

τ = βα1/γ, ξ = β(1 − α1)/(1− γ),

we obtain

x(β) = βα1ū1 + (1− β)α2ū2 − (β(1 − α1)v̄1 + (1− β)(1 − α2)v̄2)

= γ(τū1 + (1− τ)ū2)− (1− γ)(ξv̄1 + (1− ξ)v̄2)

def
= γū3 − (1− γ)v̄3

with some ū3 and v̄3 from Q. Hence, u3 = γū3 ∈ γQ, and v3 = (1 − γ)v̄3 ∈ (1 − γ)Q.
Consequently, by definition of function f0 and using inclusions ui, vi ∈ Q, i = 1, 2, we obtain

f0(x(β)) ≤ f(u3) + f(v3)

= f(βu1 + (1− β)u2) + f(βv1 + (1− β)v2)

≤ βf(u1) + (1− β)f(u2)− 1

2
µβ(1− β)‖u1 − u2‖2

+βf(v1) + (1− β)f(v2)− 1

2
µβ(1− β)‖v1 − v2‖2

= βf0(x1) + (1 − β)f0(x2)− 1

2
µβ(1 − β)

[
‖u1 − u2‖2 + ‖v1 − v2‖2

]
.

It remains to note that

2‖u1 − u2‖2 + 2‖v1 − v2‖2 ≥ ‖u1 − u2 − (v1 − v2)‖2 = ‖x1 − x2‖2.

Thus, for function d(x) defined by (10) we can take

µ(d) = 1
2 , A(d) = ln(2n).

Note that d does not satisfy the quadratic growth condition (9)
For z ∈ Q, consider the set

QR(z)
def
= Q ∩BR(z).

This set can be equipped with a prox-function

dz,R(x) = d

(
1

R
(x− z)

)
.

Thus, the prox-center of the set QR(z) is z, and µ(dz,R) =
1
R2µ(d). Moreover, by (7),

dz,R(x) ≤ A(d), ∀x ∈ QR(z).
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In what follows we need the objects:

Vz,R,β(s) = max
x

{〈s, x− z〉 − βdz,R(x) : x ∈ QR(z)}, (11)

and

πz,R,β(s) = argmax
x

{〈s, x− z〉 − βdz,R(x) : x ∈ QR(z)}.

Note that domVz,R,β = E∗. Let us mention some properties of function Vz,R,β (cf. Lemma 1 [11]):

• if β1 ≤ β2 then Vz,R,β1(s) ≥ Vz,R,β2(s);

• the function Vz,R,β is convex and differentiable on E∗. Moreover, its gradient is Lipschitz

continuous with the constant R2

βµ(d) :

‖V ′
z,R,β(s1)− V ′

z,R,β(s2)‖ ≤ R2

βµ(d)‖s1 − s2‖∗, ∀s1, s2 ∈ E∗.

• For any s ∈ E∗,

V ′
z,R,β(s) + z = πz,R,β(s) ∈ QR(z).

3 Deterministic methods for uniformly convex functions

We start with the description of the basic tool – the dual averaging procedure, which originates in
[11].

3.1 Method of Dual Averaging

At each phase the dual averaging (DA) method will be applied to the following auxiliary problem:

min
x

{f(x) : x ∈ QR(x̄)}. (12)

Its feasible set is endowed with the following prox-function:

dx̄,R(x) = d
(
1
R (x− x̄)

)
.

Consider now the generic scheme of Dual Averaging as applied to the problem (12).

Algorithm 1.

Initialization: Set x0 = x̄, s0 = 0 ∈ E∗. Choose β0 > 0.

Iteration (k ≥ 0):

1. Choose λk > 0. Set sk+1 = sk + λkf
′(xk), where {λi}∞i=0 is a sequence of positive

parameters.

2. Choose βk+1 ≥ βk. Set xk+1 = πx̄,R,βk+1
(−sk+1).
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The process is terminated after N iterations. The resulting point is defined as follows:

xN (x̄, R) =
(∑N

i=0 λi

)−1 N∑
i=0

λixi. (13)

The result below underlies the following developments (cf. Theorem 1 of [11].):

Proposition 1. For any x ∈ QR(x̄),

k∑

i=0

λi〈f ′(xi), xi − x〉 ≤ dx̄,R(x)βk+1 +
R2

2µ(d)

k∑

i=0

λ2i
βi

‖f ′(xi)‖2∗. (14)

Let λi = 1 and βi = γ
√
N + 1, i = 0, ..., N with some γ > 0. We form the gap value

δk(x̄, R) = max
x

{
1

k

k∑

i=0

〈f ′(xi), xi − x〉 : x ∈ QR(x̄)

}
, (15)

where {λi}∞i=0 is a sequence of positive parameters. In view of (13) we have the following lemma:

Lemma 2. Let us choose an arbitrary x̄ ∈ Q and let x∗ be the optimal solution of problem (12).
Then the approximate solution supplied by Algorithm 1 with the constant gain βi = γ

√
N + 1

satisfies

f(xN (x̄, R))− f(x∗) ≤ 1√
N + 1

(
γA(d) +

L2R2

2γµ(d)

)
,

‖xN (x̄, R)− x∗‖ρ ≤ δN (x̄, R)

µ(f)
≤ 1

µ(f)
√
N + 1

(
γA(d) +

L2R2

2γµ(d)

)
.

Proof : In view of conditions of the lemma, x∗ ∈ QR(x̄). From the assumptions on function f , we
conclude that

〈f ′(xi), xi − x∗〉 ≥ f(xi)− f(x∗),

〈f ′(xi), xi − x∗〉
(4)
≥ µ(f) · ‖xi − x∗‖ρ, i = 0, . . . , N.

Hence,

(N + 1)δN (x̄, R) ≥
N∑

i=0

[f(xi)− f(x∗)] ≥ (N + 1)[f(xN (x̄, R))− f(x∗)],

(N + 1)δN (x̄, R) ≥ µ(f)

N∑

i=0

‖xi − x∗‖ρ ≥ µ(f)(N + 1)‖xN (x̄, R)− x∗‖ρ.

It remains to note that dx̄,R(x) ≤ A(d) for any x ∈ QR(x̄) use the inequality (14).
Under the premises of the lemma we can establish the following immediate bounds:
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Corollary 1. Let x∗ be an optimal solution of (12). Then for the choice

γ =
LR√

2µ(d)A(d)

we have the estimates:

f(xN (x̄, R))− f(x∗) ≤ LR

√
2A(d)

µ(d)(N + 1)
, (16)

‖xN (x̄, R)− x∗‖ρ ≤ LR

µ(f)

√
2A(d)

µ(d)(N + 1)
.

3.2 Multi-step algorithms

Now we are ready to analyze multistage procedures for uniformly convex functions. In this section
we assume that the constants L, µ(f), ρ and R0 ≥ ‖x∗ − x0‖ are known. Let us fix ǫ > 0 and let
x0 be an arbitrary element of Q.

Algorithm 2.

Initialization: Set y0 = x0 and m = ⌊log2 µ(f)ǫ Rρ0⌋+ 1.1) Let τ = 2(ρ−1)
ρ .

Stage k = 1, . . . ,m:

1. Define Nk = ⌊2τk 4L2A(d)

µ2(f)µ(d)R
2(ρ−1)
0

⌋ and Rρk = 2−kRρ0.

2. Compute yk = xNk
(yk−1, Rk−1) with γk =

LRk−1√
2µ(d)A(d)

.

Output: x̂ǫ(y0, R0) := ym.

Note that the parameters of the algorithm satisfy the following relations:

Nk + 1 ≥ 2τk
4L2A(d)

µ2(f)µ(d)R
2(ρ−1)
0

≥ Nk, 2m ≥ µ(f)

ǫ
Rρ0 ≥ 2m−1. (17)

Theorem 1. The points {yk}mk=1 generated by Algorithm 2 satisfy the following conditions:

‖yk − x∗‖ρ ≤ Rρk = 2−kRρ0, k = 0, . . . ,m, (18)

δNk
(yk−1, Rk−1) ≤ µ(f)Rρk = µ(f)2−kRρ0, k = 1, . . . ,m. (19)

Moreover, f(x̂ǫ(y0, R0)) − f∗ ≤ ǫ and the total number N(ǫ) of iterations in the scheme does not
exceed (

2m+1

Rρ
0

)τ 4L2A(d)
µ2(f)µ(d)

(17)
≤ 4τ+1L2A(d)

µ(f)
2
ρ µ(d)

ǫ−τ . (20)

1)Here ⌊a⌋ stands for the largest integer strictly smaller than a.
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Proof : Indeed, for k = 0, (18) is valid. Assume it is valid for some k ≥ 0. Note that

√
Nk+1 + 1

(17)
≥

((
2k

Rρ
0

)τ
8L2A(d)
µ2(f)µ(d)

)1/2
= 2

L
√

2A(d)

µ(f)Rρ−1
k

√
µ(d)

.

Therefore, in view of Proposition 1 and Corollary 1, we have

δNk+1
(yk, Rk) ≤ LRk

√
2A(d)√

µ(d)(Nk+1+1)
≤ µ(f)

2 Rρk = µ(f)Rρk+1,

and this is (19) for the next value of the iteration counter. Further,

‖yk+1 − x∗‖ρ ≤ µ(f)−1δNk+1
(yk, Rk) ≤ Rρk+1,

and this is (18) for k + 1.
Finally, at the end of the m-th stage, in view of Lemma 2 and (19) we have

f(x̂ǫ(y0, R0))− f∗ ≤ δNm(ym−1, Rm−1)
(19)
≤ µ(f)Rρm = 2−mµ(f)Rρ0

(17)
≤ ǫ.

The complexity of the method can be estimated as follows:

N(ǫ)
(17)
≤

m∑
k=1

2kτ 4L2A(d)

µ2(f)µ(d)R
2(ρ−1)
0

<
(
2m+1

Rρ
0

)τ
4L2A(d)

(2τ−1)µ2(f)µ(d) .

To conclude (20) it suffices to notice that by (17), 2m+1 ≤ 4
µ(f)Rρ

0
ǫ .

An important particular case of Theorem 1 is the case of strongly convex objective f . In the
latter case τ = 1 and the analytical complexity of Algorithm 2 does not exceed

16L2A(d)

µ(f)µ(d)
ǫ−1.

The method can be easily rewritten for the case when the total number N of calls to the oracle

is fixed a priori. Suppose that N ≥ [2τ (2τ + 1)] 4L2A(d)

µ2(f)µ(d)R
2(ρ−1)
0

(in the opposite case the bound of

Corollary 1 for one-stage method provides better accuracy). Consider the following procedure:

Algorithm 3.

Initialization: Set y0 = x0, τ = 2(ρ−1)
ρ , compute Nj = ⌊2τj 4L2A(d)

µ(f)2µ(d)R
2(ρ−1)
0

⌋ while
∑

j Nj ≤
N . Set

m(N) = max{k :
∑k

j=1Nj ≤ N}.

Stage k = 1, . . . ,m(N): Set Rρk = 2−kRρ0. Compute yk = xNk
(yk−1, Rk−1) with

γk =
LRk−1√
2µ(d)A(d)

.

Output: x̂N = ym(N).
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Corollary 1. We have

f(x̂N )− f∗ ≤ 2

(
8L2A(d)

µ(f)
2
ρ µ(d)N

)1/τ

. (21)

Proof. Indeed, as in the proof of Theorem 1 we conclude that

f(x̂N )− f∗ ≤ 2−m(N)µ(f)Rρ0.

Now it suffices to notice that the numberm(N) of the stages of the algorithm can be easily bounded:

N
2 ≤

m(N)∑
k=1

Nk ≤
(
2m(N)+1

Rρ
0

)τ
4L2A(d)

(2τ−1)µ2(f)µ(d) .

Thus,

2−m(N) ≤ 2
(

8L2A(d)
µ2(f)µ(d)N

)1/τ
R−ρ

0 ,

and the bound (21) follows.

3.3 Methods with quadratically growing prox-function

We propose here a slightly different version of multi-stage procedures for the case when the prox-
function satisfies the condition (9) of quadratic growth.

The result below is an immediate consequence of Proposition 1 (cf. Lemma 2 and Corollary 1):

Corollary 2. Let x∗ be an optimal solution of (12). Suppose that the prox-function d satisfies (9)
and that ‖x̄−x∗‖ ≤ r ≤ R. Then the approximate solution xN (x̄, R), provided by Algorithm 1 with

γ =
R2L

r
√
2C(d)µ(d)

,

satisfies

f(xN (x̄, R))− f(x∗) ≤ rL

√
2C(d)

µ(d)(N + 1)
, (22)

‖xN (x̄, R)− x∗‖ρ ≤ rL

µ(f)

√
2C(d)

µ(d)(N + 1)
. (23)

Indeed, to show (22) and (23) it suffices to use (14) and to observe that due to (9) dx̄,R(x
∗) ≤

C(d) r
2

R2 .
The following multi-stage scheme exploits the “scalability property” (9) of the prox-function

d. It starts from arbitrary x0 ∈ Q. As in the previous section, we assume that the constants L,
µ(f) and the diameter R0 of Q are known.

Algorithm 4.

Initialization: Set y0 = x0, τ = 2(ρ−1)
ρ and m = ⌊log2 µ(f)ǫ Rρ0⌋+ 1.

Stage k = 1, . . . ,m:

11



1. Define Nk = ⌊2τk 4L2C(d)

µ2(f)µ(d)R
2(ρ−1)
0

⌋ and rρk = 2−kRρ0.

2. Compute yk = xNk
(yk−1, R0) with γk =

LR2
0

rk−1

√
2C(d)µ(d)

.

Output: Set the approximate solution x̂ǫ = ym.

We would like to stress the difference between Algorithms 2 and 4: in Algorithm 4 the delation
parameter R = R0 of the prox-function d remains the same through all the stages of the method.
Only the gain γk and the duration Nk of the stage depend on the stage index k.

We have the following analogue of Theorem 1 in this case:

Theorem 2. Suppose that

N ≥ N(ǫ) =
4τ+1L2C(d)

µ(f)
2
ρµ(d)

ǫ−τ .

Then the approximate solution x̂N , provided by Algorithm 4 satisfies:

Ef(x̂ǫ)− f∗ ≤ ǫ.

Proof : As in the proof of Theorem 1, the result of the theorem follows immediately from the
relations:

E‖yk − x∗‖ρ ≤ rρk = 2−kRρ0 (24)

and

Ef(yk)− f∗ ≤ µ(f)rρk ≤ µ(f)2−kR2
ρ. (25)

Indeed, using the relations above we write:

Ef(x̂)− f∗ ≤ µ(f)rρm = 2−mµ(f)Rρ0 ≤ ǫ.

Let us verify the bounds (24) and (25). Assume that (24) valid for some k ≥ 0. Note that

√
Nk+1 + 1 >

2τk/2

Rρ−1
0

(
8L2C(d)

µ2(f)µ(d)

)1/2

= 2
L

µ(f)rk

√
2C(d)

µ(d)
.

Therefore, in view of Corollary 4, we have

E‖yk+1 − x∗‖ρ ≤ Lrk
µ(f)

√
2C(d)

µ(d)(Nk+1 + 1)
≤ rρk

2
= rρk+1,

and

Ef(yk+1)− f∗ ≤ (L+ σ)rk

√
2C(d)

µ(d)(Nk+1 + 1)
≤ µ(f)

2
rρk = µ(f)rρk+1.

The method can be rewritten in the when the total number N of calls to the oracle is fixed.
Suppose that N ≥ 2τ (2τ + 1) 4L2C(d)

µ2(f)µ(d)R
2(ρ−1)
0

. Consider the following procedure:

12



Algorithm 5.

Initialization: Set y0 = x0, τ = 2(ρ−1)
ρ , compute Nj =

⌊
2τj 4L2C(d)

µ(f)2µ(d)R
2(ρ−1)
0

⌋
, while

∑
j Nj ≤

N . Set m(N) = max{k :
∑k

j=1Nj ≤ N}.
Stage k = 1, . . . ,m(N):

Set rρk = 2−kRρ0. Compute yk = xNk
(yk−1, R0) with γk =

LR2
0

rk−1

√
2C(d)µ(d)

.

Termination: Set the approximate solution x̂N = ym(N).

Corollary 3. We have

Ef(x̂N )− f∗ ≤ 2

(
8L2C(d)

µ(f)
2
ρµ(d)N

)1/τ

.

The proof of the corollary is completely analogous to that of Corollary 1.

3.4 Adaptive algorithm

Consider the setting in which the total number N of calls to the oracle is fixed and suppose that
the convexity parameters ρ µ(f) are unknown. We propose a multi-stage procedure which does
not require the knowledge of these parameters and attains the accuracy of the method which
“knows” the convexity parameters up to a logarithmic in N factor. Following the terminology used
in statistical and control literature, we call such procedures adaptive (with respect to unknown
parameters). In what follows we suppose that the bounds L and R0 are known a priori.

We analyze here the following adaptive version of Algorithm 3 ( we leave the construction and
analysis of adaptive version of Algorithm 5 as an exercise to the reader):

Algorithm 6.

Initialization: Set y0 = x0, m =
[
1
2 log2

µ(d)N
A(d) log2N

]
− 1 2), N0 = [N/m], and

Rk = 2−kR0, k = 1, ...,m.

Stage k = 1, ...,m: Compute yk = x̂N0(yk−1, Rk−1) with γk =
LRk−1√
2µ(d)A(d)

.

Output: x̂N = argmink=1,...,m f(yk).

Theorem 3. The approximate solution x̂N satisfies for N ≥ 4

f(x̂N )− f∗ ≤ 2

(
16L2A(d) log2N

µ(f)
2
ρµ(d)N

) ρ

2(ρ−1)

.

2) here [a] stands here for the largest integer less or equal to a

13



Proof : Note that m satisfies

2m ≤ 1
2

√
µ(d)N

A(d) log2N
. (26)

Thus by (8), m≤1
2 log2N . Assume now that µ(f) ≤ 4L

Rρ−1
0

√
A(d) log2N
µ(d)N . We have

f(y1)− f∗ ≤ δN0(y0, R0) ≤ LR0

√
2A(d)

µ(d)(N0 + 1)
≤ LR0

√
2mA(d)

µ(d)N

≤ LR0

√
A(d) log2N

µ(d)N
≤
(
16L2A(d) log2N

µ(f)
2
ρµ(d)N

) ρ

2(ρ−1)

,

what implies the statement of the theorem in this case. Next, let us denote µ0 = 2−mLR1−ρ
0 so

that

2LR1−ρ
0

√
A(d) log2N

µ(d)N
≤ µ0 < 4LR1−ρ

0

√
A(d) log2N

µ(d)N
, (27)

and µk = 2(ρ−1)kµ0, k = 1, ...,m. Observe that from the available information we can derive an
upper bound on the unknown parameter µ(f), namely,

µ(f) ≤ L
Rρ−1

0

≤ µm.

Suppose now that the true µ(f) satisfies µ0 ≤ µ(f) ≤ µm. We need the following auxiliary result.

Lemma 1. Let k∗ satisfy µk∗ ≤ µ(f) ≤ 2ρ−1µk∗. For 1 ≤ k ≤ k∗, the points {yk}mk=1 generated by
Algorithm 6 satisfy the following relations:

‖yk−1 − x∗‖ ≤ Rk−1 = 2−k+1R0, (28)

δN0(yk−1, Rk−1) ≤ µkR
ρ
k = 2−kµ0R

ρ
0. (29)

For k∗ < k ≤ m, we have

f(yk) ≤ f(yk∗) + µk∗R
ρ
k∗. (30)

Proof. Let us prove first (28) and (29). Indeed, for k = 1 (28) is valid. Assume it is valid for
some k ≥ 1. We write

µ(f) ≥ µk = 2(ρ−1)kµ0 =

(
2k

R0

)ρ−1

· L2−m

(26)
≥

(
2k

R0

)ρ−1

2L

√
A(d) log2N

µ(d)N
≥ 2L

Rρ−1
k

√
2A(d)

µ(d)(N0 + 1)
.

Therefore,

δN0(yk−1, Rk−1)
(16)
≤ LRk−1

√
2A(d)√

µ(d)(N0+1)
≤ 1

2µkR
ρ−1
k Rk−1 = µkR

ρ
k. (31)

14



That is (29). Moreover,

‖yk − x∗‖ρ ≤ µ(f)−1δN0(yk−1, Rk−1) ≤ µk
µ(f)R

ρ
k ≤ Rρk,

and this is (28) for the next index value. Further, as in (31), for k > k∗ we have

f(yk)− f(yk−1) ≤ δN0(yk−1, Rk−1) ≤ LRk−1

√
2A(d)

µ(d)(N0+1)

= 2k
∗−kLRk∗−1

√
2A(d)

µ(d)(N0+1)

(31)
≤ 2k

∗−kµk∗R
ρ
k∗.

Then

f(yk)− f(yk∗) =
k∑

j=k∗+1

f(yj)− f(yj−1) ≤
k∑

j=k∗+1

2k
∗−jµk∗R

ρ
k∗ ≤ µk∗R

ρ
k∗.

This proves the lemma.
Now we can finish the proof of the theorem. Recall that µ0 ≤ µ(f) ≤ µm. At the end of the

k∗-th stage we have

f(yk∗)− f∗ ≤ δN0(yk∗−1, Rk∗−1) ≤ µk∗R
ρ
k∗ ≤ 2

µ
1

ρ−1

k∗

µ(f)
1

ρ−1

µk∗R
ρ
k∗

= 2
µ

ρ

ρ−1

0 Rρ0

µ(f)
1

ρ−1

(27)
≤ 2

(
16L2A(d) log2N

µ(f)
2
ρµ(d)N

) ρ

2(ρ−1)

.

4 Generating dual solutions

In order to speak about primal-dual solutions, we need to fix somehow the structure of objective
function in problem (1). Let us assume that

f(x) = max
w∈S

Ψ(x,w), x ∈ Q,

where S is a closed convex set, and function Ψ is convex in the first argument x ∈ Q and concave in
the second argument u ∈ S. Let us assume that Ψ is subdifferentiable in x at any (x,w) ∈ Q× S.
Then we can take

f ′(x) = Ψ′
x(x,w(x)),

w(x) ∈ Argmax
w∈S

Ψ(x,w).
(32)

Thus, we can define the dual function η(w) = min
x∈Q

Ψ(x,w), and the dual maximization problem

Find f∗ = max
w

{η(w) : w ∈ S}.

For any w ∈ S, we assume that Ψ(·, w) is uniformly convex on Q with convexity parameters
ρ = ρ(Ψ) and µ(Ψ)).

The following result is quite standard (cf. Lemma 3 [12]).
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Lemma 2. Define x̄ = 1
N+1

N∑
i=0

xi, and w̄N = 1
N+1

N∑
i=0

w(xi). Then

f(x̄N )− η(w̄N ) ≤ l∗N
def
= max

x

{
1

N+1

N∑
i=0

〈f ′(xi), xi − x〉 − 1
2µ(Ψ)‖x− x̄N‖ρ : x ∈ Q

}
. (33)

Proof. Since Ψ is convex in the first argument, for any x ∈ Q we have

〈f ′(xi), xi − x〉 (32)
= 〈Ψ′

x(xi, w(xi)), xi − x〉

≥ Ψ(xi, w(xi))−Ψ(x,w(xi)) +
1
2µ(Ψ)‖x− xi‖ρ

= f(xi)−Ψ(x,w(xi)) +
1
2µ(Ψ)‖x− xi‖ρ.

Hence,

l∗N = 1
N+1 max

x

{
N∑
i=0

〈f ′(xi), xi − x〉 − µ(Ψ)N+1
2 ‖x− x̄N‖ρ : x ∈ Q

}

≥ 1
N+1 max

x

{
N∑
i=0

[〈f ′(xi), xi − x〉 − 1
2µ(Ψ)‖x− xi‖ρ] : x ∈ Q

}

≥ 1
N+1 max

x

{
N∑
i=0

[f(xi)−Ψ(x,w(xi))] : x ∈ Q

}

≥ f(x̄N)−min
x∈Q

Ψ(x, w̄N ) = f(x̄N )− η(w̄N ).

Let us prove now several auxiliary results. Let l(x) be an affine function on E. Let us fix a
point ȳ ∈ Q. Consider the function

ψ(r) = max
x

{l(x) : x ∈ Qr(ȳ)}, r ≥ 0.

Note that ψ(r) is an increasing concave function of r and

ψ(r) ≥ ψ(0) = l(ȳ).

Let us fix some r̄ > 0 and choose an arbitrary x̄ ∈ Qr̄(ȳ). For some µ > 0 define

λ∗µ(x) = max
y

{l(y)− 1
2µ‖y − x‖ρ : y ∈ Q}. (34)

We need to bound from above the value λ∗µ(x̄).

Lemma 3. For any b > 0 we have

λ∗µ(x̄) ≤ λ∗(1+b)1−ρµ(ȳ) +
µ

2bρ−1
r̄ρ. (35)
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Proof. Consider yµ(x̄), the optimal solution of optimization problem in (34) with x = x̄. Then

λ∗µ(x̄) = l(yµ(x̄))− 1
2µ‖yµ(x̄)− x̄‖ρ.

On the other hand, for any b > 0,

‖yµ(x̄)− ȳ‖ρ ≤ (‖yµ(x̄)− x̄‖+ ‖x̄− ȳ‖)ρ
≤ (1 + b)ρ−1‖yµ(x̄)− x̄‖ρ + (1 + b−1)ρ−1‖x̄− ȳ‖ρ

≤ (1 + b)ρ−1‖yµ(x̄)− x̄‖ρ + (1 + b−1)ρ−1r̄ρ.

Hence,

λ∗µ(x̄) ≤ l(yµ(x̄))− µ
2
‖yµ(x̄)−ȳ‖ρ

(1+b)ρ−1 + 1
2bρ−1 r̄

ρ ≤ λ∗(1+b)1−ρµ(ȳ) +
µ

2bρ−1 r̄
ρ.

Lemma 4.

λ∗µ(ȳ) ≤ ψ(r̄) +
ρ− 1

ρ

(
2

µρ

) 1
ρ−1
(
ψ(r̄)− ψ(0)

r̄

) ρ

ρ−1

.

Proof. Indeed, denote t̂ = ‖yµ(ȳ)− ȳ‖. Then

λ∗µ(ȳ) = l(yµ(ȳ))− 1
2µt̂

ρ ≤ ψ(t̂)− 1
2µt̂

ρ ≤ max
t≥0

{ψ(t) − 1
2µt

ρ}.

Since ψ(t) is concave,
ψ(t) ≤ ψ(r̄) + ψ′(r̄)(t− r̄) ≤ ψ(r̄) + ψ′(r̄)t.

Note that

ψ′(r̄)t− 1
2µt

ρ ≤ ρ− 1

ρ

(
2ψ′(r̄)ρ

µρ

) 1
ρ−1

,

thus

λ∗µ(ȳ) ≤ ψ(r̄) +
ρ− 1

ρ

(
2ψ′(r̄)ρ

µρ

) 1
ρ−1

.

On the other hand,
ψ(0) ≤ ψ(r̄) + ψ′(r̄)(0 − r̄).

Thus, ψ′(r̄) ≤ 1
r̄ (ψ(r̄)− ψ(0)).

When substituting the result into (35) we obtain

Corollary 2.

λ∗µ(x̄) ≤ ψ(r̄) + (1 + b)ρ−1
ρ

(
2
µρ

) 1
ρ−1
(
ψ(r̄)−ψ(0)

r̄

) ρ

ρ−1
+ µ

2bρ−1 r̄
ρ. (36)

Let us apply now the above results to Algorithm 2. Let us choose µ = µ(Ψ),

ȳ = ym−1, x̄ = ym, r̄ = Rm−1, l(x) = 1
1+Nm

Nm∑
i=0

〈f ′(xi), xi − x〉,
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where the points {xi}Nm

i=0 were generated during the last mth stage of the algorithm. Note that

2m ≥ µ(Ψ)
ǫ Rρ0 ≥ 2m−1. (37)

Therefore
2ǫ
µ(Ψ) ≥ r̄ρ = 21−mRρ0 ≥ ǫ

µ(Ψ) . (38)

Further,

ψ(r̄) = δNm(ym−1, Rm−1)
(19)
≤ µ(Ψ)2−mRρ0

(37)
≤ ǫ,

ψ(0) = 1
1+Nm

Nm∑
i=0

〈f ′(xi), xi − ym−1〉 ≥ 1
1+Nm

Nm∑
i=0

[f(xi)− f(ym−1)]

≥ f∗ − f(ym−1)
(19)
≥ −µ(Ψ)21−mRρ0

(38)
≥ −2ǫ.

Hence, using the above inequalities in (36), we obtain

λ∗µ(Ψ)(ym) ≤ ǫ+ (1 + b)ρ−1
ρ

(
2

µ(Ψ)ρ

) 1
ρ−1 (3ǫ

r̄

) ρ

ρ−1 + µ(Ψ)
2bρ−1 r̄

ρ

≤ ǫ+ (1+b)(ρ−1)
2

(
6
ρ

) ρ

ρ−1
κ−

1
ρ−1 ǫ+ κǫ

2bρ−1

≤ ǫ

(
1 + (1+b)(ρ−1)

2

(
6
ρ

) ρ

ρ−1
+ b1−ρ

)
,

(39)

where we set κ = µ(Ψ)r̄ρ

ǫ and used the fact that 1 ≤ κ ≤ 2 due to (38).

When setting b = (ρ6 )
1

ρ−12
1
ρ we obtain

λ∗µ(Ψ)(ym) ≤ ǫ

(
1 + 3

6
1

ρ−1 + 2
1
ρ ρ

1
ρ−1

ρ
ρ

ρ−1

+
6

2
ρ−1
ρ ρ

)
.

Note that a finer estimate can be obtained for ρ = 2. To this end it suffices to verify that for the
choice b = 1/3 the right-hand side of (39) is decreasing in κ for 0 ≤ κ ≤ 2. Therefore,

λ∗µ(Ψ)(ym) ≤ 8.5 ǫ.

It remains to note that

λ∗µ(Ψ)(ym) = max
y

{
1

1+Nm

Nm∑
i=0

〈f ′(xi), xi − y〉 − 1
2µ(Ψ)‖y − ym‖ρ : y ∈ Q

}
,

and ym = xNm(ym−1, Rm−1)
(13)
= 1

1+Nm

Nm∑
i=0

xi. Thus, applying Lemma 2, we come to the following

statement:

Theorem 4. Let assumptions of Theorem 1 hold and let x̂ǫ(y0, R0) be the approximate solution,

supplied by Algorithm 2. Define w̄Nm = 1
1+Nm

Nm∑
i=0

w(xi). Then

f(x̂ǫ(y0, R0))− η(w̄Nm) ≤ C(ρ) ǫ,
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where

C(ρ) ≤
(
1 + 3

6
1

ρ−1 + 2
1
ρ ρ

1
ρ−1

ρ
ρ

ρ−1

+
6

2
ρ−1
ρ ρ

)
.

Furthermore, when the objective f is strongly convex (ρ = 2), f(x̂ǫ(y0, R0))− η(w̄Nm) ≤ 8.5 ǫ.

5 Stochastic programming with uniformly convex objective

In order to rewrite the results of Sections 3 in the stochastic framework we substitute for f ′(xk)
its observation gk = f ′(xk) + ξk into the iteration of Algorithm 1. The following statement is a
stochastic counterpart of Proposition 1:

Proposition 2. Let (xk), k = 0, 1, ... be the search points of Algorithm 1 with gk substituted for
f ′(xk). Then for any x ∈ Q ∩BR(x̄),

k∑

i=1

λi〈f ′(xi), xi − x〉 ≤ dx̄,R(x)βk+1 +
R2

2µ(d)

k∑

i=0

λ2i
βi

‖f ′(xi)‖2∗ +
k∑

i=0

ζi, (40)

where

‖ζi‖∗ ≤ 2λi‖ξi‖∗R, ζi ≤ −λi〈ξi, x̃i − x〉+ R2λ2i ‖ξi‖2∗
2µ(d)βi

, (41)

and (x̃i), i = 1, ..., k are Fi−1-measurable random vectors, x̃i ∈ Q ∩BR(x̄)
In this section we propose two families of multi-stage methods for uniformly convex stochastic

programming problem described in Section 2.2. The first one is based on the dual averaging
scheme with the prox-function which satisfies the condition (9) of quadratic growth. As we shall
see immediately, one can easily obtain the bounds for the average value of the objective at the
approximate solution and is a stochastic counterpart of Algorithm 4 and 5. On the other hand,
the methods derived from those, presented in Section 3.2 better suit the case when the confidence
bounds on the error of the approximate solutions are required.

5.1 Expectation bounds for methods with prox-function of quadratic growth

When taking the expectation with respect to the distribution of ξi we obtain the following simple
counterpart of Lemma 2:

Lemma 3. Let x̄ ∈ Q satisfy E‖x̄− x∗‖2 ≤ R2, where x∗ is the optimal solution of problem (12),
and let λk = 1 and βk = γ

√
N + 1, k = 0, .., N . Suppose that Assumptions 2 and 3 hold. Then the

approximate solution supplied by Algorithm 1 satisfies

Ef(xN(x̄, R))− f∗ ≤ 1

N + 1

N∑

i=0

E〈f ′(xi), xi − x∗〉

≤ 1√
N + 1

(
γEdx̄,R(x

∗) +
R2(L2 + σ2)

2µ(d)γ

)
,

E‖xN (x̄, R)− x∗‖ρ ≤ 1

µ(Ψ)
√
N + 1

(
γEdx̄,R(x

∗) +
R2(L2 + σ2)

2µ(d)γ

)
.
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Suppose now that E‖x̄− x∗‖2 ≤ r2. Using the relation dx̄,R(x
∗) ≤ C(d) r

2

R2 we get the following
(cf Corollary 2)

Corollary 4. Suppose that x̄ ∈ Q satisfy

E‖x̄− x∗‖2 ≤ r2,

and let

γ =
R2

r

√
L2 + σ2

2C(d)µ(d)
,

Then

Ef(xN(x̄, R))− f∗ ≤ r

√
2C(d)(L2 + σ2)

µ(d)(N + 1)
, (42)

E‖xN (x̄, R)− x∗‖ρ ≤ r

µ(f)

√
2C(d)(L2 + σ2)

µ(d)(N + 1)
, (43)

When comparing the above statement to the result of Corollary 2 we observe that the only
difference between the two is that in Corollary 4 the quantity L2 is substituted with L2+σ2. When
modifying in the same way the parameters of Algorithm 5 we obtain the multistage procedure for
the stochastic problem.

Assume that the parameters L, ρ, µ(f) and the diameter R0 of Q are known. The method
starts from an arbitrary x0 ∈ Q.

Algorithm 7.

Initialization: Set y0 = x0, τ = 2(ρ−1)
ρ and m = ⌊log2 µ(f)ǫ Rρ0⌋+ 1.

Stage k = 1, . . . ,m:

1. Define Nk = ⌊2τk 4(L2+σ2)C(d)

µ2(f)µ(d)R
2(ρ−1)
0

⌋ and rρk = 2−kRρ0.

2. Compute yk = xNk
(yk−1, R0) with γk =

R2
0

rk−1

√
L2+σ2

2C(d)µ(d) .

Output: Set the approximate solution x̂ǫ = ym.

We have the following stochastic analogue of Theorem 2:

Theorem 5. Suppose that

N ≥ N(ǫ) =
4τ+1(L2 + σ2)C(d)

µ(f)
2
ρµ(d)

ǫ−τ .

Then the approximate solution x̂N , provided by Algorithm 7 satisfies:

Ef(x̂ǫ)− f∗ ≤ ǫ.
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The proof of the theorem follows the lines of that of Theorem 2. It suffices to substitute the
bounds (42) and (43) for those of (22) and (23). We leave this simple exercise to the reader.

The method can be rewritten for the case when the total number N of calls to the oracle is
fixed.

Suppose that

N ≥ 2τ (2τ + 1)
4(L2 + σ2)C(d)

µ2(f)µ(d)R
2(ρ−1)
0

.

Consider the following procedure:

Algorithm 8.

Initialization: Set y0 = x0, τ = 2(ρ−1)
ρ , compute Nj =

⌊
2τj 4(L2+σ2)C(d)

µ(f)2µ(d)R
2(ρ−1)
0

⌋
, while

∑
j Nj ≤

N . Set m(N) = max{k :
∑k

j=1Nj ≤ N}.
Stage k = 1, . . . ,m(N):

Set rρk = 2−kRρ0. Compute yk = xNk
(yk−1, R0) with γk =

R2
0

rk−1

√
L2+σ2

2C(d)µ(d) .

Termination: Set the approximate solution x̂N = ym(N).

Corollary 5. We have

Ef(x̂N)− f∗ ≤ 2

(
8(L2 + σ2)C(d)

µ(f)
2
ρµ(d)N

)1/τ

.

Exactly in the same way it was done in the deterministic settings, we can provide an adaptive
version of the method. To this end the adaptive method of Algorithm 6 for deterministic problem
should be slightly modified: we have to change the way the approximate solution x̂N is formed,
as the exact observations of the objective function are not available anymore. Fortunately, we can
take as the output of the algorithm the approximate solution ym, generated at the last stage.

Consider the following procedure:

Algorithm 9.

Initialization: Set y0 = x0, m =
[
1
2 log2

µ(d)N
C(d) log2N

]
− 1, N0 = [N/m], rk = 2−kR0, k =

1, ...,m.

Stage k = 1, ...,m: Compute yk = xN0(yk−1, R0) with with γk =
R2

0
rk−1

√
L2+σ2

2C(d)µ(d) .

Termination: Set the approximate solution x̂N = ym.

Theorem 6. The approximate solution x̂N , supplied by Algorithm 9, satisfies for N > 4:

Ef(x̂N )− f∗ ≤ 4

(
16(L2 + σ2)C(d) log2N

µ(f)
2
ρµ(d)N

) ρ

2(ρ−1)

.
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Proof : The proof of the theorem follows exactly the lines of that of Theorem 3. Using the notation
k∗, introduced in Lemma 1, we get (cf. (30))

Ef(ym) ≤ Ef(yk∗) + µk∗r
ρ
k∗ .

Thus

Ef(ym)− f∗ ≤ 2µk∗r
ρ
k∗ ≤ 4

(
16(L2 + σ2)C(d) log2N

µ(f)
2
ρµ(d)N

) ρ

2(ρ−1)

.

5.2 Confidence sets for uniformly convex stochastic programs

In this section we establish confidence bounds for the approximate solutions, delivered by multistage
stochastic algorithms. Consider dual averaging Algorithm 1 in which we substitute the exact
subgradient with the observation gk = f ′(xk) + ξk. Let δN (x̄, R) be the gap value, defined in (15).

Proposition 3. Let x̄ be a point of Q, λk = 1 and βk = γ
√
N + 1, k = 0, .., N . Suppose that

Assumptions 2–4 hold. Then

Probx̄

[
δN (x̄, R) ≥

1√
N + 1

(
γA(d) +

R2(L2 + σ2)

2γµ(d)

)
+ 2Rσ

√
3 lnα−1

N + 1

]
≤ α. (44)

Proof : We need the following result which is essentially known (cf [3]):

Lemma 4. Let ψi, i = 0, ..., N , be Borel functions on Ω such that ψi is Fi-measurable, and let
µi ≥ 0, νi > 0 be deterministic reals. Assume that for all i = 0, 1, 2, ... one has a.s.

Ei−1[ψi] ≤ µi, Ei−1[exp{ψ2
i /ν

2
i }] ≤ exp{1},

Then for every Λ ≥ 0

Prob




N∑

i=0

ψi >

N∑

i=0

µi + Λ

√√√√
N∑

i=0

ν2i


 ≤ exp{−Λ2/3} (45)

Proof : It is immediately seen that exp{s} ≤ s + exp{9s2/16} for all s. We conclude that if
0 ≤ t ≤ 4

3νi
, then

Ei−1[exp{tψi}] ≤ tµi +Ei−1[exp{9t2ψ2
i /16}]

≤ tµi + exp{9t2ν2i /16} ≤ exp{tµi + 9t2ν2i /16}. (46)

Besides this, we have tx ≤ 3t2ν2i
8 + 2x2

3ν2i
, so that

Ei−1[exp{tψi}] ≤ exp

{
3t2ν2i
8

+
2

3

}
,
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and the latter quantity is ≤ exp{3t2ν2i /4} when t ≥ 4
3νi

. Invoking (46), we arrive at

En−1[exp{tφn}] ≤ exp{tµi + 3t2ν2n/4}

for any t ≥ 0. It follows that

E

[
exp

{
t

n∑

i=0

ψi

}]
= E

[
En−1

[
exp

{
t

n∑

i=0

ψi

}]]

≤ E

[
exp

{
t

n−1∑

i=0

ψi

}]
exp(tµn + 3t2ν2n/4),

whence for t ≥ 0,

E

[
exp

{
t
N∑

i=0

ψi

}]
≤ exp

{
t
N∑

i=0

µi +
3t2

4

N∑

i=0

ν2i

}
.

Therefore for Λ ≥ 0 we get

Prob




N∑

i=0

ψi >
N∑

i=0

µi + Λ

√√√√
N∑

i=0

ν2i




≤ min
t>0


E

[
exp

{
t
N∑

i=0

ψi

}]
exp



−t

N∑

i=0

µi − tΛ

√√√√
N∑

i=0

ν2i








≤ min
t>0

exp



t

N∑

i=0

µi +
3t2

4

N∑

i=0

ν2i − t

N∑

i=0

µi − tΛ

√√√√
N∑

i=0

ν2i



 = exp{−Λ2/3}

as required in (45).
Let us return to the proof of the proposition. From (41) and Assumption 4 we conclude that

Ei−1ζi ≤
R2λ2iσ

2

2µ(d)βi
=

R2σ2

2µ(d)βi

(recall that Ei−1ξi = 0 and x̃i is Fi−1-measurable). Along with Assumption 4 this implies that

random variables ψi = ζi satisfy the premises of Lemma 4 with µi =
R2σ2

2µ(d)βi
and νi = 2Rσ. Thus

by (45),

Prob

[
N∑

i=0

ζi ≥
R2σ2

2µ(d)

N∑

i=0

β−1
i + 2ΛRσ

√
N + 1

]
≤ exp{−Λ2/3} (= α for Λ =

√
3 lnα−1).

When substituting βi = γ
√
N + 1 we conclude (44) from (40).

From (44) we obtain immediately:
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Corollary 6. Let x̄ be a point of Q. Let

γ = R

√
L2 + σ2

2µ(d)A(d)
.

Then for all α ≥ 0, the approximate solution xN (x̄, R) of Algorithm 1 satisfies

Probx̄

[
δN (x̄, R) ≤ 2R

[√
A(d)(L2 + σ2)

2µ(d)(N + 1)
+ σ

√
ln 3α−1

N + 1

]]
≥ 1− α. (47)

Corollary 6 allows us to compute the confidence sets for approximate solutions, provided by
stochastic analogues of Algorithms 2 and 3 exactly in the same way as it was done in Section 3.2.
For the sake of conciseness we present here only the result for the setting when the total number N
of subgradient observations is fixed and the convexity parameters of the objective are unknown.

Algorithm 10.

Initialization: Set y0 = x0, m =
[
1
2 log2

µ(d)N
A(d) log2N

]
− 1, N0 = [N/m], and

Rk = 2−kR0, k = 1, ...,m.

Stage k = 1, ...,m: Compute yk = x̂N0(yk−1, Rk−1) with γk = Rk−1

√
N0(L2+σ2)
2µ(d)A(d) .

Output: x̂N = ym.

Theorem 7. Let α ≥ 0. Then the approximate solution x̂N satisfies for N ≥ 4

Prob [f(x̂N )− f∗ ≤ ǫ(N,α)] ≥ 1− α,

where

ǫ(N,α) = 4

(
16

(N0 + 1)µ(f)
2
ρ

) ρ

2(ρ−1)
(√

(L2 + σ2)A(d)

2µ(d)
+ σ

√
3 ln

(
log2N

2α

)) ρ

ρ−1

.

Proof : Let us denote ᾱ = 2α
log2N

and

a(N0, ᾱ) =
2√

N0 + 1

(√
(L2 + σ2)A(d)

2µ(d)
+ σ

√
3 ln ᾱ−1

)
.

We set

µ0 = 2R1−ρ
0 a(N0, ᾱ) and µk = 2(ρ−1)kµ0, k = 1, ...,m. (48)

Note also that
µ(f) ≤ L

Rρ−1
0

,

and by the definition of µ0 and m we have µ(f) ≤ µ(m). Suppose first that the true µ(f) satisfies
µ0 ≤ µ(f) ≤ µm. We start with the following auxiliary result.
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Lemma 5. Let k∗ satisfy µk∗ ≤ µ(f) ≤ 2ρ−1µk∗. Then for any 1 ≤ k ≤ k∗, there exists a set
Ak ⊂ Ω of probability at least 1−kᾱ such that for ω ∈ Ak the points {yk}mk=1 generated by Algorithm
10 satisfy

‖yk−1 − x∗‖ ≤ Rk−1 = 2−k+1R0, (49)

f(yk)− f∗ ≤ µkR
ρ
k = 2−kµ0R

ρ
0. (50)

Further, for k > k∗ there is a set Ck ⊂ Ω of probability at least 1− (k − k∗)ᾱ such that on Ck

f(yk) ≤ f(yk∗) + µk∗R
ρ
k∗. (51)

Proof. Note that for k = 1 (49) is valid. Assume it is valid for some k ≥ 1. Note that by (47) of
Corollary 6 there exists a random set, let us call it Bk, such that Prob[Bk] ≥ 1− ᾱ and on Bk,

δN (yk−1, Rk−1) ≤ 2Rk−1



√

(L2 + σ2)A(d)

2µ(d)(N0 + 1)
+ σ

√
3 ln ᾱ−1

N0 + 1




= Rk−1a(N0, ᾱ)
(48)
=

1

2
µk2

−(ρ−1)kRρ−1
0 Rk−1 = µkR

ρ
k. (52)

On the other hand, by our inductive hypothesis, ‖yk−1−x∗‖ ≤ Rk−1 on Ak−1. Let Ak = Ak−1∩Bk.
Note that

Prob[Ak] ≥ Prob[Ak−1] + Prob[Bk]− 1 ≥ 1− kᾱ,

and we have on Ak:

f(yk)− f∗ ≤ δN (yk−1, R) ≤ µkR
ρ
k,

‖yk − x∗‖ρ ≤ δN (yk−1, Rk−1)

µ(f)
≤ Rρk,

what is (50) and (49) for k + 1.

To show (51) notice that, we have for k > k∗ (cf. (52))

f(yk)− f(yk−1) ≤ δN0(yk−1, Rk−1) ≤ µkR
ρ
k

on some Bk ⊂ Ω such that Prob[Bk] ≥ 1− ᾱ. Then we have on Ck = ∩kj=k∗+1Bj:

f(yk)− f(yk∗) =
k∑

j=k∗+1

f(yj)− f(yj−1) ≤
k∑

j=k∗+1

2k
∗−jµk∗R

ρ
k∗ ≤ µk∗R

ρ
k∗.

Note that Prob[Ck] ≥ 1− (k − k∗)ᾱ. This proves the lemma.
Now we can finish the proof of the theorem. Let µ0 ≤ µ(f) ≤ µm. At the end of the k∗-th stage

we have on the set Ak∗ of probability at least 1− k∗ᾱ:

f(yk∗)− f∗ ≤ δN0(yk∗−1, Rk∗−1) ≤ µk∗R
ρ
k∗ .

25



Then on the set Ak∗ ∩ Cm such that Prob[Ak∗ ∩ Cm] ≥ 1−mᾱ (cf (51)) we have

f(ym)− f∗ ≤ 2µk∗R
ρ
k∗ ≤ 4

µ
1

ρ−1

k∗

µ(f)
1

ρ−1

µk∗R
ρ
k∗

= 4
µ

ρ

ρ−1

0 Rρ0

µ(f)
1

ρ−1

(48)
≤ 4

(
2a(N0, ᾱ)

µ(f)
1
ρ

) ρ
ρ−1

.

It suffices to recall now that by the definition of m, m ≤ 1
2 log2N , thus mᾱ ≤ α.

If µ(f) < µ(0), we have on A1 = B1 (cf. (52)):

f(y1)− f∗ ≤ R0a(N0, ᾱ) =
R0

a(N0, ᾱ)
1

ρ−1

a(N0, ᾱ)
ρ

ρ−1

= 2
1

ρ−1
a(N0, ᾱ)

ρ

ρ−1

µ
1

ρ−1

0

≤ 2
1

ρ−1

(
a(N0, ᾱ)

µ(f)
1
ρ

) ρ

ρ−1

.

Finally, we conclude using (51): on A1 ∩ Cm we have

f(ym)− f∗ ≤ 2R0a(N0, ᾱ) ≤
(
2a(N0, ᾱ)

µ(f)
1
ρ

) ρ

ρ−1

.

6 Computational issues

The interest of the proposed algorithmic schemes is conditioned by our ability to compute efficiently
the optimal solution πz,R,β(s) of the optimization problem (11). We present here two important
examples in which the problem (11) can be solved quite efficiently. These are the standard simplex
and the hyperoctahedron settings.

Let us measure the distances in E = R
n in l1-norm:

‖x‖ = ‖x‖1 =
n∑
i=1

|x(i)|.

6.1 Simplex setup

Let n ≥ 2 and let
Q = {x ∈ R

n|x ≥ 0, ‖x‖1 = 1}
be the standard simplex. We are to show how the problem (11) can be solved in this case. The
problem (11) on QR(z) for the function d as in (10) writes

minx,u,v {
∑n

i=1 [sixi + ui lnui + vi ln vi] :
∑n

i=1[ui + vi] = R,
∑n

i=1 xi = 1,
xi = zi + ui − vi, ui ≥ 0, vi ≥ 0, xi ≥ 0, i = 1, ..., n.}
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When eliminating the “x” variable and dualizing the coupling constraints we obtain the equivalent
problem

max
λ,µ

{
L(λ, µ) ≡ min

u,v
L(u, v, λ, µ) : zi + ui − vi ≥ 0, i = 1, ..., n

}
, (53)

where
L(u, v, λ, µ) =

∑n
i=1[rivi + tiui + ui lnui + vi ln vi]− λR− µ :

ri = si + λ− µ, ti = −si + λ+ µ.

The dual problem (54) can be solved using a conventional method of convex optimization (ellipsoid
or level), given the solution of the problem

min
u,v

{L(u, v, λ, µ) : zi + ui − vi ≥ 0, i = 1, ..., n} .

Note that the latter problem an be decomposed into n 2-dimensional problems

min
u,v

su+ tv + u lnu+ v ln v, u ≥ v − z. (54)

One way to compute the minimizer is to compute the solution (ū, v̄) to the problem

min
u,v

[ψ(u, v) = su+ tv + u lnu+ v ln v], u = v − z,

namely,

ū =
1

2

(√
z2 + 4e−2−s−t − z

)
, v̄ =

1

2

(√
z2 + 4e−2−s−t + z

)

and to see if the subgradient

ψ′(u, v) =

(
s+ lnu+ 1
t+ ln v + 1

)
.

satisfies
ψ′
u(ū, v̄) + ψ′

v(ū, v̄) = 0 and ψ′
u(ū, v̄)− ψ′

v(ū, v̄) > 0.

If this is the case, we take ū, v̄ as the minimizers, if not, the inequality constraint is not active at
the optimal solution of (54) and we take

ū = e−1−s, v̄ = e−1−t.

6.2 Hyperoctahedron setup

Let now Q be a standard hyperoctahedron: Q = {x ∈ R
n| ‖x‖1 ≤ 1}. Let us see how the solution

to (11) can be computed in this case.
When writing

xi = wi − yi, wi, yi ≥ 0,

n∑

i=1

[wi + yi] = 1,

the problem (11) on QR(z) can be rewritten as

min
w,y,u,v

{∑n
i=1 [si(wi − yi) + ui lnui + vi ln vi] :

∑n
i=1[ui + vi] = R,

∑n
i=1[wi + yi] = 1,

wi − yi = zi + ui − vi, ui ≥ 0, vi ≥ 0, wi ≥ 0, yi ≥ 0, i = 1, ..., n.}
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When dualizing the coupling constraints we come to

max
λ,µ

{
L(λ, µ) ≡ min

u,v,w,y
L(u, v, w, y, λ, µ) :

zi + ui − vi − wi + yi = 0, wi ≥ 0, yi ≥ 0, i = 1, ..., n}

where

L(u, v, w, y, λ, µ) =
∑n

i=1[rivi + tiui + µ(wi + yi) + ui lnui + vi ln vi]− λR− µ :
ri = si + λ, ti = −si + λ.

The computation of the dual function L(λ, µ) boils down to evaluating solutions to n subproblems

minu,v su+ tv + λ(w + y) + u lnu+ v ln v,
z + u− v −w + y = 0, w ≥ 0, y ≥ 0.

(55)

It is obvious that either w or y vanishes, and to find the solution to (55) it suffices to compare the
optimal values of the problems

min
u,v

ψw(u, v) = su+ tv + λ(z + u− v) + u lnu+ v ln v, z + u− v ≥ 0, (case y = 0),

min
u,v

ψy(u, v) = su+ tv − λ(z + u− v) + u lnu+ v ln v, z + u− v ≤ 0, (case w = 0),

which are the same problems as (54) in the previous section.
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