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A Donoho-Stark riterion for stable signalreovery in disrete wavelet subspaesLaurent Gosse �IAC{CNR \Mauro Pione" (sezione di Bari) Via Amendola 122/I - 70126 Bari,ItalyAbstratWe derive a suÆient ondition by means of whih one an reover a sale-limitedsignal from the knowledge of a trunated version of it in a stable manner followingthe anvas introdued by Donoho and Stark [13℄. The proof follows from simpleomputations involving the Zak transform, well-known in solid-state physis. Ge-ometri harmonis (in the terminology of [7℄) for sale-limited subspaes of L2(R)are also displayed for several test-ases. Finally, some algorithms are studied for thetreatment of zero-angle problems.Key words: Produt of orthogonal projetions, Hilbert-Shmidt operator,geometri harmonis, singular operator with losed range, gradient algorithms.1991 MSC: 47a52, 47b32, 65r20, 65t60, 94a11
1 Introdution1.1 PreliminariesThe problem of signal reovery and extrapolation an be formalized in the following way:� A signal is modeled as a funtion s of the variable t (usually standing for time) belongingto a ertain losed linear subspae V of a (separable) Hilbert spae H, in general L2(R).� only a fration r of s is observed: there is a set T (not neessarily an interval) suh thatfor every t 2 T , r(t) = 0, expressing the fat that the orresponding information has beenlost. If �A stands for the harateristi funtion of the set A, one an write r = (1��T )s.� worse, the observations an be orrupted by a noise �, whih is nonetheless assumed tobe small in L2(R). In this last ase, one observes ~r = r + �.One an de�ne two orthogonal projetions depending on \the hole" T and V :P : L2(R) ! V; Q : f 2 L2(R) 7! f�T :� Corresponding AuthorPreprint submitted to Elsevier Siene



We learly annot assume that P is ompat: sine it is idempotent, onsider B the unitball of the losed linear subspae V . If P is a ompat operator, then B = P(B) is ompat,and this implies that V is �nite-dimensional whih is too restritive.We now dedue a \trunation operator", the projetion T :T : L2(R) ! L2(R); f 7! (1� �T )f:It is assumed that QP is a ompat operator (but not neessarily T P). As s 2 V ,Ps = s, the observations rewrite:r = T s = T Ps = (Id�Q)Ps; ~r = T Ps+ �: (1.1)However, one an observe that, thanks again to the assumption Ps = s, one has moreover:r = T Ps = (Id�Q)Ps = (Id�QP)s; ~r = (Id�QP)s+ �: (1.2)Atually, from this simple alulation, one an make the following important remarks:� QP is a ompat operator on H = L2(R) as long as jT j is �nite 1 : hene its range is notlosed and zero is an aumulation point in its spetrum. Eigenvalues an also display avery sharp deay rate depending on the smoothness of the funtions in V (see e.g. [6,26℄).� the operator Id � QP de�ned on L2(R) is a Fredholm operator with losed range and�nite-dimensional null-spae; its restrition to V oinides with T P = (Id�Q)P .The Fredholm alternative applied to Id�QP : V ! L2(R) ensures that its range, ran(Id�QP), is losed in L2(R) and ran(Id � QP) = ker(Id � PQ)?. Moreover, the null-spaeker(Id�QP) is at most of �nite dimension and in ase ker(Id�QP) = f0g, ran(Id�QP) =L2(R) thus the equations (1.2) are invertible. Hene one swithes from the potentially ill-posed inverse problem of trying to solve diretly the equation T Ps = r (see e.g. [21℄) to thestable one (Id�QP)s = r. More preisely:Theorem 1 Let V and T be suh that the operator norm kQPk < 1: in the noise-free ase,any s 2 V an be fully reovered from r, i.e. ker(Id � QP) = f0g and (Id � QP)�1r = s.In the noisy ase, the stability estimate holds:s� (Id�QP)�1~rL2(R) � k�kL2(R)1� kQPk : (1.3)The proof an be found in [13℄ (Theorem 4) and [49℄ (Corollary 1). The estimate (1.3) showsthat the noise is at most ampli�ed by a fator (1� kQPk)�1; it is heneforth a onvenientstrategy to rely on the Fredholm operator Id�QP to perform signal reovery/extrapolation.However, for s 62 V , the solution of (Id � QP)s = r and T Ps = r will learly di�er. As aonsequene of Theorem 1, (Id � QP)�1 an be omputed (at least, theoretially) via aniterative sheme, the so{alled Neumann series:(Id�QP)�1 = 1Xk=0(QP)k: (1.4)1 The �niteness hypothesis for the measure of T an be understood through thesimple example of the \sliding bumps": let ' be a C1 funtion supported in [�1; 1℄,and de�ne the sequene 'n(t) = '(t�n) whih is bounded in e.g. any Sobolev spaeHs(R). Sine it \esapes at in�nity", it onverges weakly to zero but learly notstrongly; one annot hope to have QP ompat for general unbounded T .2



This is usually alled the Gerhberg-Papoulis (GP) algorithm [16,35℄ or the AlternatingProjetions (AP) method. Pratial performane an be improved by following the results ine.g. [5,8℄. The so-alled \Generalized Gerhberg-Papoulis" algorithm studied in [27,28,45,46℄redues to the Alternating Projetions method with the hoie of a given multi-resolutionsubspae V = VJ of sale-limited funtions, for some sale parameter J 2 N.Corollary 1 Under the hypotheses of Theorem 1, let s` = Pk̀=0(QP)kr. The followingerror estimate holds: (linear onvergene of Alternating Projetions)ks� s`kL2(R) � kQPk`ks� rkL2(R): (1.5)Proof. In the present ase, the approximation s` satis�es the relation: s0 = r, sk+1 =r+QPsk. Hene sk+1� s = (Id�Q)s+QPsk� s = QP(sk� s); the result (1.5) follows. 2Similar algorithms are also widely used in the ontext of irregular sampling, see for instane[15,18,39℄, whih addresses the related issue of reonstruting a funtion belonging to asubspae V starting from a olletion of pointwise observations; these results an be seenas an extreme example of the large-sieve stability estimates proved in [12℄.1.2 Objetives and outline of the paperWe are partly motivated by the question raised in the paper [27℄ (bottom of page 229):\we assume that the observation of the signal f inside the interval [�T; T ℄ an uniquelydetermine the value of f up to [��;�℄ in the time domain. Given T, the � value will dependon the regularity of the signal and the sale parameters J . The mathematial relationshipbetween these parameters is still open". To the best of our knowledge, it is still unanswered;in the present paper, we thus propose to establish that under a rather simple riterion basedon the Hilbert-Shmidt operator norm of the omposite of two orthogonal projetions, [13℄,stable reovery is possible by means of the iterative tehniques presented in [45℄.This paper is therefore organized as follows. In x2, we reall the subspaes of L2(R) whihwill be useful in the paper, namely the Paley-Wiener spae of band-limited funtions andthe multi-resolution analysis; tehnial results about the omposition produt of two orthog-onal projetions in Hilbert spae are also realled, inluding the haraterization throughthe minimal anonial angle between subspaes. Inx3, we derive our Donoho-Stark riterionfor stable signal reovery by omputing the Hilbert-Shmidt norm of the produt of proje-tions PQ by taking advantage of the struture of Reproduing Kernel Hilbert spaes; someonsequenes are obtained by using abstrat results from [25℄; numerial simulations follow-ing original ideas from [9℄ are displayed in x3.4. In x4, we exploit the fat that a Fredholmoperator has a losed range to study iterative algorithms for singular operators (see [26,33℄)in the ontext of signal reovery with a zero-angle problem (that is, when kQPk = 1);non-uniqueness is resolved by working with the \minimum-norm least squares" solution.Final onlusions are drawn in x5. Appendixes A and B ontain auxiliary results about atehnial lemma and the Zak transform.Signal reovery an be performed through the use of Slepian and Pollak's Prolate SpheroidalWave funtions (PSWF) but numerially, this yields an instable ill-posed inversion; sev-eral �xes have been proposed to stabilize this approah, like [21℄ and the more reent\geometri harmonis" by Coifman and Lafon [7℄. Several generalizations are proposed in[36,44℄. Extrapolation in disrete wavelet subspaes has been developed in a series of papers[45,46,27,28℄ by omputing \wavelet geometri harmonis"; in [9℄, early omputations showthe di�erent behavior when one passes from a band-limited saling funtion to another onewith ompat support. One idea ontained in [13℄ is to ompute expliitly an operator normin order to get a suÆient ondition ensuring that (1.2) is invertible and results of [49℄ an3



be applied; several developments have been published revently, see [32,42℄. A very originaland seemingly unknown paper onduting wavelet extrapolation and omparing it to theMNLS algorithms of [21℄ is [14℄. Donoho-Stark riterion is studied in the ontext of irregu-lar sampling in [16℄, see also [39℄. Some elements dealing with Compressed Sensing and theprodut of two orthogonal projetions are given in [41℄ and also [20℄, espeially x5.2 Band-limited and sale-limited extrapolations2.1 Paley-Wiener spae and Multi-Resolution Analysis (MRA)In the majority of appliations (exept for [36,42,44℄), V stands for a spae of band-limitedor sale-limited funtions. For any f 2 L2(R), we normalize its Fourier-Planherel transformF : L2(R) ! L2(R) as:8� 2 R; [Ff ℄(�) = f̂(�) = ZR f(t) exp(�2i�t�)dt:It follows that a funtion f is said to be band-limited as soon as there exists ! > 0 suhthat f̂(�) = 0 for any � with j�j > !. We an therefore introdue the Paley-Wiener spae:PW!(R) = nf 2 L2(R) suh that f̂(�) = 0 for j�j > !o :The Paley-Wiener theorem states that funtions belonging to PW!(R) an be extended tothe whole omplex plane as entire funtions of exponential type;f 2 PW!(R) ) 8z 2 C ; jf(z)j � supt2R jf(t)j exp(!j=(z)j):As a onsequene of analyti ontinuation theory for funtions of one omplex variable, theknowledge of suh a funtion restrited to any arbitrary interval of R allows to dedue allits remaining values in C . Thus band-limited extrapolation orresponds to the hoieV = PW!(R). Next, we introdue briey the onept of Multi-Resolution Analysis (MRA):(see e.g. [30℄ for details)De�nition 1 A sequene of nested subspaes Vj is alled a Multi-Resolution Analysis ofL2(R) if: f0g � � � � � V�1 � V0 � V1 � � � � � L2(R): Moreover, the following propertiesmust hold:� for all f 2 L2(R), kPVjf � fkL2 ! 0 as j ! +1 also, PVjf ! 0 as j ! �1.� if f(t) 2 Vj , then f(t=2) 2 Vj�1 and for all k 2 Z, f(t� 2jk) 2 Vj .� there exists a shift-invariant orthonormal base of V0 given by the saling funtion �n(t) =�(t� n) for n 2 Z.In this de�nition, PVj stands for the orthogonal projetor onto the subspae Vj . Intuitively,it asks for the Vj 's to be linear subspaes of L2(R) with inreasing temporal resolution:when j dereases, funtions in Vj tend to beome onstants. Oppositely, when j inreases,they are allowed to osillate with high instantaneous frequeny. The wavelet spaes Wjare de�ned as the orthogonal omplement of Vj inside Vj+1, whih means: for all j 2 Z,Vj+1 = Vj �Wj . From �n, the base of V0, one an dedue a base of Vj by simple dilatation,�j;n(t) = p2j�n(2jt) = p2j�(2jt� n): (2.1)4



Thus, the orthogonal projetion of f onto the sale-limited subspae Vj reads:PVjf =Xn2Z< f; �j;n > �j;n; < f; �j;n >= ZRf(t)�j;n(t):dt; (2.2)whih is the best approximation of f in Vj in the least-squares sense.2.2 Composite of two projetions in Hilbert spae and stable reoveryIn all the sequel, we shall use the following notation for the norm of any bounded operatorT : H ! H, H being a separable Hilbert spae,kTk := supf2H kTfkHkfkH :Moreover, kerT and ran(T ) will stand for its null-spae and its range, respetively. Verygeneral results about the struture of the omposition of two orthogonal projetions inHilbert spae are given in [34℄.Lemma 1 Let H be a Hilbert spae and PA, PB be two orthogonal projetions onto A, Bwhih are two losed linear subspaes of H . Then there holds:kPAPBk = kPBPAk � 1: (2.3)Indeed, the proof of the Lemma (forwarded in the Appendix) shows a bit more: we atuallyhave that kPAPBk2 = kPBPAk2 = �(PAPBPA) = �(PBPAPB), the spetral radius.Lemma 2 Under the hypotheses of Lemma 1, there holds moreover:kPAPBk = supf2B kPAfkHkfkH = supf2A kPBfkHkfkH = kPBPAk: (2.4)Proof. By de�nition, the operator norm of PAPB : H ! H reads:kPAPBk = supf2H kPAPBfkHkfkH :Sine PB is an orthogonal projetion, one an split H = B�B? suh that f = PBf +(Id�PB)f and kfk2H = kPBfk2H + k(Id� PB)fk2H. This yields:kPAPBk2 = supf2H kPAPB(PBf)k2HkPBfk2H + k(Id� PB)fk2H ;and this expression is learly maximized for f 2 B. The same reasoning an be made withPA and Lemma 1 allows to onlude. 2At this level, it is of ritial importane to be able to estimate as aurately as possible thequantity kQPk whih ontrols both the inversibility of Id�QP but also the error estimates(1.3) and (1.5). In both ases, the ondition kQPk < 1 expresses the fat that there existsno funtion belonging to V whih L2 norm is not a�eted when being trunated to R n T5



beause: kQPk = supf2L2(R) kQPfkL2(R)kfkL2(R) = supf2L2(R) kQPfkL2(R)kPfkL2(R) = supg2V kQgkL2(R)kgkL2(R) :For instane, if one onsiders sale-limited extrapolation with the so{alled disontinuousHaar basis (�(t) = �[0;1℄(t)), then kQPk = 1 for T = [2�Jk; 2�J(k + 1)℄, V = VJ and anyk 2 Z hene stable reovery annot be performed; see however the omputations with thissaling funtion in [7℄. In sharp ontrast, if the saling funtion � is hosen to be a band-limited funtion (see [45℄, or the \prolate spheroidal wavelets" in [43℄), then kQPk < 1beause � belongs to a Paley-Wiener spae (see Theorem 4 in [45℄). In [32℄, the authorsproved the following result (see Theorem 2, page 340), whih is a onsequene of [13,49℄:Theorem 2 (see [32℄) Let V = PW! for a given ! > 0 and T an arbitrary measurable andbounded set of R; then the equation (1.2) is always invertible, that is, kQP!k < 1.We annot expet suh a strong result in ase V = Vj , a more general subspae belongingto a MRA of L2(R); espeially, as soon as the saling funtion � has ompat support andjT j is big enough, it is possible to �nd non-trivial funtions f 2 Vj suh that kQfk = kfk.2.3 Geometri interpretation of omposition of projetionsDe�nition 2 Let A;B be two linear subspaes in a Hilbert spae H; the number 0 ��(A;B) � �2 is alled the minimal anonial angle between A and B and satis�es:os �(A;B) = supa2A;b2B j(a; b)jkakkbk := os(A;B): (2.5)In partiular, os �(A;B) = 1 when A � B whih is preisely the situation one wantsto absolutely avoid in the ontext of an extrapolation problem beause it means that,as they stand, the launary and possibly noised observations perfetly �t into the spaeof funtions ontaining the original signal. In this ase, there is no hope for reovery bymeans of alternating projetions beause ranPA � ranPB implies PAPB = PBPA = PA andkPAk = 1. Now, we an give a small result onerning an interpretation of the quantitiesinvolved in Lemma 1 as the osine of linear subspaes in a general setting:Lemma 3 Under the hypotheses of Lemma 1, there holds kPAPBk2 = os2(A;B).Proof. Thanks to (3) in the proof of Lemma 1, we have that kPAPBk2 = �(PBPAPB) andsine PBPAPB is self-adjoint, this implies:�(PBPAPB) = kPBPAPBk= supu2H; kuk�1 j(PBPAPBu; u)j= supu2H (PAPBu;PBu)kuk2H= supu2H (P 2APBu;PBu)kuk2H= supb2B (PAb;PAb)kbk2H= supb2B supa2A (a;b)2kak2Hkbk2H= os2(A;B)We used that PA, PB are self-adjoint, idempotent and have unit operator norm. 26



The next statement already appears elsewhere, see for instane Theorem 2.1 in [40℄ or[11,49℄. Part of it is proved in the standard textbook [4℄, pages 21-22.Theorem 3 (see [11,40℄) Let A;B be two losed linear subspaes of a Hilbert spae H; thefollowing statements are equivalent:(1) os(A;B) < 1(2) A+B is losed in H, i.e. A+B = A+B and A \ B = f0g.(3) There exists C > 0 suh that for all a; b 2 A�B, kak+ kbk � Cka+ bk.Clearly, statement (1) implies that A\B = f0g: otherwise it would suÆe to pik v 2 A\Bthus PAPBv = v and 1 is eigenvalue of PAPB . In the ontext of band-limited extrapolation,the ondition A \ B = f0g has a rather lear meaning: sine A stands for the subspae offuntions supported on T and B for the one of band-limited funtions, by the Paley-Wienertheorem, it is equivalent to the statement that no non-zero analyti funtion an vanish ona positive measure interval of R.3 Reproduing kernel Hilbert spae approah to estimate kQPkWe start with a lassial de�nition (see [2,48℄ for more details):De�nition 3 A (separable) Hilbert spae H is alled a Reproduing kernel Hilbert spae(RKHS) of funtions R ! R if for any t 2 R, there exists a ontinuous funtion K(:; t) 2 H,alled the reproduing kernel, whih satis�es:8t 2 R; K(:; t) 2 H; 8(t; f) 2 R �H; f(t) =< f;K(:; t) >= Z K(s; t)f(s):ds:In other words, point evaluation f 7! f(t) is ontinuous as an appliation H ! R. The Rieszrepresentation theorem guarantees, for every t 2 R, that the funtion K(:; t) is unique.The main point here is that, under mild assumptions and for H = L2(R), the spaes V ofinterest for band-limited and sale-limited extrapolation are RKHS.Theorem 4 (see [29,48℄)1. For any ! 2 R+ , the Paley-Wiener subspae PW!(R) of L2(R) is a RKHS with theShannon kernel: K!(s; t) = R !�! exp(2i��(t� s)):d� = sin 2�!(s�t)�(s�t) .2. If j�(t)j � C(1 + jtj)� 12�" for " > 0, any multi-resolution subspae Vj is a RKHS withkernel: Kj(s; t) =Pn2Z�j;n(s)�j;n(t) = 2jPn2Z�(2js� n)�(2jt� n).3.1 Calulation of the Hilbert-Shmidt norm of QPVj : Donoho-Stark riterionAt this point, one observes that for K 2 L2(R2 ) ontinuous and any t 2 R, f(t) =RRK(s; t)f(s)ds is a Hilbert-Shmidt operator; hene for band-limited extrapolation,P!Qf(t) = (Qf;K!(:; t)) = ZRK!(s; t)�T (s)f(s):ds;and a similar expression holds for sale-limited extrapolation. Thus, on the one hand it iswell-known that in this ase, kP!Qk � kP!QkHS = kK!�T kL2(R2), and on the other hand,7



Lemma 1 ensures that kP!Qk = kQP!k. So we obtain a onvenient bound for the operatornorm whih ontrols the error estimate (1.5). We swith now to MRA subspaes:Theorem 5 For Vj being some MRA subspae of L2(R) assoiated with a ontinuous sal-ing funtion � satisfying k�kL2(R) = 1 and j�(t)j � C(1 + jtj)� 12�", there holdskPVjQk2HS = Z2jT Z �dj�j2� (0; s):ds; (3.1)with Z(f)(t; �) standing for the Zak transform of the funtion f (f. Appendix B).Proof. We want to ompute kPVjQk2HS = Ij(T ) = RT RR jPn2Z�j;n(s)�j;n(t)j2:ds:dt forany j 2 Z. First, by a simple resaling argument, we get that Ij(T ) = I0(2jT ): hene weonentrate on the task of omputing I0(T ) whih is split into several steps.(1) First, for any s 2 R, we de�ne the funtion ks : t 7!Pn2Z�(s� n)�(t� n) and we dothe Fourier transform in the t variable:k̂s(�) =Xn2Z�(s� n) exp(�2i�n�)�̂(�) = �̂(�)Z�(s;��):The Planherel equality allows us to rewrite I0(T ) = RT RR j�(�)j2jZ�(s;��)j2d�ds.(2) We know that Z�(s;��) = exp(�2i��s)Z�̂(�; s) and that Z�̂(�; s+ 1) = Z�̂(�; s) forany s (f. [50℄, p.161{163), so we get:I0(T ) = ZT ZR j�(�)j2jZ�̂(�; s)j2d�ds = ZT Z 10 jZ�̂(�; s)j2Xk2Zj�̂(� + k)j2| {z }=1 d�ds;thanks to the properties of the saling funtion � generating a MRA (see [10℄, p.173).In ase T = [0; 1℄, this is already enough to onlude that I0([0; 1℄) = RR j�̂(�)j2d� =k�k2L2(R). More generally, if T = [a; b℄ with a; b 2 Z2, then Ij([a; b℄) = 2j jT j k�k2L2(R).(3) To estimate R 10 jZ�̂(�; s)j2d�, we must use the following fat (f. [50℄, p.165):Z 10 Z�̂(�; s)Z�̂(�; s)d� =Xk2Z��̂; �̂(:� n)� exp(�2i�ks) = Z ��̂ � �� (0; s);where �(�) = �̂(��) = �̂(�) beause � is real-valued. Hene the expression redues toZ 10 Z�̂(�; s)Z�̂(�; s)d� = Z ��̂ � �̂� (0; s) = Z �dj�j2� (0; s):It remains to integrate on T to obtain (3.1).2As an onsequene of (3.1), one an reover part of the result established by Donoho andStark (Lemma 2 in [13℄) for instane in ase T = [0; n℄, n 2 N, and �(t) = sin�!t�t , ! = 2j :sine s 7! Z �dj�j2� (0; s) is 1-periodi and thanks to the inversion formula (f. (B.3) or [50℄,8



p.163), one �nds immediately that:kP!Qk2HS = ndj�j2(0) = jT j k�k2L2(R) = jT j k�[�!2 ;!2 ℄k2L2(R) = !jT j = 2j jT j:The third equality omes from Planherel identity.3.2 Equivalent form of the Hilbert-Shmidt norm kQPVjkHSThe estimate (3.1) is diÆult to use when T has many onneted omponents, or even if Tis an interval with non-integer extremities; the following result �xes this issue:Corollary 2 Under the hypotheses of Theorem 5, there holds:kQPVjk2 = kPVjQk2 � kPVjQk2HS =Xk2Z�j�j2 � �2jT � (k): (3.2)Proof. This is a diret onsequene of the Poisson summation formula:RT Z �dj�j2� (0; s)ds = RT Pk2Zdj�j2(k) exp(�2i�ks)ds= RT Pk2Zj�j2(k � s)ds= Pk2ZRR j�j2(k � s)�T (s)ds= Pk2Z�j�j2 � �T � (k)2On Fig. 1, we display the squares of several standard saling funtions to be used in (3.2).Similarly to Theorem 10 in [13℄, one an question the sharpness of the suÆient riterion(3.2) and wonder whether it is possible to �nd sets T suh that kQPVjk < 1 and (3.2)isn't satis�ed. Atually, this is possible for bandlimited extrapolation; however, a ruialingredient in the proof of Theorem 10 in [13℄ lies in the fat that the reproduing kernelfor the Paley-Wiener spae PW! is the funtion \sin!(t � s)" whih deays when jt � sjgrows. This is not the ase when Vj is a MRA subspae in the sense of De�nition 1 as onehas only the following simple estimate,jK0(s; t)j �Xn j�(s� n)jj�(t � n)j � Cp1 + js� tj ;whih is a onsequene of the deay assumption on � and the inequality for any x; y 2 R:(1 + jxj)(1 + jyj) � 1+ jx� yj. Indeed, let us onsider T = T1 [ T2: the ore of the proof in[13℄ is to establish that, with straightforward notation, < Q1f;PQ2f > is small when T1 isfar from T2 for any f 2 L2(R).< Q1f;PV0Q2f > = RT1 f(t)�Pn2ZRT2 �(s� n)f(s):ds �(t� n)� :dt= Pn2Z�RT1 �(t� n)f(t):dt��RT2 �(s� n)f(s):ds�= Pn2Z[f�T1 � �℄:[f�T2 � �℄(n)= < PV0Q1f;PV0Q2f > :9



20 22 24 26 28 30 32 34 36 38 40
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

20 22 24 26 28 30 32 34 36 38 40
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

−20 −15 −10 −5 0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

−30 −25 −20 −15 −10 −5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

10 15 20 25 30 35 40 45 50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 1. Saling funtions j�j2: Daubehies 4 (top, left), Daubehies 6 (top, middle),Coiet 5 (top, right), Symmlet 10 (bottom, left), Meyer 3 (bottom, middle) andsin (bottom, right).This quantity is the salar produt in L2(R) of PV0(f�T1) and PV0(f�T2): it doesn't dereaseif T1 and T2 are far from eah other. Hene the ondition (3.2) is probably sharper thanit analogue for bandlimited extrapolation studied in [13℄. Moreover, it doesn't seem thatanalogues of the \large sieve" estimates studied in [12℄ allow to improve (3.2) in ase T isthe union of many disjoint intervals.Lemma 6 Let T � R and V be a losed linear subspae of L2(R) suh that the orthogonalprojetions P and Q satisfy kQPk < 1. Then, for any x 2 V = ran(P), < T x; x >= 0 ifand only if x = 0.Proof. Any x 2 ran(P) rewrites x = Pf for some f 2 L2(R), so< T x; x >=< T x;Px >=< PT Pf;Pf >=< T 2Pf;Pf >= kT Pfk2:Hene, assuming that kT Pfk2 = 0 yields that Pf = QPf . But, from the ontents ofLemma 2, this implies that for suh an x, one has,1 = kQPfkkPfk = kQPk;whih ontradits the hypothesis. 2Corollary 3 Under the general hypotheses of Theorem 5, as soon as the suÆient onditionPk2Z�j�j2 � �2jT � (k) < 1 is met, the following hold:(1) kQPVjk = kPVjQk < 1 and os �ranPVj ; ranQ� < 1,10



(2) ran(PVj ) \ ran(Q) = f0g and ran(PVj )� ran(Q) is losed in L2(R),(3) Vj = ran(PVjT ); espeially ran(PVjT ) and ran(T PVj ) are losed and the operatorT PVj is not ompat,(4) ran(PVj + Q) = ran(PVj ) � ran(Q); in partiular, the orthogonal projetion ontoran(PVj )� ran(Q) reads (Id�Q)(Id�PVjQ)�1PVj + (Id�PVj )(Id�QPVj )�1Q.(5) ran((Id �PVj )Q) and ran(Q(Id�PVj )) are losed.Proof. Points (1) and (2) follow from Theorem 3. For (3), the property \ran(PVj (Id�Q))losed" is a onsequene of Lemma 2.4 in [25℄ as soon as ran(PVj )+ran(Q) is losed in L2(R);learly, ran(PVjT ) � Vj . In order to prove the onverse, it suÆes to observe that ker(T PVj ) =f0g from the proof of Lemma 6; moreover, ran(T PVj ) is losed beause ran(PVjT ) is losed.Theorem II.19 in [4℄ allows to onlude that PVjT is onto. Points (4) and (5) also omefrom Lemma 3.4 of [25℄. 2Aording to [27℄ (see also [45℄), ran(PVjT ) is preisely the spae Uj written in Theorem1 in the ontext of sale-limited extrapolation. Taking into aount for the non-zero anglehypothesis allows to re�ne their result by showing that Uj = Vj as long as kQPVjk < 1 forgeneral saling funtions inside an orthogonal wavelet framework. In these former works,the property Uj = Vj was proved only for band-limited saling funtions.Remark 1 Here, we let P be any orthogonal projetion L2(R) ! ran(P): from Corollary3.2 in [25℄, it omes that both onditions kPQk < 1 and k(Id � P)T k < 1 imply thatL2(R) = ran(P)� ran(Q) beause the seond one ensures that �Id � (Id � P)(Id�Q)� isinvertible. Unfortunately we aren't able to present a situation for whih kPVjQk < 1 andk(Id�PVj )T k < 1 hold for Vj a MRA subspae and a measurable set T . However, it is rathereasy to visualize their meaning: the �rst ondition expresses the fat that, apart from zero, nofuntion supported on T belongs to Vj , and the seond, that no funtion supported on R n T(that is, the measurements in (1.1)) belongs to the diret sum of wavelet subspaes �`>jW`;funtions belonging to �`>jW` generally have a ertain number of vanishing moments, [10℄.3.3 Relation with Minimum-Norm (MN) solutionPoint (2) in Corollary 3 has an interesting onsequene; namely, onsidering the so-alledMinimum-Norm (MN) solution as proposed in Theorem 1 in [28℄, it is shown that theiteration limit �s of (1.4) admits the following minimization formulation:k�skL2(R) = inff2V nkfkL2(R) suh that T f = T s for s 2 V o: (3.3)This is one of the \best approximation problems" onsidered in [1℄, setions 5 and 6. First, assoon as the invertibility ondition kQPk < 1 is met (and in partiular, for any band-limitedextrapolation problem, see [32℄), this formulation is not relevant. In the speial ase whereone deals with a \zero-angle" problem for whih os(ran(P); ran(Q)) = 1, the dimension ofker(Id�QP) is stritly positive and one must restrit equation (1.2) to r 2 ran(Id�QP) =ker(Id � PQ)? thus satisfying a �nite number of orthogonality onditions; see espeiallythe Comment and Corollary 2 in [49℄ (page 698).Let us begin by realling a result from e.g. [3℄:Lemma 4 Let H be a Hilbert spae and M1;M2; :::;MK be a family of losed linear sub-spaes of H; if M := \Ki=1Mi denotes the (losed) intersetion of the Mi's and PMi is theorthogonal projetion on Mi, then for all x 2 H, there holds:limn!+1 k(PMK Æ ::: Æ PM2 Æ PM1)n x� PM xk = 0: (3.4)11



Sine Q is an orthogonal projetion and thanks to the assumption r 2 ran(Id � QP), wehave that r = s�QPs and the orresponding s 2 V deomposes into s = (Id�Q)s+Qs =r+QPs, inside whih one an plug again the deomposition s = r+QPs in order to obtain:s = r+QP(r+QPs) = r+QPr+(QP)2s. Denoting s(k) the kth iterate of (1.4), one gets:s = kXi=0(QP)ir + (QP)k+1s, s(k) = s� (QP)k+1s:The orthogonal projetionsQ and P satisfy the hypotheses of Lemma 4, hene we an deduethat �s = limk!+1 s(k) = s�Pran(P)\ran(Q)(s) where Pran(P)\ran(Q) stands for the orthogonalprojetion onto the intersetion of V and the subspae of funtions supported in T . At thislevel, one observes that the ondition kQPk < 1 implies that ran(P) \ ran(Q) = f0g, solimk!+1 s(k) = s. For a zero-angle extrapolation problem, this property doesn't hold andthe limit �s an be haraterized by the minimal property of any orthogonal projetion,k�skL2(R) = ks� Pran(P)\ran(Q)(s)kL2(R) = inff2V \ran(Q) ks� fkL2(R):As a onsequene of both the preeding equality and the orthogonal deomposition L2(R) =ran(Q)� ran(Q)?, that piking any g 2 V suh that (Id�Q)g = (Id�Q)s yields s� g =Q(s�g) 2 V \ran(Q) whih leads to k�skL2(R) = infg2V ks�(s�g)kL2(R) = infg2V kgkL2(R).This MN solution emerging from (1.4) is unstable in the very general situation onsideredin [49℄. Here we limit ourselves to a somewhat simpler ase for whih QP is ompat whihyields that Id�QP is a Fredholm operator with losed range. Hene a slight perturbationr + � of r 2 ran(Id � QP) will still belong to the range of Id � QP if � is small enough.However, this notion of solution doesn't allow to treat problems like (1.2) for whih kQPk =1 and r admits an orthogonal projetion onto ker(Id�PQ); they are in the next setion.3.4 Singular Value Deomposition (SVD) and eigenfuntions of QPVjQWith previous notations, let us now look at A = QP as a bounded operator de�ned on theHilbert spae H = L2(R) whih is assumed to be ompat and non-self-adjoint. It is easyto see that ran(P)? = ran(Id�P) � ker(QP). Thus, if we de�ne,A = QP : V = ran(P)! ran(Q); A� = PQ : ran(Q)! V = ran(P); (3.5)the standard SVD theory for ompat operators in Hilbert spaes gives:A�A k = PQP k = �k k; AA�'k = QPQ'k = �k'k; �k � 0; k 2 N; (3.6)where A� = PQ is the adjoint of A. Moreover,A k = QP k =p�k'k; A�'k = PQ'k =p�k k:Clearly, de�nition (3.5) implies that A�A = PQP : V ! V , AA� : ran(Q) ! ran(Q) areself-adjoint and therefore:� ( k)k2Z is an orthonormal base of ran(PQP) = ran(PQ),� ('k)k2Z is an orthonormal base of ran(QPQ) = ran(QP),The singular values �k are smaller than 1 sine A is a omposition of 2 orthogonal proje-tions; there also holds kAk = p�0. In the ontext of standard band-limited extrapolation,12



the olletion of funtions ('k ;  k), normalized 2 suh as k kkL2(R) = 1 is alled the ProlateSpheroidal Wave funtions (PSWF). They have been studied in detail by Slepian, Landauand Pollak; see [38℄ and [7℄, the book [19℄ and the surveys [20,31℄ for more on this topi.The funtion  0 is an extremal funtion of the type studied in the Setion 4 in [1℄.Lemma 7 If QP is a ompat operator, then its singular funtions (3.6) satisfy:8k 2 N; P'kp�k =  k: (3.7)Proof. From QPQ'k = �k'k, we get from (3.6) that:�kP'k = PQ(PQ'k) = PQP(p�k'k) = �kp�k'k:2Here, we try to ompute numerially the analogues of the funtions 'k when P is assumedto be the orthogonal projetion onto a MRA subspae with a given index j 2 Z for varioushoies of the saling funtion. On Figs. 2 and 3, we display the �rst 10 funtions satisfyingQPVjQ'k = �k'k splitting between the even and odd ones. One an easily see that theshape of the saling funtion appears very learly in these eigenfuntions whih are quitedi�erent from one another aording to the hoie of the saling funtion: see in partiularthe ones emerging from the Daubehies 4 ompared to the Symmlet 10. The eigenfuntionsoming out of the Coiet 5 saling funtions have also a partiular shape. The behaviorof the eigenvalues �k is presented for eah hoie of the saling funtion; however, even ifwe displayed only the 10 �rst eigenfuntions (orresponding to eigenvalues very lose to 1),we hose to show the whole set of numerial eigenfuntions. Possible inauraies may bepresent beause the linear system is ill-onditioned and diÆult to diagonalize eÆiently.Matries were 256 � 256 or 512 � 512 and the sale index j = 4 or j = 5; the disretewavelet transform is involving a periodization of the signal. These numerial results followearly omputations displayed in [9℄. Classial PSWF were omputed using the algorithmsproposed in [47℄ with 512 points and the Slepian parameter  = 13.4 Case kQPk = 1: Minimum-Norm Least Squares (MNLS) solutionIn sharp ontrast with band-limited extrapolation for whih the property kQPk < 1 gener-ally holds (whih is another form of the analyti extension priniple for funtions belongingto the Paley-Wiener spae PW!), it is easy to see that for MRA subspaes, the \bad ase"kQPVjk = 1 an happen. Indeed, pik T = [�a; a℄ and a saling funtion �j;n of ompatsupport: learly kQPVjk = 1 for 2a� jsupp(�j;0)j. Throughout this setion, we shall writeP instead of PVj for simpliity.4.1 Least Squares solution and normal equationsIn the ontext of band-limited extrapolation, MNLS solutions have been studied numeriallyin [21℄ who takled diretly equations (1.1).De�nition 4 Let F : X ! Y be a bounded linear operator with X, Y two Hilbert spaes:2 Numerially, the normalization is generally taken as k'kkL2(R) = 1 (see e.g. [47℄),whih implies k kkL2(R) !1 as k !1 as a onsequene of Lemma 7.13



(1) �x 2 X is alled a Least Squares solution of Fx = y if:kF �x� ykY = infz2X nkFz � ykY o:(2) xy 2 X is alled \best approximate solution" if it is a Least Squares solution withminimum norm, that is:kxykX = infz2X nkzkX with z is a Least Squares solution of Fx = yo:It is well-known that x is a least squares solutions if and only if it satis�es the so{alled\normal" equation F �Fx = F �y; in in�nite dimension, this modi�ed problem may haveno solution. However, in ase ran(F ) is losed, the set of all least squares solutions is anonempty onvex set whih therefore admits a unique element of minimum norm. Hene inthis ontext, it makes sense to speak about \the best approximate solution" xy of Fx = ywhih is also referred to as its Minimum-Norm Least Squares (MNLS) solution.Dealing with operators with a losed range brings many advantages when it omes tosolving equations like (1.1); however, exept in ase ran(T P) is �nite dimensional (thuslosed, whih is an assumption in [21℄), the operator A = T P is ompat and its range isgenerally not losed (see [26℄ for more details). Thus it forbids to speak about the MNLSof (1.1) without supplementary assumptions. It is therefore interesting to one again swithto the formulation (1.2) involving a Fredholm operator, whih may be singular in the sensethat ker(Id�QP) 6= f0g, but for whih ran(Id�QP) is always losed.The normal equations for (1.2) read:(Id�PQ)(Id�QP)s = (Id� [PQ+QP �PQP| {z }PQÆ(Id�P)+QÆP ℄)s = (Id�PQ)r: (4.1)Clearly, sine ker(Id�PQ)? = ran(Id�QP), the right-hand side satis�es:(Id�PQ)r = (Id�PQ)�r �Pker(Id�PQ)r� = (Id�PQ)Pran(Id�QP)r:Beause of the hypothesis kQPk = kPQk = 1, the formal Neumann series for inverting(4.1) may not onverge sine for any x 2 ran(P), [PQ + QP � PQP ℄x = QPx and forx0 2 ran(P)?, [PQ +QP � PQP ℄x0 = PQx0. However, this formal series is equivalent tothe following iterative sheme,s0 = (Id�PQ)r; sk+1 = (Id�PQ)r + [PQ+QP �PQP ℄sk;whih is a speial ase of the following \steepest desent" algorithm,sk+1 = sk � �k(Id�PQ) �(Id�QP)sk � r� ; (4.2)with the partiular hoie �k � 1 and s0 = (Id�PQ)r. By its onstrution, all the iteratesof the algorithm (4.2) belong to ran(Id�QP)� as soon as the initial value s0 does: this fatis used in [21℄ in order to redue omplexity for band-limited extrapolation when jT j is big.Indeed, one sees that starting from z0 = r and then de�ning an auxiliary sequene,zk+1 = zk � �k �(Id�QP)(Id�PQ)zk � r� ;one reovers any of the sk values in (4.2) for some k 2 N by omputing sk = (Id�PQ)zk;this allows to iterate inside ran(Id�QP) only. Related referenes are [8,39℄.14



4.2 Gradient algorithms for singular operators with losed rangeGeneral onvergene results of gradient algorithms for singular operators with losed rangein Hilbert spaes have been proved in [33,24℄: we are about to adapt them now to ourpartiular extrapolation/reovery problem.Theorem 8 Consider the Fredholm operator Id�QP : ran(P)! ran(T ) with kQPk = 1:the sequene (sk)k2N generated by (4.2) withqk = (Id�PQ) �(Id�QP)sk � r� ; �k = kqkk2k(Id�QP)qkk2 ;onverges in L2(R) toward a least squares solution �s whih depends on the initial value:�s = sy +Pker(Id�QP)s0;where Pker(Id�QP) stands for the orthogonal projetion onto the kernel of Id�QP. In asethe initial value satis�es s0 2 ran(Id�PQ) = ker(Id�QP)?;the sequene (sk)k2N onverges toward the MNLS sy of the equation (Id�QP)s = r.The onlusion of Theorem 8 still holds for the simpli�ed version of the algorithm obtainedby �xing a onstant value of �k as long as it is smaller than 2=kId�QPk; learly, kId �QPk = k(Id�Q)P + (Id�P)k � k(Id�Q)Pk+ kId�Pk = 2. Hene the ase �k � 1 isadmissible and the formal Neumann series oming from the normal equation is onvergent:sy =Xk�0[PQ+QP � PQP ℄k (Id�PQ)r:Remark 2 (1) The \losed range hypothesis" is ruial here: for some results valid inase it is bypassed, see e.g. [23℄. They allow to inverse equations involving a ompatoperator but the obtained solution is unstable.(2) The expression of Pker(Id�QP) an be made more expliit by observing that ker(Id �QP) = ran(P)\ ran(Q) 6= f0g (see Lemma 2.2 in [25℄). Sine these ranges are losed,ran(Id�PQ) = ker(Id�QP)?= �ran(P) \ ran(Q)�? � ran(P)? + ran(Q)?= �ran(Id�P)? \ ran(Id�Q)?�?= ran(Id�P) + ran(Id�Q)= ker(P) + ker(Q):Aording to Corollary 3, the ondition kQPk < 1 ensures that ran(P) \ ran(Q) =f0g = �ker(P) + ker(Q)�?, but here it doesn't hold thus ran(Id�PQ) 6= L2(R).(3) The MNLS sy also belongs to ker(Id � QP)? = ker(P) + ker(Q), whih ontains allthe iterates sk as soon as s0 2 ker(Id�QP)?.(4) Stability of the MNLS sy in the presene of additive noise �(t) in the observations isensured by the boundedness of the so{alled Moore-Penrose generalized inverse of (4.1);see e.g. [21,23{26℄ for details.(5) The issue of the ontinuous dependene of sy with respet to the measure of T or thesale index j is deliate as explained in setion 4 of [37℄.15



The onvergene of the steepest desent algorithm an be slow despite it is already fasterthan the standard Gerhberg-Papoulis iterates. Hene it makes sense to speed it up bysetting up a Conjugate Gradient (CG) routine as follows: let s0 2 ran(P) and omputev0 = p0 = (Id � PQ)�(Id � QP)s0 � r�. If p0 6= 0, then s1 = s0 � �0p0 with �0 =kv0k2=k(Id�QP)v0k2 like in the former algorithm. Now, for k 2 N,�k�1 = < vk�1; pk�1 >k(Id�QP)pk�1k2 ; vk = vk�1 � �k�1(Id�PQ)(Id�QP)pk�1; (4.3)and as long as vk 6= 0 of kvkk � " with " a small positive number, ompute�k�1 = < vk; (Id�PQ)(Id�QP)pk�1 >k(Id�QP)pk�1k2 ; pk = vk � �k�1pk�1: (4.4)When kvkk < ", it remains to set sk = s0 �Pk̀=0 �`p`. Along with the omputation of theiterates, it is interesting to ompute the following funtion,g(sk) =< vk; sk � sy >; sy the MNLS of (1:2);as it satis�es the following relation (see [24℄):g(sk) = g(sk�1)� �k�1kvk�1k2:At last, we de�ne the two positive numbers 0 < m � M as the spetral bounds of theoperator R whih is de�ned as the restrition of (Id�PQ)(Id�QP) to ran(Id�PQ):8x 2 ran(Id�PQ); mkxk � kRxk �Mkxk:We an adapt the onvergene result of [24℄ to our ontext as follows:Theorem 9 Let s0 2 ran(P), the iterates (4.3)-(4.4) generates a sequene (sk)k2N whihonverges monotonially toward a least squares solution of (1.2) �s = sy+Pker(Id�QP)s0. Inase s0 2 ran(Id�PQ) = ker(P) + ker(Q), one has the deay estimate:ksk � syk �rg(s0)m �M �mM +m�k :In general, one gives an initial value s0 2 ran(T ); for sale-limited extrapolation, P = PVjand ker(PVj ) = ran(Id�PVj ) = �`>jW`, the wavelet subspaes satisfying Vj+1 = Vj �Wjand ontaining funtions with vanishing moments. The simplest hoie is of ourse s0 = 0.Corollary 4 Let Vj be a MRA subspae and T suh that kQPVjk = 1: the MNLS solutionsy of (1.2) satis�es: sy 2 ran(Id�PVjQ) = �`>jW` + ran(T ):In partiular, it an happen that sy 62 Vj and T PVjsy = (Id�Q)PVjsy 6= (Id�QPVj )sy.Proof. This is mainly a onsequene of Point (2) in Remark 2. 2In [24℄, the onvergene of the algorithm (4.3)-(4.4) in ase one deals with a bounded singularoperator with non-losed range is also established under some supplementary hypotheses onr and s0. This is the situation arising when trying to ompute least squares solution of the16



equations (1.1) in in�nite dimension: this has been done numerially (in �nite dimension)for band-limited extrapolation in [21℄ and for sale-limited extrapolation in [28℄.5 ConlusionWe presented in this paper a rather simple and expliit riterion allowing to estimate theoperator norm kQPk whih ontrols the stability of the extrapolation proess in the par-tiular ase P is the orthogonal projetor onto one of the nested subspaes of a MRA. Thehoie of the saling funtion doesn't appear in the omputation, and it is not requiredthat the \hole" T should be an interval of R. Geometri harmonis for several hoies ofthe saling funtions are also displayed together with their orresponding eigenvalues whihshow a sharp deay from nearly 1 to zero beyond a ertain level. These results allow togive a preise answer to a question raised in [27℄ and also [17℄ in the ontext of a peu-liar appliation. Conerning the extension of these Donoho-Stark type riteria, the ase of�nite-dimensional problems and sparse Compressed Sensing situations have been treated in[20,41℄. More elaborate integral transforms are studied in [42℄ and PSWF for the frationalFourier transform are omputed in [36,44℄ to whih a similar approah might be applied.A Proof of Lemma 1Clearly, kPAPBk � kPAkkPBk � 1; we split the proof into several steps:(1) For any bounded operator T on H, let �(T ) stand for the spetral radius of T , i.e.�(T ) = sup j�j for the � suh that T��I is not invertible. Then �(T ) = lim sup kTnjj1=nwhen n! +1. This yields in partiular �(T ) � jjT jj.(2) For T self-adjoint on H, one has jTf j2 = (Tf; Tf) = (f; T 2f) � jf jjT 2f j � jf j2kT 2k,hene kTk � kT 2k1=2, and kTk � kTnk1=n for n = 2p, whih implies kTk � �(T ) andby the preeding step, kTk = �(T ).(3) If T , U are self-adjoint and invertible, kTUk = �(UTTU)1=2, kUTk = �(TUUT )1=2.But TUUT = TU(UTTU)(TU)�1, so TUUT et UTTU are similar and have the samespetrum (thus same spetral radius). This implies that kTUk = kUTk.(4) The preeding step is still valid when T , U are self-adjoint and limits of self-adjointand invertible operators; this is the ase for any two orthogonal projetions PA andPB whih an be approximated by themselves plus "Id with " > 0 a small real numberand Id the identity mapping.2B The Zak transform: de�nition and propertiesIn this appendix setion, we limit ourselves to reall some basi fats about the Zak trans-form originally introdued in the ontext of solid-state physis. Following [50℄, we have:De�nition 5 Let f be a ontinuous funtion deaying at least like C(1+ jtj)�1�" with " > 0as jtj ! +1. The Zak transform of f is de�ned as8t; � 2 R2 ; Zf(t; �) =Xk2Zf(t+ k) exp(�2i�k�): (B.1)17
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Fig. 2. Eigenvalues and eigenfuntions for QPVjQ with Daubehies 4 (top) andCoiet 5 (bottom) saling funtions 22
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