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A Donoho-Stark 
riterion for stable signalre
overy in dis
rete wavelet subspa
esLaurent Gosse �IAC{CNR \Mauro Pi
one" (sezione di Bari) Via Amendola 122/I - 70126 Bari,ItalyAbstra
tWe derive a suÆ
ient 
ondition by means of whi
h one 
an re
over a s
ale-limitedsignal from the knowledge of a trun
ated version of it in a stable manner followingthe 
anvas introdu
ed by Donoho and Stark [13℄. The proof follows from simple
omputations involving the Zak transform, well-known in solid-state physi
s. Ge-ometri
 harmoni
s (in the terminology of [7℄) for s
ale-limited subspa
es of L2(R)are also displayed for several test-
ases. Finally, some algorithms are studied for thetreatment of zero-angle problems.Key words: Produ
t of orthogonal proje
tions, Hilbert-S
hmidt operator,geometri
 harmoni
s, singular operator with 
losed range, gradient algorithms.1991 MSC: 47a52, 47b32, 65r20, 65t60, 94a11
1 Introdu
tion1.1 PreliminariesThe problem of signal re
overy and extrapolation 
an be formalized in the following way:� A signal is modeled as a fun
tion s of the variable t (usually standing for time) belongingto a 
ertain 
losed linear subspa
e V of a (separable) Hilbert spa
e H, in general L2(R).� only a fra
tion r of s is observed: there is a set T (not ne
essarily an interval) su
h thatfor every t 2 T , r(t) = 0, expressing the fa
t that the 
orresponding information has beenlost. If �A stands for the 
hara
teristi
 fun
tion of the set A, one 
an write r = (1��T )s.� worse, the observations 
an be 
orrupted by a noise �, whi
h is nonetheless assumed tobe small in L2(R). In this last 
ase, one observes ~r = r + �.One 
an de�ne two orthogonal proje
tions depending on \the hole" T and V :P : L2(R) ! V; Q : f 2 L2(R) 7! f�T :� Corresponding AuthorPreprint submitted to Elsevier S
ien
e



We 
learly 
annot assume that P is 
ompa
t: sin
e it is idempotent, 
onsider B the unitball of the 
losed linear subspa
e V . If P is a 
ompa
t operator, then B = P(B) is 
ompa
t,and this implies that V is �nite-dimensional whi
h is too restri
tive.We now dedu
e a \trun
ation operator", the proje
tion T :T : L2(R) ! L2(R); f 7! (1� �T )f:It is assumed that QP is a 
ompa
t operator (but not ne
essarily T P). As s 2 V ,Ps = s, the observations rewrite:r = T s = T Ps = (Id�Q)Ps; ~r = T Ps+ �: (1.1)However, one 
an observe that, thanks again to the assumption Ps = s, one has moreover:r = T Ps = (Id�Q)Ps = (Id�QP)s; ~r = (Id�QP)s+ �: (1.2)A
tually, from this simple 
al
ulation, one 
an make the following important remarks:� QP is a 
ompa
t operator on H = L2(R) as long as jT j is �nite 1 : hen
e its range is not
losed and zero is an a

umulation point in its spe
trum. Eigenvalues 
an also display avery sharp de
ay rate depending on the smoothness of the fun
tions in V (see e.g. [6,26℄).� the operator Id � QP de�ned on L2(R) is a Fredholm operator with 
losed range and�nite-dimensional null-spa
e; its restri
tion to V 
oin
ides with T P = (Id�Q)P .The Fredholm alternative applied to Id�QP : V ! L2(R) ensures that its range, ran(Id�QP), is 
losed in L2(R) and ran(Id � QP) = ker(Id � PQ)?. Moreover, the null-spa
eker(Id�QP) is at most of �nite dimension and in 
ase ker(Id�QP) = f0g, ran(Id�QP) =L2(R) thus the equations (1.2) are invertible. Hen
e one swit
hes from the potentially ill-posed inverse problem of trying to solve dire
tly the equation T Ps = r (see e.g. [21℄) to thestable one (Id�QP)s = r. More pre
isely:Theorem 1 Let V and T be su
h that the operator norm kQPk < 1: in the noise-free 
ase,any s 2 V 
an be fully re
overed from r, i.e. ker(Id � QP) = f0g and (Id � QP)�1r = s.In the noisy 
ase, the stability estimate holds:

s� (Id�QP)�1~r

L2(R) � k�kL2(R)1� kQPk : (1.3)The proof 
an be found in [13℄ (Theorem 4) and [49℄ (Corollary 1). The estimate (1.3) showsthat the noise is at most ampli�ed by a fa
tor (1� kQPk)�1; it is hen
eforth a 
onvenientstrategy to rely on the Fredholm operator Id�QP to perform signal re
overy/extrapolation.However, for s 62 V , the solution of (Id � QP)s = r and T Ps = r will 
learly di�er. As a
onsequen
e of Theorem 1, (Id � QP)�1 
an be 
omputed (at least, theoreti
ally) via aniterative s
heme, the so{
alled Neumann series:(Id�QP)�1 = 1Xk=0(QP)k: (1.4)1 The �niteness hypothesis for the measure of T 
an be understood through thesimple example of the \sliding bumps": let ' be a C1 fun
tion supported in [�1; 1℄,and de�ne the sequen
e 'n(t) = '(t�n) whi
h is bounded in e.g. any Sobolev spa
eHs(R). Sin
e it \es
apes at in�nity", it 
onverges weakly to zero but 
learly notstrongly; one 
annot hope to have QP 
ompa
t for general unbounded T .2



This is usually 
alled the Ger
hberg-Papoulis (GP) algorithm [16,35℄ or the AlternatingProje
tions (AP) method. Pra
ti
al performan
e 
an be improved by following the results ine.g. [5,8℄. The so-
alled \Generalized Ger
hberg-Papoulis" algorithm studied in [27,28,45,46℄redu
es to the Alternating Proje
tions method with the 
hoi
e of a given multi-resolutionsubspa
e V = VJ of s
ale-limited fun
tions, for some s
ale parameter J 2 N.Corollary 1 Under the hypotheses of Theorem 1, let s` = Pk̀=0(QP)kr. The followingerror estimate holds: (linear 
onvergen
e of Alternating Proje
tions)ks� s`kL2(R) � kQPk`ks� rkL2(R): (1.5)Proof. In the present 
ase, the approximation s` satis�es the relation: s0 = r, sk+1 =r+QPsk. Hen
e sk+1� s = (Id�Q)s+QPsk� s = QP(sk� s); the result (1.5) follows. 2Similar algorithms are also widely used in the 
ontext of irregular sampling, see for instan
e[15,18,39℄, whi
h addresses the related issue of re
onstru
ting a fun
tion belonging to asubspa
e V starting from a 
olle
tion of pointwise observations; these results 
an be seenas an extreme example of the large-sieve stability estimates proved in [12℄.1.2 Obje
tives and outline of the paperWe are partly motivated by the question raised in the paper [27℄ (bottom of page 229):\we assume that the observation of the signal f inside the interval [�T; T ℄ 
an uniquelydetermine the value of f up to [��;�℄ in the time domain. Given T, the � value will dependon the regularity of the signal and the s
ale parameters J . The mathemati
al relationshipbetween these parameters is still open". To the best of our knowledge, it is still unanswered;in the present paper, we thus propose to establish that under a rather simple 
riterion basedon the Hilbert-S
hmidt operator norm of the 
omposite of two orthogonal proje
tions, [13℄,stable re
overy is possible by means of the iterative te
hniques presented in [45℄.This paper is therefore organized as follows. In x2, we re
all the subspa
es of L2(R) whi
hwill be useful in the paper, namely the Paley-Wiener spa
e of band-limited fun
tions andthe multi-resolution analysis; te
hni
al results about the 
omposition produ
t of two orthog-onal proje
tions in Hilbert spa
e are also re
alled, in
luding the 
hara
terization throughthe minimal 
anoni
al angle between subspa
es. Inx3, we derive our Donoho-Stark 
riterionfor stable signal re
overy by 
omputing the Hilbert-S
hmidt norm of the produ
t of proje
-tions PQ by taking advantage of the stru
ture of Reprodu
ing Kernel Hilbert spa
es; some
onsequen
es are obtained by using abstra
t results from [25℄; numeri
al simulations follow-ing original ideas from [9℄ are displayed in x3.4. In x4, we exploit the fa
t that a Fredholmoperator has a 
losed range to study iterative algorithms for singular operators (see [26,33℄)in the 
ontext of signal re
overy with a zero-angle problem (that is, when kQPk = 1);non-uniqueness is resolved by working with the \minimum-norm least squares" solution.Final 
on
lusions are drawn in x5. Appendixes A and B 
ontain auxiliary results about ate
hni
al lemma and the Zak transform.Signal re
overy 
an be performed through the use of Slepian and Pollak's Prolate SpheroidalWave fun
tions (PSWF) but numeri
ally, this yields an instable ill-posed inversion; sev-eral �xes have been proposed to stabilize this approa
h, like [21℄ and the more re
ent\geometri
 harmoni
s" by Coifman and Lafon [7℄. Several generalizations are proposed in[36,44℄. Extrapolation in dis
rete wavelet subspa
es has been developed in a series of papers[45,46,27,28℄ by 
omputing \wavelet geometri
 harmoni
s"; in [9℄, early 
omputations showthe di�erent behavior when one passes from a band-limited s
aling fun
tion to another onewith 
ompa
t support. One idea 
ontained in [13℄ is to 
ompute expli
itly an operator normin order to get a suÆ
ient 
ondition ensuring that (1.2) is invertible and results of [49℄ 
an3



be applied; several developments have been published revently, see [32,42℄. A very originaland seemingly unknown paper 
ondu
ting wavelet extrapolation and 
omparing it to theMNLS algorithms of [21℄ is [14℄. Donoho-Stark 
riterion is studied in the 
ontext of irregu-lar sampling in [16℄, see also [39℄. Some elements dealing with Compressed Sensing and theprodu
t of two orthogonal proje
tions are given in [41℄ and also [20℄, espe
ially x5.2 Band-limited and s
ale-limited extrapolations2.1 Paley-Wiener spa
e and Multi-Resolution Analysis (MRA)In the majority of appli
ations (ex
ept for [36,42,44℄), V stands for a spa
e of band-limitedor s
ale-limited fun
tions. For any f 2 L2(R), we normalize its Fourier-Plan
herel transformF : L2(R) ! L2(R) as:8� 2 R; [Ff ℄(�) = f̂(�) = ZR f(t) exp(�2i�t�)dt:It follows that a fun
tion f is said to be band-limited as soon as there exists ! > 0 su
hthat f̂(�) = 0 for any � with j�j > !. We 
an therefore introdu
e the Paley-Wiener spa
e:PW!(R) = nf 2 L2(R) su
h that f̂(�) = 0 for j�j > !o :The Paley-Wiener theorem states that fun
tions belonging to PW!(R) 
an be extended tothe whole 
omplex plane as entire fun
tions of exponential type;f 2 PW!(R) ) 8z 2 C ; jf(z)j � supt2R jf(t)j exp(!j=(z)j):As a 
onsequen
e of analyti
 
ontinuation theory for fun
tions of one 
omplex variable, theknowledge of su
h a fun
tion restri
ted to any arbitrary interval of R allows to dedu
e allits remaining values in C . Thus band-limited extrapolation 
orresponds to the 
hoi
eV = PW!(R). Next, we introdu
e brie
y the 
on
ept of Multi-Resolution Analysis (MRA):(see e.g. [30℄ for details)De�nition 1 A sequen
e of nested subspa
es Vj is 
alled a Multi-Resolution Analysis ofL2(R) if: f0g � � � � � V�1 � V0 � V1 � � � � � L2(R): Moreover, the following propertiesmust hold:� for all f 2 L2(R), kPVjf � fkL2 ! 0 as j ! +1 also, PVjf ! 0 as j ! �1.� if f(t) 2 Vj , then f(t=2) 2 Vj�1 and for all k 2 Z, f(t� 2jk) 2 Vj .� there exists a shift-invariant orthonormal base of V0 given by the s
aling fun
tion �n(t) =�(t� n) for n 2 Z.In this de�nition, PVj stands for the orthogonal proje
tor onto the subspa
e Vj . Intuitively,it asks for the Vj 's to be linear subspa
es of L2(R) with in
reasing temporal resolution:when j de
reases, fun
tions in Vj tend to be
ome 
onstants. Oppositely, when j in
reases,they are allowed to os
illate with high instantaneous frequen
y. The wavelet spa
es Wjare de�ned as the orthogonal 
omplement of Vj inside Vj+1, whi
h means: for all j 2 Z,Vj+1 = Vj �Wj . From �n, the base of V0, one 
an dedu
e a base of Vj by simple dilatation,�j;n(t) = p2j�n(2jt) = p2j�(2jt� n): (2.1)4



Thus, the orthogonal proje
tion of f onto the s
ale-limited subspa
e Vj reads:PVjf =Xn2Z< f; �j;n > �j;n; < f; �j;n >= ZRf(t)�j;n(t):dt; (2.2)whi
h is the best approximation of f in Vj in the least-squares sense.2.2 Composite of two proje
tions in Hilbert spa
e and stable re
overyIn all the sequel, we shall use the following notation for the norm of any bounded operatorT : H ! H, H being a separable Hilbert spa
e,kTk := supf2H kTfkHkfkH :Moreover, kerT and ran(T ) will stand for its null-spa
e and its range, respe
tively. Verygeneral results about the stru
ture of the 
omposition of two orthogonal proje
tions inHilbert spa
e are given in [34℄.Lemma 1 Let H be a Hilbert spa
e and PA, PB be two orthogonal proje
tions onto A, Bwhi
h are two 
losed linear subspa
es of H . Then there holds:kPAPBk = kPBPAk � 1: (2.3)Indeed, the proof of the Lemma (forwarded in the Appendix) shows a bit more: we a
tuallyhave that kPAPBk2 = kPBPAk2 = �(PAPBPA) = �(PBPAPB), the spe
tral radius.Lemma 2 Under the hypotheses of Lemma 1, there holds moreover:kPAPBk = supf2B kPAfkHkfkH = supf2A kPBfkHkfkH = kPBPAk: (2.4)Proof. By de�nition, the operator norm of PAPB : H ! H reads:kPAPBk = supf2H kPAPBfkHkfkH :Sin
e PB is an orthogonal proje
tion, one 
an split H = B�B? su
h that f = PBf +(Id�PB)f and kfk2H = kPBfk2H + k(Id� PB)fk2H. This yields:kPAPBk2 = supf2H kPAPB(PBf)k2HkPBfk2H + k(Id� PB)fk2H ;and this expression is 
learly maximized for f 2 B. The same reasoning 
an be made withPA and Lemma 1 allows to 
on
lude. 2At this level, it is of 
riti
al importan
e to be able to estimate as a

urately as possible thequantity kQPk whi
h 
ontrols both the inversibility of Id�QP but also the error estimates(1.3) and (1.5). In both 
ases, the 
ondition kQPk < 1 expresses the fa
t that there existsno fun
tion belonging to V whi
h L2 norm is not a�e
ted when being trun
ated to R n T5



be
ause: kQPk = supf2L2(R) kQPfkL2(R)kfkL2(R) = supf2L2(R) kQPfkL2(R)kPfkL2(R) = supg2V kQgkL2(R)kgkL2(R) :For instan
e, if one 
onsiders s
ale-limited extrapolation with the so{
alled dis
ontinuousHaar basis (�(t) = �[0;1℄(t)), then kQPk = 1 for T = [2�Jk; 2�J(k + 1)℄, V = VJ and anyk 2 Z hen
e stable re
overy 
annot be performed; see however the 
omputations with thiss
aling fun
tion in [7℄. In sharp 
ontrast, if the s
aling fun
tion � is 
hosen to be a band-limited fun
tion (see [45℄, or the \prolate spheroidal wavelets" in [43℄), then kQPk < 1be
ause � belongs to a Paley-Wiener spa
e (see Theorem 4 in [45℄). In [32℄, the authorsproved the following result (see Theorem 2, page 340), whi
h is a 
onsequen
e of [13,49℄:Theorem 2 (see [32℄) Let V = PW! for a given ! > 0 and T an arbitrary measurable andbounded set of R; then the equation (1.2) is always invertible, that is, kQP!k < 1.We 
annot expe
t su
h a strong result in 
ase V = Vj , a more general subspa
e belongingto a MRA of L2(R); espe
ially, as soon as the s
aling fun
tion � has 
ompa
t support andjT j is big enough, it is possible to �nd non-trivial fun
tions f 2 Vj su
h that kQfk = kfk.2.3 Geometri
 interpretation of 
omposition of proje
tionsDe�nition 2 Let A;B be two linear subspa
es in a Hilbert spa
e H; the number 0 ��(A;B) � �2 is 
alled the minimal 
anoni
al angle between A and B and satis�es:
os �(A;B) = supa2A;b2B j(a; b)jkakkbk := 
os(A;B): (2.5)In parti
ular, 
os �(A;B) = 1 when A � B whi
h is pre
isely the situation one wantsto absolutely avoid in the 
ontext of an extrapolation problem be
ause it means that,as they stand, the la
unary and possibly noised observations perfe
tly �t into the spa
eof fun
tions 
ontaining the original signal. In this 
ase, there is no hope for re
overy bymeans of alternating proje
tions be
ause ranPA � ranPB implies PAPB = PBPA = PA andkPAk = 1. Now, we 
an give a small result 
on
erning an interpretation of the quantitiesinvolved in Lemma 1 as the 
osine of linear subspa
es in a general setting:Lemma 3 Under the hypotheses of Lemma 1, there holds kPAPBk2 = 
os2(A;B).Proof. Thanks to (3) in the proof of Lemma 1, we have that kPAPBk2 = �(PBPAPB) andsin
e PBPAPB is self-adjoint, this implies:�(PBPAPB) = kPBPAPBk= supu2H; kuk�1 j(PBPAPBu; u)j= supu2H (PAPBu;PBu)kuk2H= supu2H (P 2APBu;PBu)kuk2H= supb2B (PAb;PAb)kbk2H= supb2B supa2A (a;b)2kak2Hkbk2H= 
os2(A;B)We used that PA, PB are self-adjoint, idempotent and have unit operator norm. 26



The next statement already appears elsewhere, see for instan
e Theorem 2.1 in [40℄ or[11,49℄. Part of it is proved in the standard textbook [4℄, pages 21-22.Theorem 3 (see [11,40℄) Let A;B be two 
losed linear subspa
es of a Hilbert spa
e H; thefollowing statements are equivalent:(1) 
os(A;B) < 1(2) A+B is 
losed in H, i.e. A+B = A+B and A \ B = f0g.(3) There exists C > 0 su
h that for all a; b 2 A�B, kak+ kbk � Cka+ bk.Clearly, statement (1) implies that A\B = f0g: otherwise it would suÆ
e to pi
k v 2 A\Bthus PAPBv = v and 1 is eigenvalue of PAPB . In the 
ontext of band-limited extrapolation,the 
ondition A \ B = f0g has a rather 
lear meaning: sin
e A stands for the subspa
e offun
tions supported on T and B for the one of band-limited fun
tions, by the Paley-Wienertheorem, it is equivalent to the statement that no non-zero analyti
 fun
tion 
an vanish ona positive measure interval of R.3 Reprodu
ing kernel Hilbert spa
e approa
h to estimate kQPkWe start with a 
lassi
al de�nition (see [2,48℄ for more details):De�nition 3 A (separable) Hilbert spa
e H is 
alled a Reprodu
ing kernel Hilbert spa
e(RKHS) of fun
tions R ! R if for any t 2 R, there exists a 
ontinuous fun
tion K(:; t) 2 H,
alled the reprodu
ing kernel, whi
h satis�es:8t 2 R; K(:; t) 2 H; 8(t; f) 2 R �H; f(t) =< f;K(:; t) >= Z K(s; t)f(s):ds:In other words, point evaluation f 7! f(t) is 
ontinuous as an appli
ation H ! R. The Rieszrepresentation theorem guarantees, for every t 2 R, that the fun
tion K(:; t) is unique.The main point here is that, under mild assumptions and for H = L2(R), the spa
es V ofinterest for band-limited and s
ale-limited extrapolation are RKHS.Theorem 4 (see [29,48℄)1. For any ! 2 R+ , the Paley-Wiener subspa
e PW!(R) of L2(R) is a RKHS with theShannon kernel: K!(s; t) = R !�! exp(2i��(t� s)):d� = sin 2�!(s�t)�(s�t) .2. If j�(t)j � C(1 + jtj)� 12�" for " > 0, any multi-resolution subspa
e Vj is a RKHS withkernel: Kj(s; t) =Pn2Z�j;n(s)�j;n(t) = 2jPn2Z�(2js� n)�(2jt� n).3.1 Cal
ulation of the Hilbert-S
hmidt norm of QPVj : Donoho-Stark 
riterionAt this point, one observes that for K 2 L2(R2 ) 
ontinuous and any t 2 R, f(t) =RRK(s; t)f(s)ds is a Hilbert-S
hmidt operator; hen
e for band-limited extrapolation,P!Qf(t) = (Qf;K!(:; t)) = ZRK!(s; t)�T (s)f(s):ds;and a similar expression holds for s
ale-limited extrapolation. Thus, on the one hand it iswell-known that in this 
ase, kP!Qk � kP!QkHS = kK!�T kL2(R2), and on the other hand,7



Lemma 1 ensures that kP!Qk = kQP!k. So we obtain a 
onvenient bound for the operatornorm whi
h 
ontrols the error estimate (1.5). We swit
h now to MRA subspa
es:Theorem 5 For Vj being some MRA subspa
e of L2(R) asso
iated with a 
ontinuous s
al-ing fun
tion � satisfying k�kL2(R) = 1 and j�(t)j � C(1 + jtj)� 12�", there holdskPVjQk2HS = Z2jT Z �dj�j2� (0; s):ds; (3.1)with Z(f)(t; �) standing for the Zak transform of the fun
tion f (
f. Appendix B).Proof. We want to 
ompute kPVjQk2HS = Ij(T ) = RT RR jPn2Z�j;n(s)�j;n(t)j2:ds:dt forany j 2 Z. First, by a simple res
aling argument, we get that Ij(T ) = I0(2jT ): hen
e we
on
entrate on the task of 
omputing I0(T ) whi
h is split into several steps.(1) First, for any s 2 R, we de�ne the fun
tion ks : t 7!Pn2Z�(s� n)�(t� n) and we dothe Fourier transform in the t variable:k̂s(�) =Xn2Z�(s� n) exp(�2i�n�)�̂(�) = �̂(�)Z�(s;��):The Plan
herel equality allows us to rewrite I0(T ) = RT RR j�(�)j2jZ�(s;��)j2d�ds.(2) We know that Z�(s;��) = exp(�2i��s)Z�̂(�; s) and that Z�̂(�; s+ 1) = Z�̂(�; s) forany s (
f. [50℄, p.161{163), so we get:I0(T ) = ZT ZR j�(�)j2jZ�̂(�; s)j2d�ds = ZT Z 10 jZ�̂(�; s)j2Xk2Zj�̂(� + k)j2| {z }=1 d�ds;thanks to the properties of the s
aling fun
tion � generating a MRA (see [10℄, p.173).In 
ase T = [0; 1℄, this is already enough to 
on
lude that I0([0; 1℄) = RR j�̂(�)j2d� =k�k2L2(R). More generally, if T = [a; b℄ with a; b 2 Z2, then Ij([a; b℄) = 2j jT j k�k2L2(R).(3) To estimate R 10 jZ�̂(�; s)j2d�, we must use the following fa
t (
f. [50℄, p.165):Z 10 Z�̂(�; s)Z�̂(�; s)d� =Xk2Z��̂; �̂(:� n)� exp(�2i�ks) = Z ��̂ � �� (0; s);where �(�) = �̂(��) = �̂(�) be
ause � is real-valued. Hen
e the expression redu
es toZ 10 Z�̂(�; s)Z�̂(�; s)d� = Z ��̂ � �̂� (0; s) = Z �dj�j2� (0; s):It remains to integrate on T to obtain (3.1).2As an 
onsequen
e of (3.1), one 
an re
over part of the result established by Donoho andStark (Lemma 2 in [13℄) for instan
e in 
ase T = [0; n℄, n 2 N, and �(t) = sin�!t�t , ! = 2j :sin
e s 7! Z �dj�j2� (0; s) is 1-periodi
 and thanks to the inversion formula (
f. (B.3) or [50℄,8



p.163), one �nds immediately that:kP!Qk2HS = ndj�j2(0) = jT j k�k2L2(R) = jT j k�[�!2 ;!2 ℄k2L2(R) = !jT j = 2j jT j:The third equality 
omes from Plan
herel identity.3.2 Equivalent form of the Hilbert-S
hmidt norm kQPVjkHSThe estimate (3.1) is diÆ
ult to use when T has many 
onne
ted 
omponents, or even if Tis an interval with non-integer extremities; the following result �xes this issue:Corollary 2 Under the hypotheses of Theorem 5, there holds:kQPVjk2 = kPVjQk2 � kPVjQk2HS =Xk2Z�j�j2 � �2jT � (k): (3.2)Proof. This is a dire
t 
onsequen
e of the Poisson summation formula:RT Z �dj�j2� (0; s)ds = RT Pk2Zdj�j2(k) exp(�2i�ks)ds= RT Pk2Zj�j2(k � s)ds= Pk2ZRR j�j2(k � s)�T (s)ds= Pk2Z�j�j2 � �T � (k)2On Fig. 1, we display the squares of several standard s
aling fun
tions to be used in (3.2).Similarly to Theorem 10 in [13℄, one 
an question the sharpness of the suÆ
ient 
riterion(3.2) and wonder whether it is possible to �nd sets T su
h that kQPVjk < 1 and (3.2)isn't satis�ed. A
tually, this is possible for bandlimited extrapolation; however, a 
ru
ialingredient in the proof of Theorem 10 in [13℄ lies in the fa
t that the reprodu
ing kernelfor the Paley-Wiener spa
e PW! is the fun
tion \sin
!(t � s)" whi
h de
ays when jt � sjgrows. This is not the 
ase when Vj is a MRA subspa
e in the sense of De�nition 1 as onehas only the following simple estimate,jK0(s; t)j �Xn j�(s� n)jj�(t � n)j � Cp1 + js� tj ;whi
h is a 
onsequen
e of the de
ay assumption on � and the inequality for any x; y 2 R:(1 + jxj)(1 + jyj) � 1+ jx� yj. Indeed, let us 
onsider T = T1 [ T2: the 
ore of the proof in[13℄ is to establish that, with straightforward notation, < Q1f;PQ2f > is small when T1 isfar from T2 for any f 2 L2(R).< Q1f;PV0Q2f > = RT1 f(t)�Pn2ZRT2 �(s� n)f(s):ds �(t� n)� :dt= Pn2Z�RT1 �(t� n)f(t):dt��RT2 �(s� n)f(s):ds�= Pn2Z[f�T1 � �℄:[f�T2 � �℄(n)= < PV0Q1f;PV0Q2f > :9
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Fig. 1. S
aling fun
tions j�j2: Daube
hies 4 (top, left), Daube
hies 6 (top, middle),Coi
et 5 (top, right), Symmlet 10 (bottom, left), Meyer 3 (bottom, middle) andsin
 (bottom, right).This quantity is the s
alar produ
t in L2(R) of PV0(f�T1) and PV0(f�T2): it doesn't de
reaseif T1 and T2 are far from ea
h other. Hen
e the 
ondition (3.2) is probably sharper thanit analogue for bandlimited extrapolation studied in [13℄. Moreover, it doesn't seem thatanalogues of the \large sieve" estimates studied in [12℄ allow to improve (3.2) in 
ase T isthe union of many disjoint intervals.Lemma 6 Let T � R and V be a 
losed linear subspa
e of L2(R) su
h that the orthogonalproje
tions P and Q satisfy kQPk < 1. Then, for any x 2 V = ran(P), < T x; x >= 0 ifand only if x = 0.Proof. Any x 2 ran(P) rewrites x = Pf for some f 2 L2(R), so< T x; x >=< T x;Px >=< PT Pf;Pf >=< T 2Pf;Pf >= kT Pfk2:Hen
e, assuming that kT Pfk2 = 0 yields that Pf = QPf . But, from the 
ontents ofLemma 2, this implies that for su
h an x, one has,1 = kQPfkkPfk = kQPk;whi
h 
ontradi
ts the hypothesis. 2Corollary 3 Under the general hypotheses of Theorem 5, as soon as the suÆ
ient 
onditionPk2Z�j�j2 � �2jT � (k) < 1 is met, the following hold:(1) kQPVjk = kPVjQk < 1 and 
os �ranPVj ; ranQ� < 1,10



(2) ran(PVj ) \ ran(Q) = f0g and ran(PVj )� ran(Q) is 
losed in L2(R),(3) Vj = ran(PVjT ); espe
ially ran(PVjT ) and ran(T PVj ) are 
losed and the operatorT PVj is not 
ompa
t,(4) ran(PVj + Q) = ran(PVj ) � ran(Q); in parti
ular, the orthogonal proje
tion ontoran(PVj )� ran(Q) reads (Id�Q)(Id�PVjQ)�1PVj + (Id�PVj )(Id�QPVj )�1Q.(5) ran((Id �PVj )Q) and ran(Q(Id�PVj )) are 
losed.Proof. Points (1) and (2) follow from Theorem 3. For (3), the property \ran(PVj (Id�Q))
losed" is a 
onsequen
e of Lemma 2.4 in [25℄ as soon as ran(PVj )+ran(Q) is 
losed in L2(R);
learly, ran(PVjT ) � Vj . In order to prove the 
onverse, it suÆ
es to observe that ker(T PVj ) =f0g from the proof of Lemma 6; moreover, ran(T PVj ) is 
losed be
ause ran(PVjT ) is 
losed.Theorem II.19 in [4℄ allows to 
on
lude that PVjT is onto. Points (4) and (5) also 
omefrom Lemma 3.4 of [25℄. 2A

ording to [27℄ (see also [45℄), ran(PVjT ) is pre
isely the spa
e Uj written in Theorem1 in the 
ontext of s
ale-limited extrapolation. Taking into a

ount for the non-zero anglehypothesis allows to re�ne their result by showing that Uj = Vj as long as kQPVjk < 1 forgeneral s
aling fun
tions inside an orthogonal wavelet framework. In these former works,the property Uj = Vj was proved only for band-limited s
aling fun
tions.Remark 1 Here, we let P be any orthogonal proje
tion L2(R) ! ran(P): from Corollary3.2 in [25℄, it 
omes that both 
onditions kPQk < 1 and k(Id � P)T k < 1 imply thatL2(R) = ran(P)� ran(Q) be
ause the se
ond one ensures that �Id � (Id � P)(Id�Q)� isinvertible. Unfortunately we aren't able to present a situation for whi
h kPVjQk < 1 andk(Id�PVj )T k < 1 hold for Vj a MRA subspa
e and a measurable set T . However, it is rathereasy to visualize their meaning: the �rst 
ondition expresses the fa
t that, apart from zero, nofun
tion supported on T belongs to Vj , and the se
ond, that no fun
tion supported on R n T(that is, the measurements in (1.1)) belongs to the dire
t sum of wavelet subspa
es �`>jW`;fun
tions belonging to �`>jW` generally have a 
ertain number of vanishing moments, [10℄.3.3 Relation with Minimum-Norm (MN) solutionPoint (2) in Corollary 3 has an interesting 
onsequen
e; namely, 
onsidering the so-
alledMinimum-Norm (MN) solution as proposed in Theorem 1 in [28℄, it is shown that theiteration limit �s of (1.4) admits the following minimization formulation:k�skL2(R) = inff2V nkfkL2(R) su
h that T f = T s for s 2 V o: (3.3)This is one of the \best approximation problems" 
onsidered in [1℄, se
tions 5 and 6. First, assoon as the invertibility 
ondition kQPk < 1 is met (and in parti
ular, for any band-limitedextrapolation problem, see [32℄), this formulation is not relevant. In the spe
ial 
ase whereone deals with a \zero-angle" problem for whi
h 
os(ran(P); ran(Q)) = 1, the dimension ofker(Id�QP) is stri
tly positive and one must restri
t equation (1.2) to r 2 ran(Id�QP) =ker(Id � PQ)? thus satisfying a �nite number of orthogonality 
onditions; see espe
iallythe Comment and Corollary 2 in [49℄ (page 698).Let us begin by re
alling a result from e.g. [3℄:Lemma 4 Let H be a Hilbert spa
e and M1;M2; :::;MK be a family of 
losed linear sub-spa
es of H; if M := \Ki=1Mi denotes the (
losed) interse
tion of the Mi's and PMi is theorthogonal proje
tion on Mi, then for all x 2 H, there holds:limn!+1 k(PMK Æ ::: Æ PM2 Æ PM1)n x� PM xk = 0: (3.4)11



Sin
e Q is an orthogonal proje
tion and thanks to the assumption r 2 ran(Id � QP), wehave that r = s�QPs and the 
orresponding s 2 V de
omposes into s = (Id�Q)s+Qs =r+QPs, inside whi
h one 
an plug again the de
omposition s = r+QPs in order to obtain:s = r+QP(r+QPs) = r+QPr+(QP)2s. Denoting s(k) the kth iterate of (1.4), one gets:s = kXi=0(QP)ir + (QP)k+1s, s(k) = s� (QP)k+1s:The orthogonal proje
tionsQ and P satisfy the hypotheses of Lemma 4, hen
e we 
an dedu
ethat �s = limk!+1 s(k) = s�Pran(P)\ran(Q)(s) where Pran(P)\ran(Q) stands for the orthogonalproje
tion onto the interse
tion of V and the subspa
e of fun
tions supported in T . At thislevel, one observes that the 
ondition kQPk < 1 implies that ran(P) \ ran(Q) = f0g, solimk!+1 s(k) = s. For a zero-angle extrapolation problem, this property doesn't hold andthe limit �s 
an be 
hara
terized by the minimal property of any orthogonal proje
tion,k�skL2(R) = ks� Pran(P)\ran(Q)(s)kL2(R) = inff2V \ran(Q) ks� fkL2(R):As a 
onsequen
e of both the pre
eding equality and the orthogonal de
omposition L2(R) =ran(Q)� ran(Q)?, that pi
king any g 2 V su
h that (Id�Q)g = (Id�Q)s yields s� g =Q(s�g) 2 V \ran(Q) whi
h leads to k�skL2(R) = infg2V ks�(s�g)kL2(R) = infg2V kgkL2(R).This MN solution emerging from (1.4) is unstable in the very general situation 
onsideredin [49℄. Here we limit ourselves to a somewhat simpler 
ase for whi
h QP is 
ompa
t whi
hyields that Id�QP is a Fredholm operator with 
losed range. Hen
e a slight perturbationr + � of r 2 ran(Id � QP) will still belong to the range of Id � QP if � is small enough.However, this notion of solution doesn't allow to treat problems like (1.2) for whi
h kQPk =1 and r admits an orthogonal proje
tion onto ker(Id�PQ); they are in the next se
tion.3.4 Singular Value De
omposition (SVD) and eigenfun
tions of QPVjQWith previous notations, let us now look at A = QP as a bounded operator de�ned on theHilbert spa
e H = L2(R) whi
h is assumed to be 
ompa
t and non-self-adjoint. It is easyto see that ran(P)? = ran(Id�P) � ker(QP). Thus, if we de�ne,A = QP : V = ran(P)! ran(Q); A� = PQ : ran(Q)! V = ran(P); (3.5)the standard SVD theory for 
ompa
t operators in Hilbert spa
es gives:A�A k = PQP k = �k k; AA�'k = QPQ'k = �k'k; �k � 0; k 2 N; (3.6)where A� = PQ is the adjoint of A. Moreover,A k = QP k =p�k'k; A�'k = PQ'k =p�k k:Clearly, de�nition (3.5) implies that A�A = PQP : V ! V , AA� : ran(Q) ! ran(Q) areself-adjoint and therefore:� ( k)k2Z is an orthonormal base of ran(PQP) = ran(PQ),� ('k)k2Z is an orthonormal base of ran(QPQ) = ran(QP),The singular values �k are smaller than 1 sin
e A is a 
omposition of 2 orthogonal proje
-tions; there also holds kAk = p�0. In the 
ontext of standard band-limited extrapolation,12



the 
olle
tion of fun
tions ('k ;  k), normalized 2 su
h as k kkL2(R) = 1 is 
alled the ProlateSpheroidal Wave fun
tions (PSWF). They have been studied in detail by Slepian, Landauand Pollak; see [38℄ and [7℄, the book [19℄ and the surveys [20,31℄ for more on this topi
.The fun
tion  0 is an extremal fun
tion of the type studied in the Se
tion 4 in [1℄.Lemma 7 If QP is a 
ompa
t operator, then its singular fun
tions (3.6) satisfy:8k 2 N; P'kp�k =  k: (3.7)Proof. From QPQ'k = �k'k, we get from (3.6) that:�kP'k = PQ(PQ'k) = PQP(p�k'k) = �kp�k'k:2Here, we try to 
ompute numeri
ally the analogues of the fun
tions 'k when P is assumedto be the orthogonal proje
tion onto a MRA subspa
e with a given index j 2 Z for various
hoi
es of the s
aling fun
tion. On Figs. 2 and 3, we display the �rst 10 fun
tions satisfyingQPVjQ'k = �k'k splitting between the even and odd ones. One 
an easily see that theshape of the s
aling fun
tion appears very 
learly in these eigenfun
tions whi
h are quitedi�erent from one another a

ording to the 
hoi
e of the s
aling fun
tion: see in parti
ularthe ones emerging from the Daube
hies 4 
ompared to the Symmlet 10. The eigenfun
tions
oming out of the Coi
et 5 s
aling fun
tions have also a parti
ular shape. The behaviorof the eigenvalues �k is presented for ea
h 
hoi
e of the s
aling fun
tion; however, even ifwe displayed only the 10 �rst eigenfun
tions (
orresponding to eigenvalues very 
lose to 1),we 
hose to show the whole set of numeri
al eigenfun
tions. Possible ina

ura
ies may bepresent be
ause the linear system is ill-
onditioned and diÆ
ult to diagonalize eÆ
iently.Matri
es were 256 � 256 or 512 � 512 and the s
ale index j = 4 or j = 5; the dis
retewavelet transform is involving a periodization of the signal. These numeri
al results followearly 
omputations displayed in [9℄. Classi
al PSWF were 
omputed using the algorithmsproposed in [47℄ with 512 points and the Slepian parameter 
 = 13.4 Case kQPk = 1: Minimum-Norm Least Squares (MNLS) solutionIn sharp 
ontrast with band-limited extrapolation for whi
h the property kQPk < 1 gener-ally holds (whi
h is another form of the analyti
 extension prin
iple for fun
tions belongingto the Paley-Wiener spa
e PW!), it is easy to see that for MRA subspa
es, the \bad 
ase"kQPVjk = 1 
an happen. Indeed, pi
k T = [�a; a℄ and a s
aling fun
tion �j;n of 
ompa
tsupport: 
learly kQPVjk = 1 for 2a� jsupp(�j;0)j. Throughout this se
tion, we shall writeP instead of PVj for simpli
ity.4.1 Least Squares solution and normal equationsIn the 
ontext of band-limited extrapolation, MNLS solutions have been studied numeri
allyin [21℄ who ta
kled dire
tly equations (1.1).De�nition 4 Let F : X ! Y be a bounded linear operator with X, Y two Hilbert spa
es:2 Numeri
ally, the normalization is generally taken as k'kkL2(R) = 1 (see e.g. [47℄),whi
h implies k kkL2(R) !1 as k !1 as a 
onsequen
e of Lemma 7.13



(1) �x 2 X is 
alled a Least Squares solution of Fx = y if:kF �x� ykY = infz2X nkFz � ykY o:(2) xy 2 X is 
alled \best approximate solution" if it is a Least Squares solution withminimum norm, that is:kxykX = infz2X nkzkX with z is a Least Squares solution of Fx = yo:It is well-known that x is a least squares solutions if and only if it satis�es the so{
alled\normal" equation F �Fx = F �y; in in�nite dimension, this modi�ed problem may haveno solution. However, in 
ase ran(F ) is 
losed, the set of all least squares solutions is anonempty 
onvex set whi
h therefore admits a unique element of minimum norm. Hen
e inthis 
ontext, it makes sense to speak about \the best approximate solution" xy of Fx = ywhi
h is also referred to as its Minimum-Norm Least Squares (MNLS) solution.Dealing with operators with a 
losed range brings many advantages when it 
omes tosolving equations like (1.1); however, ex
ept in 
ase ran(T P) is �nite dimensional (thus
losed, whi
h is an assumption in [21℄), the operator A = T P is 
ompa
t and its range isgenerally not 
losed (see [26℄ for more details). Thus it forbids to speak about the MNLSof (1.1) without supplementary assumptions. It is therefore interesting to on
e again swit
hto the formulation (1.2) involving a Fredholm operator, whi
h may be singular in the sensethat ker(Id�QP) 6= f0g, but for whi
h ran(Id�QP) is always 
losed.The normal equations for (1.2) read:(Id�PQ)(Id�QP)s = (Id� [PQ+QP �PQP| {z }PQÆ(Id�P)+QÆP ℄)s = (Id�PQ)r: (4.1)Clearly, sin
e ker(Id�PQ)? = ran(Id�QP), the right-hand side satis�es:(Id�PQ)r = (Id�PQ)�r �Pker(Id�PQ)r� = (Id�PQ)Pran(Id�QP)r:Be
ause of the hypothesis kQPk = kPQk = 1, the formal Neumann series for inverting(4.1) may not 
onverge sin
e for any x 2 ran(P), [PQ + QP � PQP ℄x = QPx and forx0 2 ran(P)?, [PQ +QP � PQP ℄x0 = PQx0. However, this formal series is equivalent tothe following iterative s
heme,s0 = (Id�PQ)r; sk+1 = (Id�PQ)r + [PQ+QP �PQP ℄sk;whi
h is a spe
ial 
ase of the following \steepest des
ent" algorithm,sk+1 = sk � �k(Id�PQ) �(Id�QP)sk � r� ; (4.2)with the parti
ular 
hoi
e �k � 1 and s0 = (Id�PQ)r. By its 
onstru
tion, all the iteratesof the algorithm (4.2) belong to ran(Id�QP)� as soon as the initial value s0 does: this fa
tis used in [21℄ in order to redu
e 
omplexity for band-limited extrapolation when jT j is big.Indeed, one sees that starting from z0 = r and then de�ning an auxiliary sequen
e,zk+1 = zk � �k �(Id�QP)(Id�PQ)zk � r� ;one re
overs any of the sk values in (4.2) for some k 2 N by 
omputing sk = (Id�PQ)zk;this allows to iterate inside ran(Id�QP) only. Related referen
es are [8,39℄.14



4.2 Gradient algorithms for singular operators with 
losed rangeGeneral 
onvergen
e results of gradient algorithms for singular operators with 
losed rangein Hilbert spa
es have been proved in [33,24℄: we are about to adapt them now to ourparti
ular extrapolation/re
overy problem.Theorem 8 Consider the Fredholm operator Id�QP : ran(P)! ran(T ) with kQPk = 1:the sequen
e (sk)k2N generated by (4.2) withqk = (Id�PQ) �(Id�QP)sk � r� ; �k = kqkk2k(Id�QP)qkk2 ;
onverges in L2(R) toward a least squares solution �s whi
h depends on the initial value:�s = sy +Pker(Id�QP)s0;where Pker(Id�QP) stands for the orthogonal proje
tion onto the kernel of Id�QP. In 
asethe initial value satis�es s0 2 ran(Id�PQ) = ker(Id�QP)?;the sequen
e (sk)k2N 
onverges toward the MNLS sy of the equation (Id�QP)s = r.The 
on
lusion of Theorem 8 still holds for the simpli�ed version of the algorithm obtainedby �xing a 
onstant value of �k as long as it is smaller than 2=kId�QPk; 
learly, kId �QPk = k(Id�Q)P + (Id�P)k � k(Id�Q)Pk+ kId�Pk = 2. Hen
e the 
ase �k � 1 isadmissible and the formal Neumann series 
oming from the normal equation is 
onvergent:sy =Xk�0[PQ+QP � PQP ℄k (Id�PQ)r:Remark 2 (1) The \
losed range hypothesis" is 
ru
ial here: for some results valid in
ase it is bypassed, see e.g. [23℄. They allow to inverse equations involving a 
ompa
toperator but the obtained solution is unstable.(2) The expression of Pker(Id�QP) 
an be made more expli
it by observing that ker(Id �QP) = ran(P)\ ran(Q) 6= f0g (see Lemma 2.2 in [25℄). Sin
e these ranges are 
losed,ran(Id�PQ) = ker(Id�QP)?= �ran(P) \ ran(Q)�? � ran(P)? + ran(Q)?= �ran(Id�P)? \ ran(Id�Q)?�?= ran(Id�P) + ran(Id�Q)= ker(P) + ker(Q):A

ording to Corollary 3, the 
ondition kQPk < 1 ensures that ran(P) \ ran(Q) =f0g = �ker(P) + ker(Q)�?, but here it doesn't hold thus ran(Id�PQ) 6= L2(R).(3) The MNLS sy also belongs to ker(Id � QP)? = ker(P) + ker(Q), whi
h 
ontains allthe iterates sk as soon as s0 2 ker(Id�QP)?.(4) Stability of the MNLS sy in the presen
e of additive noise �(t) in the observations isensured by the boundedness of the so{
alled Moore-Penrose generalized inverse of (4.1);see e.g. [21,23{26℄ for details.(5) The issue of the 
ontinuous dependen
e of sy with respe
t to the measure of T or thes
ale index j is deli
ate as explained in se
tion 4 of [37℄.15



The 
onvergen
e of the steepest des
ent algorithm 
an be slow despite it is already fasterthan the standard Ger
hberg-Papoulis iterates. Hen
e it makes sense to speed it up bysetting up a Conjugate Gradient (CG) routine as follows: let s0 2 ran(P) and 
omputev0 = p0 = (Id � PQ)�(Id � QP)s0 � r�. If p0 6= 0, then s1 = s0 � �0p0 with �0 =kv0k2=k(Id�QP)v0k2 like in the former algorithm. Now, for k 2 N,�k�1 = < vk�1; pk�1 >k(Id�QP)pk�1k2 ; vk = vk�1 � �k�1(Id�PQ)(Id�QP)pk�1; (4.3)and as long as vk 6= 0 of kvkk � " with " a small positive number, 
ompute�k�1 = < vk; (Id�PQ)(Id�QP)pk�1 >k(Id�QP)pk�1k2 ; pk = vk � �k�1pk�1: (4.4)When kvkk < ", it remains to set sk = s0 �Pk̀=0 �`p`. Along with the 
omputation of theiterates, it is interesting to 
ompute the following fun
tion,g(sk) =< vk; sk � sy >; sy the MNLS of (1:2);as it satis�es the following relation (see [24℄):g(sk) = g(sk�1)� �k�1kvk�1k2:At last, we de�ne the two positive numbers 0 < m � M as the spe
tral bounds of theoperator R whi
h is de�ned as the restri
tion of (Id�PQ)(Id�QP) to ran(Id�PQ):8x 2 ran(Id�PQ); mkxk � kRxk �Mkxk:We 
an adapt the 
onvergen
e result of [24℄ to our 
ontext as follows:Theorem 9 Let s0 2 ran(P), the iterates (4.3)-(4.4) generates a sequen
e (sk)k2N whi
h
onverges monotoni
ally toward a least squares solution of (1.2) �s = sy+Pker(Id�QP)s0. In
ase s0 2 ran(Id�PQ) = ker(P) + ker(Q), one has the de
ay estimate:ksk � syk �rg(s0)m �M �mM +m�k :In general, one gives an initial value s0 2 ran(T ); for s
ale-limited extrapolation, P = PVjand ker(PVj ) = ran(Id�PVj ) = �`>jW`, the wavelet subspa
es satisfying Vj+1 = Vj �Wjand 
ontaining fun
tions with vanishing moments. The simplest 
hoi
e is of 
ourse s0 = 0.Corollary 4 Let Vj be a MRA subspa
e and T su
h that kQPVjk = 1: the MNLS solutionsy of (1.2) satis�es: sy 2 ran(Id�PVjQ) = �`>jW` + ran(T ):In parti
ular, it 
an happen that sy 62 Vj and T PVjsy = (Id�Q)PVjsy 6= (Id�QPVj )sy.Proof. This is mainly a 
onsequen
e of Point (2) in Remark 2. 2In [24℄, the 
onvergen
e of the algorithm (4.3)-(4.4) in 
ase one deals with a bounded singularoperator with non-
losed range is also established under some supplementary hypotheses onr and s0. This is the situation arising when trying to 
ompute least squares solution of the16



equations (1.1) in in�nite dimension: this has been done numeri
ally (in �nite dimension)for band-limited extrapolation in [21℄ and for s
ale-limited extrapolation in [28℄.5 Con
lusionWe presented in this paper a rather simple and expli
it 
riterion allowing to estimate theoperator norm kQPk whi
h 
ontrols the stability of the extrapolation pro
ess in the par-ti
ular 
ase P is the orthogonal proje
tor onto one of the nested subspa
es of a MRA. The
hoi
e of the s
aling fun
tion doesn't appear in the 
omputation, and it is not requiredthat the \hole" T should be an interval of R. Geometri
 harmoni
s for several 
hoi
es ofthe s
aling fun
tions are also displayed together with their 
orresponding eigenvalues whi
hshow a sharp de
ay from nearly 1 to zero beyond a 
ertain level. These results allow togive a pre
ise answer to a question raised in [27℄ and also [17℄ in the 
ontext of a pe
u-liar appli
ation. Con
erning the extension of these Donoho-Stark type 
riteria, the 
ase of�nite-dimensional problems and sparse Compressed Sensing situations have been treated in[20,41℄. More elaborate integral transforms are studied in [42℄ and PSWF for the fra
tionalFourier transform are 
omputed in [36,44℄ to whi
h a similar approa
h might be applied.A Proof of Lemma 1Clearly, kPAPBk � kPAkkPBk � 1; we split the proof into several steps:(1) For any bounded operator T on H, let �(T ) stand for the spe
tral radius of T , i.e.�(T ) = sup j�j for the � su
h that T��I is not invertible. Then �(T ) = lim sup kTnjj1=nwhen n! +1. This yields in parti
ular �(T ) � jjT jj.(2) For T self-adjoint on H, one has jTf j2 = (Tf; Tf) = (f; T 2f) � jf jjT 2f j � jf j2kT 2k,hen
e kTk � kT 2k1=2, and kTk � kTnk1=n for n = 2p, whi
h implies kTk � �(T ) andby the pre
eding step, kTk = �(T ).(3) If T , U are self-adjoint and invertible, kTUk = �(UTTU)1=2, kUTk = �(TUUT )1=2.But TUUT = TU(UTTU)(TU)�1, so TUUT et UTTU are similar and have the samespe
trum (thus same spe
tral radius). This implies that kTUk = kUTk.(4) The pre
eding step is still valid when T , U are self-adjoint and limits of self-adjointand invertible operators; this is the 
ase for any two orthogonal proje
tions PA andPB whi
h 
an be approximated by themselves plus "Id with " > 0 a small real numberand Id the identity mapping.2B The Zak transform: de�nition and propertiesIn this appendix se
tion, we limit ourselves to re
all some basi
 fa
ts about the Zak trans-form originally introdu
ed in the 
ontext of solid-state physi
s. Following [50℄, we have:De�nition 5 Let f be a 
ontinuous fun
tion de
aying at least like C(1+ jtj)�1�" with " > 0as jtj ! +1. The Zak transform of f is de�ned as8t; � 2 R2 ; Zf(t; �) =Xk2Zf(t+ k) exp(�2i�k�): (B.1)17



It is 
lear that Zf is periodi
:Zf(t; � + 1) = Zf(t; �); Zf(t+ 1; �) = exp(2�i�)Zf(t; �):Hen
e Z maps a fun
tion de�ned on R to another whi
h is fully determined by its restri
tionto the torus T = [0; 1℄2 in the time/frequen
y plane. Let f̂(�) = RR f(t) exp(�2i�t�)dt bethe Fourier transform of f 2 L2(R), there holds: 8t; �,Zf(t; �) = exp(2i�t�)Z f̂(��; t); Z f̂(�; t) = exp(2i�t�)Z f̂(t;��): (B.2)Moreover, there are inversion formulas:f(t) = Z 10 Zf(t; �)d�; f̂(�) = Z 10 exp(�2i��t)Zf(t; �)dt: (B.3)The Zak transform is an isometry from L2(R) onto L2(T) be
ause for any f; g,ZTZf(t; �)Zg(t; �)dt:d� = ZR f(t)�g(t):dt:Referen
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Fig. 2. Eigenvalues and eigenfun
tions for QPVjQ with Daube
hies 4 (top) andCoi
et 5 (bottom) s
aling fun
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