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ESTIMATION OF GENERALIZED PARETO DISTRIBUTION

JOAN DEL CASTILLO

Abstract. Research partially supported by the Spanish Ministerio de Educa-

cion y Ciencia, grant MTM2006-01477.: This paper provides precise arguments

to explain the anomalous behavior of the likelihood surface when sampling from

the generalized Pareto distribution for small or moderate samples. The behav-

ior of the profile-likelihood function is characterized in terms of the empirical

coefficient of variation. A sufficient condition is given for global maximum of

the likelihood function of the Pareto distribution to be at a finite point.

Keywords: Heavy-tailed inference. Extreme value theory. The coefficient of
variation.

1. Introduction

The Pareto distribution has long been used as a model for the tails of another
long-tailed distribution, see Arnold (1983). Applications to risk management in
finance and economics are now of increasing importance. Since Pickands (1975), it
has been well known that the conditional distribution of any random variable over
a high threshold is approximately generalized Pareto distribution (GPD), which
includes the Pareto distribution, the exponential distribution and distributions with
bounded support. These distributions are closely related to the extreme value
theory (Coles, 2001, and Embrechts et al. 1997).

The GPD has been used by many authors to model excedances in several fields
such as hydrology, insurance, finance and environmental science, see Finkenstadt
and Rootzén (2003), Coles (2001) and Embrechts et al. (1997). In general, GPD
can be applied to any situation in which the exponential distribution might be used
but in which some robustness is required against heavier tailed or lighter tailed
alternatives, see Van Montford and Witter (1985). The asymptotic behavior of
maximum likelihood estimators was studied by Davison (1984) and Smith (1985).
Nevertheless, there is evidence that numerical techniques for maximum likelihood
estimation do not work well in small samples and other estimation methods have
been proposed, see Castillo and Hadi (1997) and Hosking and Wallis (1987).

The paper provides precise arguments to explain the anomalous behavior of the
likelihood surface when sampling from the GPD distribution (Davison and Smith,
1990, and Castillo and Hadi, 1997). In Section 2, Theorem 1 proves that the be-
havior of the profile-likelihood for GPD is characterized by the sign of the empirical
coefficient of variation of the sample. Corollary 1 proves that the maximum of the
likelihood function for the Pareto distribution is at a finite point, for samples in
which the coefficient of variation is larger than 1. An example in the Appendix
shows that a local maximum for the likelihood function of the GPD could not exist
when the condition is not fulfilled.
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Monte Carlo simulation in Section 3 raises the problem of mis-specification for
small or moderate samples in GPD. It can be also explained from the difference
between the theoretical and the empirical coefficients of variation for small samples.
The practical relevance of these results is also discussed.

2. Main Results

The cumulative distribution function of GPD is

(2.1) F (x) = 1 − (1 + ξx/ψ)
−1/ξ

,

where ψ > 0 and ξ are scale and shape parameters. For ξ > 0 the range of x is x > 0
and the GPD is just one of several forms of the usual Pareto family of distribution

often called the Pareto distribution. For ξ < 0 the range of x is 0 < x < ψ/ |ξ|, then
GPD have bounded support. The limit case ξ = 0 corresponds to the exponential
distribution.

An alternative parameterization is σ = ψ/ |ξ| and |ξ| = s ξ, where s = sign (ξ).
Then, the probability density function for GPD is given by

(2.2) f (x;σ, ξ) =
1

σ |ξ|

(
1 + s

x

σ

)−(1+ξ)/ξ

,

for ξ < 0, the range of x is now 0 < x < σ. Using this notation the two families of
distributions corresponding to ξ > 0 and ξ < 0 can be studied at the same time.

Given a sample {xi} of size n, the log-likelihood function for GPD distribution,
divided by the sample size, is

(2.3) l (σ, ξ) = − log (s ξσ) −
1 + ξ

ξ n

n∑

i=1

log (1 + s xi/σ) .

If ξ < 0 it is assumed σ > M = max {xi}, otherwise the likelihood is zero. In this
case the likelihood may be made arbitrarily large as σ tends to M , so the maximum
likelihood estimators are taken to be the values which yield a local maximum of
(2.3), that often appears.

Maximum likelihood estimation of generalized Pareto parameters was discussed
by Davison (1984) and Smith (1985). In particular, for large samples, maximum
likelihood estimator exist and is asymptotically normal and efficient, provided that
−0.5 < ξ. The restriction −0.5 < ξ < 0.5 is usually assumed for both practical
and theoretical reasons, since GPD with ξ < −0.5 have finite end points and the
probability density function is strictly positive at each endpoint, and GPD with ξ >
0.5 have infinite variance. When GPD is used as an alternative to the exponential
distribution, values of ξ near 0 will be of greatest interest, because the exponential
distribution is a GPD with ξ = 0.

For moderate or small samples, anomalous behavior of the likelihood surface can
be encountered when sampling from the GPD distribution (Davison and Smith,
1990, and Castillo and Hadi, 1997). This will be explained in this paper from the
coefficient of variation of the sample. For instance, the coefficient of variation for
Pareto distribution (ξ < 0.5) is given by

(2.4) ζ =
√

1/(1 − 2ξ) > 1,
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but for small samples the empirical coefficient of variation

(2.5) cv =
√
m2 −m2

1/m1,

where mk =
∑
xk

i /n are the sample moments, may be lower than 1. Theorem 1
and Corollary 1 below in this Section provide more precise arguments.

Equating to zero the derivative of l (σ, ξ) in(2.3), with respect to ξ, we find

ξ̂ = ξ (σ), where

(2.6) ξ (σ) ≡ ξ (σ, s) =
1

n

n∑

i=1

log (1 + s xi/σ) .

The profile-likelihood is given by

(2.7) lp (σ, s) = − log [s ξ (σ) σ] − ξ (σ) − 1.

Proposition 1. The following limits hold:

lim
σ→∞

σ log (1 + x/σ) = x, lim
σ→∞

σx/(σ + x) = x,

lim
σ→∞

σ2 (log (1 + x/σ) − x/(σ + x)) = x2/2.

Proof. It is an elementary exercise in calculus, using series expansion.

Proposition 2. Let lp (σ, s) be the profile-likelihood, defined by (2.7) and let x be

the sample mean, then

lim
σ→∞

ξ (σ) = 0, lim
σ→∞

σξ (σ) = s x̄.

l0 ≡ lim
σ→∞

lp (σ, s) = − log (x) − 1.

Proof. The first limit is straightforward. From Proposition 1 it follows:

lim
σ→∞

σξ (σ) = lim
σ→∞

1

n

n∑

i=1

σ log (1 + s xi/σ) = s x̄

This prove the second limit and hence, since s2 = 1, the last limit follows.

Remark 1. The limit of the profile-likelihood, lp (σ, s), as σ tends to infinity, in

Proposition 2, corresponds to the log-likelihood of the exponential distribution for

the same sample. More precisely, the log-likelihood function for the exponential

distribution, σe−σx, divided by the sample size n, is l (σ, 0) = log σ − σ x and the

maximum likelihood estimator is σ̂ = 1/x then,

(2.8) l (σ̂, 0) = l0 = − log (x) − 1.

Theorem 1. For the Pareto distribution (ξ > 0), if the empirical coefficient of

variation is cv > 1 then lp (σ, 1) is a monotonous decreasing function for suffi-

ciently large σ, and if cv < 1 it is monotonous increasing. For the distributions

with bounded support in GPD (ξ < 0), if cv > 1 then lp (σ,−1) is a monotonous

increasing function for sufficiently large σ, and if cv < 1 it is monotonous decreas-

ing.

Proof. The derivative of (2.7) with respect to σ is given by

−s l′p (σ, s) = (ξ (σ) + σ ξ′ (σ) + σ ξ (σ) ξ′ (σ)) / (σ |ξ (σ)|) .

and the sign of −s l′p (σ, s) is the same as the sign of num (σ) = ξ (σ) + σ ξ′ (σ) +
σ ξ (σ) ξ′ (σ), since σ |ξ (σ)| > 0.
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Taking derivative with respect to σ in (2.6) it follows

σ ξ′ (σ) = −
1

n

n∑

i=1

s xi/(σ + s xi),

hence

num (σ) =
1

n

n∑

i=1

(log (1 + s xi/σ) − s xi/(σ + s xi)) −

(
1

n

n∑

i=1

log (1 + s xi/σ)

)(
1

n

n∑

i=1

s xi/(σ + s xi)

)
.

From Proposition 1, we have

lim
σ→∞

{
σ2 num (σ)

}
=

1

2n

n∑

i=1

x2
i − x2

Finally, note that 1
2n

∑n
i=1 x

2
i − x2 > 0 is equivalent to

(
m2 −m2

1

)
> m2

1 and
equivalent to cv > 1.

A first consequence of Theorem 1 is obtained immediately. lp (σ, s) tends to l0,
from Proposition 2, and lp (σ, s) is a monotonous function for sufficiently large σ
(Theorem 1) then these facts determine whether lp (σ, s) is greater or less than l0. If
cv > 1, lp (σ, 1) is a monotonous decreasing function and lp (σ,−1) is a monotonous
increasing function, for sufficiently large σ, then

(2.9) lp (σ, 1) > l0 > lp (σ,−1) .

In the same way, if cv < 1 then

(2.10) lp (σ, 1) < l0 < lp (σ,−1) ,

for sufficiently large σ.

Remark 2. From (2.6), as σ tends to infinite |ξ (σ)| tends to zero. Hence, for ξ in a

neighborhood of zero, the inequalities (2.9) and (2.10) show that if cv > 1 the Pareto

distribution is more likely than the exponential distribution and if cv < 1 a bounded

support distribution in GPD is more likely than the exponential distribution. These

facts are numerically relevant for an algorithm to obtain the maximum likelihood

estimator in GPD.

Corollary 1. Given a sample {xi} of positive numbers with an empirical coefficient

of variation cv > 1, the likelihood function for the Pareto distribution has a global

maximum at a finite point and the maximum is higher than the maximum for the

likelihood function of the exponential distribution.

Proof. For small values of σ we write

lp (σ, 1) = − (log σ + ξ (σ)) − log [ξ (σ)] − 1,

(log σ + ξ (σ)), tends to 1
n

∑n
i=1 log (xi) and log [ξ (σ)] goes to ∞. This proves

lim
σ→0

lp (σ, 1) = −∞.

Since lp (σ, 1) is a continuous and monotonous decreasing function for sufficiently
large σ (Theorem 1) the last limit prove that a global maximum exists. Inequality
(2.9) shows that it is up the maximum for the exponential distribution.
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When the coefficient of variation of the sample is cv < 1 there may be no
maximum likelihood estimator for the Pareto distribution and neither is there a
local maximum for the parameter space of the bounded support distributions in
the GPD. In the Appendix we give a simple example of this situation.

If lp (σ,−1) has a local minimum, as is usual, and cv < 1 then Theorem 1 proves
that there is a local maximum for the likelihood function, since lp (σ,−1) increase
on the right side of the minimum and is monotonous decreasing for large values of
σ.

3. Discussion

Analytical maximization of the log-likelihood for GPD is not possible, so nu-
merical techniques are required taking care to avoid numerical instabilities when ξ
near zero (Coles, 2001, pp 81). Theorem 1 clarifies the behavior of the likelihood
function in terms of the coefficient of variation of the sample. If cv > 1 the Pareto
distribution is more likely than a bounded support distribution in a neighborhood
of zero, and if cv < 1 a bounded support distribution is more likely than a Pareto
distribution. The numerical algorithms have to consider the cv sign of the sample

Corollary 1 proves that the likelihood function for the Pareto distribution has a
global maximum at a finite point for samples in which cv > 1, so it is extremely
simple to find it numerically. This is a sufficient condition and we also believe, from
numerical experiments, that it is necessary, although we are not able to prove it.

Hosking and Wallis (1987, pp 343) say ”we conclude that the vast majority of
failures of the algorithms are caused by the nonexistence of a local maximum of the
likelihood function rather than by failure of our algorithm to find a local maximum”.
We agree with them. Moreover, the example given in the Appendix proves the
nonexistence of a local maximum for a particular sample. Now it is clear that the
nonexistence of a local maximum it is possible. This problem increases when ξ
decreases, specially for the bounded support distributions in GPD, as Hosking and
Wallis (1987) showed.

Sampling from Pareto distribution in GPD shows another problem. A simulation
experiment was run to compute mis-specification for sample sizes n = 15, 25, 50, 100
and shape parameter ξ = 0.1, 0.2, 0.3, 0.4. The scale parameter σ was set to 1, since
the model (2.2) is invariant under scale changes. For each combination of values of
n and ξ, 50, 000 random samples were generated from the Pareto distribution and

the number of times the parameter estimates ξ̂ to be positive, negative or that the
algorithm does not converge are reported. It is noted from (2.4) that the theoretical
coefficient of variation for Pareto distribution is ζ > 1, but for small samples the
empirical coefficient of variation, cv, may be lower than 1. Table 1 shows that for
ξ = 0.3 (a distribution with infinite kurtosis) and sample size n = 15, 29% of cases

that lead to a wrong decision, ξ̂ < 0 (bounded support distribution), while in 4.8%
cases the algorithm does not converge. The problem remains for larger samples. For

ξ = 0.1 and sample size n = 100, 24.9% of cases have ξ̂ < 0. However, if we assume
Pareto distribution without considering the global GPD model (with the bounded
support distributions), then samples with cv > 1 lead to Pareto distribution and
samples with cv < 1 lead to the exponential distribution, ξ = 0, in both cases the
support for the distribution is (0,∞).

In the context of heavy-tailed inference assuming that the true distribution has
support in (0,∞), an alternative model for samples with cv < 1 may be truncated
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normal distribution. Castillo (1994) shows that the likelihood equations for trun-
cated normal distribution have a solution if and only if the empirical coefficient of
variation is cv < 1. Pareto distribution and truncated normal distribution are two
complementary families of distributions the former with theoretical coefficient of
variation ζ > 1 and the latter with ζ < 1. In both cases the exponential distribution
is the limit distribution as ζ tends to 1.

ξ 0.4 0.3 0.2 0.1

n ξ̂ > 0 ξ̂ < 0 NC ξ̂ > 0 ξ̂ < 0 NC ξ̂ > 0 ξ̂ < 0 NC ξ̂ > 0 ξ̂ < 0 NC

15 73.4 23.1 3.5 66.2 29.0 4.8 57.1 36.4 6.5 46.8 44.5 8.7
25 84.5 15.3 0.2 77.2 22.4 0.3 66.9 32.6 0.5 53.5 45.7 0.9
50 95.8 4.2 0.0 90.7 9.3 0.0 80.5 19.5 0.0 63.8 36.2 0.0
100 99.6 0.4 0.0 98.0 2.0 0.0 92.3 7.7 0.0 75.1 24.9 0.0

Table 1. Random samples generated from the Pareto distribution for sample
sizes n = 15, 25, 50, 100 and shape parameters ξ = 0.1, 0.2, 0.3, 0.4. The frequency

with which the parameter estimate ξ̂ is positive, negative or the algorithm does not
converge (NC), are reported.
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5. Appendix

Let us examine the sample of size two given by {x1, x2} = {1, 2} for the GPD.
First, we will show that the profile-likelihood lp (σ, 1), given by (2.7), is a monot-
onous increasing function for σ > 0 and, hence, there is no maximum likelihood
estimator for the Pareto distribution with this sample.

The derivative l′p (σ, 1) is given by

num (σ) = 8 + 6σ − σ (3 + 2σ) (log (1 + 1/σ) + log (1 + 2/σ)) ,

divided by a positive function. Hence, l′p (σ, 1) and num (σ) have equal sign and we
will see that it is positive.

The following results hold for the function num (σ) and for its derivatives:

lim
σ→∞

num (σ) = 4, lim
σ→∞

num′ (σ) = 0, lim
σ→∞

num′′ (σ) = 0,(5.1)

num′′′ (σ) = −
48 + 152σ + 162σ2 + 69σ3 + 9σ4

σ2 (2 + 3σ + σ2)
3 < 0.(5.2)

Then, num′′ (σ) is a monotonous decreasing function and, from the limit zero
property, num′′ (σ) > 0. Then, num′ (σ) is monotonous increasing and, hence,
num′ (σ) < 0. Therefore, num (σ) is a monotonous decreasing function, hence
num (σ) > 4, and its sign is always positive, as we said.

We will also show that the profile-likelihood lp (σ,−1) with the same sample,
{1, 2}, is a monotonous decreasing function for σ > 2 and, hence, does not exist
a local maximum for the parameter space of the bounded support distributions in
the GPD.

The derivative l′p (σ,−1) is given by

nu (σ) = 8 − 6σ + σ (3 − 2σ) (log (1 − 1/σ) + log (1 − 2/σ)) ,

divided by a negative function. We will see that the sign of nu (σ) is positive for σ
greater than 2 .

The following results hold for the function nu (σ) and for its derivatives:

lim
σ→∞

nu (σ) = 4, lim
σ→∞

nu′ (σ) = 0, lim
σ→∞

nu′′ (σ) = 0,(5.3)

nu′′′ (σ) =
48 − 152σ + 162σ2 − 69σ3 + 9σ4

σ2 (2 − 3σ + σ2)
3 .(5.4)

If σ > 2, the denominator of nu′′′ (σ) is positive; the greater real root of the numer-
ator is at σ1 = 4.36556, then nu′′′ (σ) > 0, for greater values of σ. Therefore, for
σ > σ1, nu

′′ (σ) is a monotonous increasing function and, from the limit zero prop-
erty, nu′′ (σ) < 0. Then, nu′ (σ) is monotonous decreasing and, hence, nu′ (σ) > 0,
for σ > σ1. Finally, nu (σ) is a monotonous increasing function for σ > σ1. It is
also clear that limσ↓2 nu (σ) = ∞.

For 2 < σ < σ1, nu (σ) has a minimum at σ0 = 2.89221 and nu (σ0) = 3.53456 >
0. Then, we conclude that the sign of nu (σ) is positive for σ > 2, lp (σ,−1) is a
monotonous decreasing function for σ > 2 and does not exist a local maximum for
the likelihood function of the GPD model with this sample.
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