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Abstract: Suppose that we are monitoring incoming observations for a change in mean
via a cusum test statistic. The usual nonparametric methods give first and second order
approximations for the one- and two-sided cases. We show how to improve the order of
these approximations for linear statistics.
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1 Introduction

Suppose that we are monitoring incoming observations for a change in mean via a cusum test
statistic. The usual nonparametric asymptotic methods give a first order approximation
in the one-sided case and a second order approximation in the two-sided case, where by
Ith order we mean an error of magnitude n−I/2 for n the sample size. We show how to
improve on the order of these approximations using simple linear statistics. These are
most appropriate when one wishes to ensure against one-sided alternatives like a monotonic
trend or jump. We give second order one-sided approximations; when the skewness is known
(for example, for a symmetric population) we give third order one-sided and fourth order
two-sided approximations.

Set X0 = 0 and let X = X1, X2, · · · be independent random variables in Rp from
some distribution F (x) say, with mean µ, and finite moments. (If p = 1 we denote the
rth cumulant by κr and set σ2 = κ2.) These observations can be considered as a random
process which may at some point go “out of control”, changing their distribution. We define
the average process of the observations as

Mn(t) = n−1S[nt] (1.1)

for S0 = 0, Si =
∑i

k=1 Xk and 0 ≤ t ≤ 1, where [x] is the integral part of x. A change
in mean can be tracked by monitoring the average process via some functional of it, say
T (Mn), referred to as a cusum statistic.
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We denote the mean of the average process (1.1) by mn(t) = E Mn(t) = µ[nt]/n →
m(t) = µt as n →∞ for 0 ≤ t ≤ 1. Given a functional T , θ̂ = T (Mn) can be thought of as
an estimate of θ = T (m). In this way, we can, if desired, use θ̂ to provide an estimate of µ.

For univariate data the most common prospective (or offline) and retrospective (or
online) two-sided cusum statistics and functionals are

An = A(Mn) =
n

max
k=1

|Sk − kµ|/n, (1.2)

Bn = B(Mn) =
n

max
k=1

|Sk − kX̄n|/n (1.3)

for A(g) = sup[0,1] |g(t)− tµ| and B(g) = sup[0,1] |g(t)− tg(1)|, where X̄n = Mn(1) = Sn/n.
If σ̂ is a consistent estimate of the standard deviation σ, then as n →∞

σ̂−1n1/2{Mn(t)− tµ} L→ W (t), (1.4)

σ̂−1n1/2{Mn(t)− tMn(1)} L→ W0(t) (1.5)

for W (t) a Wiener process and W0(t) = W (t)− tW (1) a Brownian Bridge. So,

σ̂−1n1/2An
L→ sup

[0,1]
|W (t)|, (1.6)

σ̂−1n1/2Bn
L→ sup

[0,1]
|W0(t)|. (1.7)

See Billingsley (1968) and Anderson and Darling (1952).

If µ is known, (1.6) is commonly used for monitoring the process online for a change in
mean: at the 95% level one concludes that the mean of the observations has changed when,
for some predetermined n, LHS(1.6) > the 95% level of RHS(1.6). If µ is not known, then
(1.7) is commonly used for monitoring the process retrospectively - that is after the sample
is taken. At the 95% level one concludes that the mean of the observations has changed
when for some n LHS(1.7) > the 95% level of RHS(1.7).

These asymptotic results are easily extended to functionals like sup{|g(t)− tµ0| − b(t)},
that is to test H0 : µ = µ0 versus H1 : µ 6= µ0 by rejecting H0 if Mn(t) − tµ0 crosses
a given boundary ±b(t). An alternative is to use the L1 norm. For example, the one-
sided test of H0 : µ = µ0 versus H1 : µ > µ0 one can use

∫ 1
0 {g(t) − tµ0 − b(t)}dt, or

equivalently
∫ 1
0 g(t)dt =

∫
g say. This is an example of the statistics and functionals we

consider here: T (Mn) for T (g) =
∫ 1
0 g(t)dw(t) or

∫ 1
0 w(t)dg(t) =

∫
wdg say for w(t) : R→ R

a given function. These functionals have the advantage of being asymptotically normal,
unlike (1.6) and (1.7), and of having distribution, density and quantiles given by their
Edgeworth-Cornish-Fisher expansions. In contrast, expansions for the distribution, density
and quantiles of the cusum statistics (1.2)–(1.7), are not available.

The basic higher order approximations for a general estimate with standard cumulant
expansions are derived from the Edgeworth-Cornish-Fisher expansions in Section 2 in terms
of the cumulant coefficients. These coefficients - and the approximations - are given in
Section 3 for T (g) linear, including a fourth order confidence interval for µ for the case when
the third central moment is known, e.g. for a symmetric population. We would like to point
out that the derivations in Section 2 are “formal” in the sense that regularity conditions
such as Cramer-type conditions and conditions on differentiability are not explicitly stated.
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Lai (1974, 1995) has useful discussion and references on cusum statistics, in particular
on linear statistics of the type considered here. In his context one repeatedly takes a small
sample of size m: Xi is not the ith observation but a statistic based on this ith sample. For
some references on cusum statistics and a first order test based on an alternative one-sided
cusum statistic, see Sparks (2000).

2 Some Higher Order Approximations

Here we derive from the Edgeworth-Cornish-Fisher expansions the basic higher order ap-
proximations we shall be using. These are given in terms of the cumulant coefficients.

Let θ̂ be any real estimate whose cumulants have the standard expansion

κr(θ̂) =
∞∑

i=r−1

arin
−i (2.8)

for r = 1, 2, · · ·. It follows from Withers (1984) that for a21 6= 0,

Yn = (n/a21)1/2(θ̂ − θ), (2.9)

where θ = a10, has Edgeworth-Cornish-Fisher expansions of the form

Pn(x) = P (Yn ≤ x) ≈ Φ(x)− φ(x)
∞∑

r=1

n−r/2hr(x),

pn(x) = dPn(x)/dx ≈ φ(x)

{
1 +

∞∑
r=1

n−r/2h̄r(x)

}
,

Φ−1(Pn(x)) ≈ x−
∞∑

r=1

n−r/2fr(x),

P−1
n (Φ(x)) ≈

∞∑
r=0

n−r/2gr(x)

for g0(x) = x, where Φ(x) and φ(x) are the distribution and density of a unit normal random
variable and hr(x), h̄r(x), fr(x), gr(x) are certain polynomials in x and the standardised
cumulant coefficients

Ari = a
−r/2
21 ari. (2.10)

Explicit forms for these polynomials are given in Withers (1984). They involve the Hermite
polynomials

Hrx = φ(x)−1(−d/dx)rφ(x) = E(x + jN)r

for j =
√
−1 and N ∼ N (0, 1): H1x = x, H2x = x2− 1, H3x = x3− 3x, H4x = x4− 6x2 + 3,

· · · (See Withers (2000) for a proof of the second expression for Hrx.) For r = 1 and 2 they
are as follows.

h1(x) = f1(x) = g1(x) = A11 + A32H2x/6,

h̄1(x) = A11x + A32H3x/6,

3
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h2(x) = (A2
11 + A22)x/2 + (A11A32 + A43/4)H3x/6 + A2

32H5x/72,

h̄2(x) = (A2
11 + A22)H2x/2 + (A11A32 + A43/4)H4x/6 + A2

32H6x/72,

f2(x) = (A22/2−A11A32/3)x + A43H3x/24−A2
32(4x3 − 7x)/72,

g2(x) = A22x/2 + A43H3x/24−A2
32(2x3 − 5x)/36.

If θ̂ is lattice there may be correction terms to add.

We shall call a probability statement (such as a confidence interval) based on a normal
percentile x, Rth order, if it holds with probability p + O(n−R/2), where p = Φ(x) in the
one-sided case and p = 2Φ(x) − 1 in the two-sided case. We shall generally write such
statements in square brackets. For example, since Yn ≤ P−1

n (Φ(x)) with probability Φ(x),
for R = 1, 2, · · ·

[Yn ≤ ynR(x)] (2.11)

is Rth order, where

ynR(x) =
R−1∑
r=0

n−r/2gr(x).

For R = 1, (2.11) gives inference on θ when a21 is known. For R = 2, (2.11) gives inference
on θ when, for example, a11 is a function of θ and a21, a32 are both known. For R = 3,
(2.11) gives inference on θ when a11 is a function of θ and a21, a32, a22, a43 are known. And
so on.

Replacing x by−x, and assuming for convenience that the distribution of θ̂ is continuous,
we have for R = 1, 2, · · ·

[Yn ≥ ynR(−x)] is Rth order :
[Yn ≥ −x] is first order, (2.12)
[Yn ≥ −x + n−1/2g1(x)] is second order, (2.13)
[Yn ≥ −x + n−1/2g1(x)− n−1g2(x)] is third order,

and so on, since gr(−x) = (−1)r−1gr(x). So, for S = R, for R = 1, 2, · · ·,

[ynR(−x) ≤ Yn ≤ ynR(x)] (2.14)

is Sth order. In fact, by (5.11) of Withers (1983) - see also Withers (1982, 1988) - (2.14)
holds for S = R + 1 if R is odd:

[|Yn| ≤ x] is second order, (2.15)
[|Yn − n−1/2g1(x)| ≤ x] is second order, (2.16)
[|Yn − n−1/2g1(x)| ≤ x + n−1g2(x)] is fourth order.

For θ̂ having a continuous distribution, (2.14) can be written

|Yn −
[R/2]∑
r=1

e2r−1| ≤
[(R−1)/2]∑

r=0

e2r (2.17)
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for er = n−r/2gr(x), where [x] is the integral part of x. Now suppose that ĝr(x) = gr(x) +
Op(n−1/2). Set

ŷnR(x) =
R−2∑
r=0

n−r/2gr(x) + n−(R−1)/2ĝR−1(x).

Then under regularity conditions one can show that for R = 1, 2, · · ·

[Yn ≤ ŷnR(x)] is Rth order, (2.18)
[Yn ≥ ŷnR(−x)] is Rth order, (2.19)
[ŷnR(−x) ≤ Yn ≤ ŷnR(x)] is Sth order, (2.20)

where S = R for R even and S = R + 1 for R odd. Note that (2.20) can be written as
(2.17) with gR−1(x) replaced by ĝR−1(x).

Now consider the Studentized version of (2.9) Yn0 = (n/â21)1/2(θ̂− θ) = n1/2θ̂0 say. For
a wide class of estimates θ̂ with â21 = a21 + Op(n−1/2), the basic cumulant expansion also
holds for θ̂0, say

κr(θ̂0) =
∞∑

i=r−1

ari0n
−i.

Let us denote gr(x) for θ̂0 by gr0(x), and the Studentized versions of the approximations
(2.11)–(2.20), that is with (Yn, gr) replaced by (Yn0, gr0), by (2.11)0–(2.20)0.

Now consider the case θ̂ = T (Mn), θ = T (m). So, for inference on θ above we can read
inference on µ. In Sections 3 we derive the basic expansion (2.8) for linear statistics. It may
be shown that for the Studentized version of θ̂ = T (Mn), a210 = 1, a110 = A11 − γ10λ3/2
and a320 = A32 − 3γ10λ3, so that

g10(x) = g1(x)− γ10λ3x
2/2, (2.21)

where

λr = κr/σr, γ10 = (T1)1/(T 2
1 )1/2

1 (2.22)

for (T i
1)1 =

∫ 1
0 Tm(t)idt and Tg(t) the (suitably defined) functional derivative of T (g). For

T (g) =
∫

wdg, γ10 reduces to γ10 =
∫

w/(
∫

w2)1/2 as in (3.23) below.

3 Expansions for Linear Functionals of Mn

Here we obtain the basic cumulant expansion (2.8) for univariate data and the linear
statistics θ̂ = T (Mn), where T (g) =

∫
wdg or

∫
gdw for a given scalar weight function

w : [0, 1] → R. First consider

θ̂ =
∫

wdMn = n−1
n∑

i=1

w(i/n)Xi.

Set wr = (
∫

wr)1/r for 0 < r < ∞. So, T (m) = µw1 and for r = 1, 2, · · · the rth cumulant is

κr(θ̂) = n1−rκrsn(wr),

5
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where wr(t) = w(t)r and

sn(g) = n−1
n∑

i=1

g(i/n =
∞∑

k=0

n−kα1k(g)

by the Euler-McLaurin expansion for α1k(g) of (3.30) in the appendix. So, the basic cu-
mulant expansion (2.8) holds with coefficients ari = κrβri, ar,r−1 = κrβr,r−1, arr = κrβr,r,
ar,r+1 = κrβr,r+1 and ar,r+2 = 0, · · ·, where βri = α1,i−r+1(wr), βr,r−1 =

∫
wr, βr,r =

{w(1)r − w(0)r}/2, βr,r+1 = r{w(1)r−1w.1(1) − w(0)r−1w.1(0)}/12 and w.r(t) is the rth
derivative of w(t). So, Yn of (2.9) can be written

Yn = n1/2(
∫

wdMn − µw1)σ−1w−1
2 ,

and the standardised coefficients (2.10) are given by Ari = λrγri, where

λr = κr/σr, γri = βriw
−r
2 . (3.23)

Although γri and βri are known, λr and κr are generally unknown. Let λ̂r be a suitably
regular estimate satisfying λ̂r = λr + Op(n−1/2), such as the empirical estimate. Let us
consider how the various probability statements of Section 2 can be written as confidence
intervals for µ. We first suppose that the variance κ2 is known, and then the contrary.

3.1 Case 1: w1 =
∫

w 6= 0

Without loss of generality let us assume that w1 > 0 and that dnw = w1 + n−1{w(1) −
w(0)}/2 > 0, where w1, dnw appear as divisors. Set

L1,x = {θ̂ − n−1/2w2σx}/w1, (3.24)

L2,x(κ3) = {θ̂ − n−1/2w2σx− κ3(
∫

w3)(nκ2

∫
w2)−1H2x/6}/dnw, (3.25)

L3,x(κ4) = L2,x(κ3)− n−3/2w2σg2(x)/dnw. (3.26)

3.1.1 Case 1.1: κ2 Known, κ3 Unknown

Note that (2.11) at R = 1, (2.12), (2.15), (2.18)–(2.20) at R = 2 give

[L1,x ≤ µ] and [L1,−x ≥ µ] are first order,
[L1,x ≤ µ ≤ L1,−x], [L2,x(κ̂3) ≤ µ], [L2,−x(κ̂3) ≥ µ],
and [L2,x(κ̂3) ≤ µ ≤ L2,−x(κ̂3)] are second order. (3.27)

3.1.2 Case 1.2: κ2, κ3 Known, κ4 Unknown

Let ĝ2(x) denote g2(x) with κ4 replaced by κ̂4. Note that (2.11) at R = 2, (2.13), (2.16)
and (2.18)–(2.20) at R = 3 give

[L2,x(κ3) ≤ µ], [L2,−x(κ3) ≥ µ], [L2,x(κ3) ≤ µ ≤ L2,x(κ3)] are second order,
[L3,x(κ̂4) ≤ µ], [L3,−x(κ̂4) ≥ µ], are third order,
[L3,x(κ̂4) ≤ µ ≤ L3,−x(κ̂4)] is fourth order. (3.28)

6
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Now let us consider briefly some of the tests generated by these confidence intervals. If
κ2 is known but not κ3, a second order one-sided test of H0 : µ = µ0 versus H1 : µ > µ0 is
to reject H0 if [L2,−x(κ̂3) ≥ µ0], that is (2.19) at R = 2.

For κ2 known and κ3 = 0 a fourth order one-sided test of H0 : µ = µ0 versus H1 : µ 6= µ0

is to accept H0 if [L3,x(κ̂4) ≤ µ0 ≤ L3,−x(κ̂4)], where

L3x(κ4) = {θ̂ − n−1/2w2σ(x + n−1g2(x))}/dnw

and

g2(x) = A22x/2 + A43H3x/24 = {w(1)2 − w(0)2}w−2
2 x/4 + κ4κ

−2
2 w4

4w
−4
2 H3x/24.

3.2 Case 2:
∫

w = 0

In this case the behaviour of Yn can be used either for a test statistic (see below) or to make
inference on σ. The equations for Case 1.1 now give for x > 0

[n1/2θ̂w−1
2 x−1 ≤ σ] is first order,

[−n1/2θ̂w−1
2 x−1 ≤ σ] is first order,

[n1/2|θ̂|w−1
2 x−1 ≤ σ] is second order,

[n1/2θ̂w−1
2 /{x + n−1/2ĝ1(x)} ≤ σ] is second order,

[−n1/2θ̂w−1
2 /{x− n−1/2ĝ1(x)} ≤ σ] is second order,

[−x + n−1/2ĝ1(x) ≤ n1/2θ̂w−1
2 σ−1 ≤ x + n−1/2ĝ1(x)] is second order.

The last equation can be written as a two-sided confidence interval for σ.

The other equations, such as those for Case 1.2, can be similarly restated.

3.3 Case 3: κ2 Unknown

Let us denote the Studentized forms of Lr,x of (3.24)–(3.26) above by Lr,x,0, that is with
σ2 = κ2 replaced by its empirical or its unbiased estimate. Then one can use the Studentized
forms of (3.27) and (3.28). The Studentised form of L1,x(σ) = L1,x is simply L1,x,0 =
L1,x(σ̂). By (2.21) that for L2,x(κ3) is

L2,x,0(κ3) = {θ̂ − n−1/2w2σ̂x− κ3(nκ̂2)−1[(
∫

w3)(
∫

w2)−1H2x/6− w1/2]}/dnw,

as γ10 of (2.22) reduces to γ10 of (3.23). So, we have

3.3.1 Case 3.1: κ2, κ3 Unknown

We have

[L1,x,0 ≤ µ] and [L1,−x,0 ≥ µ] are first order,
[L1,x,0 ≤ µ ≤ L1,−x,0], [L2,x,0(κ̂3) ≤ µ], [L2,−x,0(κ̂3) ≥ µ],
and [L2,x,0(κ̂3) ≤ µ ≤ L2,−x,0(κ̂3)] are second order.

7
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3.3.2 Case 3.2: κ3 Known, κ2 and κ4 Unknown

Let ĝ20(x) denote g20(x) with κ4 replaced by κ̂4. The Studentized forms of (2.11) at R = 2,
(2.13), (2.16) and (2.18)–(2.20) at R = 3 give

[L2,x,0(κ3) ≤ µ], [L2,−x,0(κ3) ≥ µ], [L2,x,0(κ3) ≤ µ ≤ L2,x,0(κ3)] are second order,
[L3,x,0(κ̂4) ≤ µ], [L3,−x,0(κ̂4) ≥ µ], are third order,
[L3,x,0(κ̂4) ≤ µ ≤ L3,−x,0(κ̂4)] is fourth order.

Here L3,x,0(κ̂4) ≤ µ is a re-arrangement of Yn0 ≤ x+n−1/2g10(x)+n−1ĝ20(x), where ĝ20(x)
= â220x/2+ â430H3x/24−A2

32(2x3− 5x)/36. However, we shall not give a220 and a430 here.

The obvious application of Case 3.2 is to symmetrically distributed observations.

Note 3.1 If we replace w(t) by w′(t) = w(1 − t), then in Lrx only θ̂ and dnw change:
dnw′ = w1 + n−1{w(0)− w(1)}/2.

The usual strategy will be to weight recent observations more heavily, as in the following

Example 3.1 Take w(t) = t. Set I(A) = 1 or 0 for A true or false. Then

θ̂ = n−2
n∑

i=1

iXi,

nθ̂ − (n + 1)µ/2 = n−1
n∑

i=1

i(Xi − µ),

θ = a10 = µ/2, a21 = κ2/3, βr,r−1 = (r + 1)−1, βr,r = −2−1,

Ar,r−1 = λr3r/2/(r + 1), Ar,r = −λr3r/2/2,

Ar,r+1 = −rλrI(r > 1)3r/2/12, Ar,r+2 = 0,

Yn = σ−1(3n)1/2(θ̂ − µ/2),
h1(x) = f1(x) = g1(x) = 31/2{−λ1/2 + λ3H2x/8},
g2(x) = 3{−x + λ4H3x/10− λ2

3(2x3 − 5x)/16}/4,

L1,x = 2θ̂ − 2(3n)−1/2σx,

L2,x(κ3) = {θ̂ − (3n)−1/2σx− n−1σ−2κ3H2x/8}/dnw,

L3,x(κ4) = L2,x(κ3)− n−3/23−1/2σg2(x)/dnw,

L2,x,0(κ3) = {θ̂ − (3n)−1/2σ̂x− (nκ̂2)−1κ3(x2 − 3)/8}/dnw,

dnw = (1 + n−1)/2.

Example 3.2 Take w(t) = 1− t. Then

θ̂ = n−2
n−1∑
k=1

Sk = n−1
n−1∑
i=1

(1− i/n)Xi.

So,

nθ̂ − (n− 1)µ/2 = n−1
n−1∑
k=1

(Sk − kµ)

8
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and

θ̂ − µ/2 =
∫ 1

0
(Mn(t)− µt)dt

are one-sided L1 versions of the two-sided L∞ statistic An of (1.2) for a sample of size
n − 1. (This shows up a weakness in these statistics: one would generally prefer to give
recent observations more weight rather than less weight.) Note that βr,r−1, ar,r−1, Ar,r−1,
Ar,r+2, Yn and Lr,x are all as given in the previous example but with dnw = (1 − n−1)/2
while βr,r, Ar,r, Ar,r+1, λ1 in h1(x) = f1(x) = g1(x) and −x in g2(x) all change sign.

The statistic
∫

wdMn arises naturally in change point problems. Consider the one-
parameter exponential family fθ(x) = exp{a(θ)T (x) + b(x) − c(θ)}. Suppose we observe
Y1, · · · , Yn independent with Yi ∼ fθ for 1 ≤ i ≤ k and Yi ∼ fθ+δ for k < i ≤ n, where
k, θ, δ are unknown. Suppose we assume that k = i with probability pin ∝ p(i/n), i =
2, · · · , n, where

∫
p = 1. Then the likelihood ratio of H0 : δ = 0 versus H1 : δ > 0 is

{1 + Anδ + o(δ)} exp{na(θ)S − nc(θ)} as δ → 0, where

S =
n∑

i=1

Xi/n, Xi = T (Yi),

An =
n∑

k=1

pkn

n∑
i=k+1

{ȧ(θ)Xi − ċ(θ)} =
n∑

i=2

{ȧ(θ)Xi − ċ(θ)}qin

for

qin =
i−1∑
k=1

pkn ≈ nwp(i/n),

wp(t) =
∫ t

0
p ≈ n2ȧ(θ)(

∫
wpdMn − µ

∫
wp)

for µ = EX1. For uniform prior p(t) = 1, this gives wp(t) = t, a result due to Kander
and Zacks (1966) for the case a(θ) = θ, and to Chernoff and Zacks (1964) for the normal
case. Kander and Zacks (1966) gave the Edgeworth expansion to O(n−3/2). For related
references and the full likelihood ratio test see Sections 1.8 and 1.5 of Csorgo and Horvath
(1997). They also consider the “epidemic alternative” H2 : Yi ∼ fθ+δ for k1 < i ≤ k2 and
Yi ∼ fθ otherwise, where k1 < k2 are unknown change points. If one takes a uniform prior
on (k1, k2) one obtains in the same way the statistic

∫
wudMn, where wu(t) = t− t2.

If one only wishes to construct a test of δ = 0 (rather than a confidence interval for
µ) one can replace µ by S above in the approximation to An, giving the statistic

∫
wdMn,

where w(t) = wp(t)−
∫

wp, or in the case of the epidemic alternative, w(t) = wu(t)−
∫

wu.
In either case one has

∫
w = 0. This approach was advocated by Ramanayake (2004) for the

case of a gamma distribution with known scale parameter, uniform prior and alternative
H1.

Note 3.2 Lai (1974) considers statistics which are moving averages of the last k obser-
vations: Yn =

∑n
i=n−k+1 cn−iXi. If one takes k = n(1 − t0), where 0 < t0 < 1 and

cn−i/n = w(i/n) then Yn/n2 =
∫

w0dMn, where w0(t) = w(t)I(t0 < t). His condition that
ck are non-increasing is achieved if w(t) is non-decreasing. He also considers exponentially
weighted moving average schemes. These correspond to choosing w(t) = p1−t.

9
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We now consider the functional
∫

gdw firstly for w continuous, and then for w consisting
of atoms.

Example 3.3 If w is continuous it is easy to check that∫
Mndw = n−1

n∑
i=1

Xiw̃(i/n) =
∫

w̃dMn,

where w̃(t) = w(1)−w(t). So, we can apply our previous results with w replaced by w̃. This
gives

βr,r−1 = w̃r
r =

∫
{w(1)− w(t)}rdt, βr,r = −{w(1)− w(0)}r/2,

βr,r+1 = r[{w(1)− w(0)}r−1w.1(0)− δr1w.1(1)]/12,

dnw̃ = w(1)− w1 − n−1{w(1)− w(0)}/2.

Finally we show how to deal with
∫

gdw for discrete w.

Example 3.4 Fix m points in [0, 1], say 0 ≤ t1 ≤ · · · ≤ tm ≤ 1. Suppose that T (g) =
m−1 ∑m

i=1 g(ti). That is, T (g) =
∫

gdw, where w puts weight m−1 at ti for i = 1, · · · ,m.
Set t0 = 0, Ui = [nti], ui = Ui/n. Then

θ̂ = n−1
m−1∑
i=0

(SUi+1 − SUi)

and κr(θ̂) = κrβrnn1−r for

βrn =
m−1∑
i=0

(1− i/m)r(ui+1 − ui).

So, (2.8) holds with ar,r−1 = κrβrn and the other ari = 0. In terms of the standardised
cumulants of (3.23), this gives Ar,r−1 = λrγrn, where γrn = βrn/β

r/2
2n , and the other Ari = 0.

Alternatively for

`n(t) = [nt]− nt, (3.29)

ui = ti + n−1`n(ti) so that κr(θ̂) = ar,r−1n
1−r + ar,r−1n

−r for

ar,r−1 = κr

m−1∑
i=0

(1− i/m)r(ti+1 − ti)

and

ar,r = κr

m−1∑
i=0

(1− i/m)r{`n(ti+1)− `n(ti)}.
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ables. Sankhyā, B, 44, 1–9.

[12] Withers, C. S. (1983). Expansions for the distribution and quantiles of a regular func-
tional of the empirical distribution with applications to nonparametric confidence in-
tervals. Annals of Statistics, 11, 577–587.

[13] Withers, C. S. (1984). Asymptotic expansions for distributions and quantiles with
power series cumulants. Journal of the Royal Statistical Society, B, 46, 389–396.

[14] Withers, C. S. (1988). Nonparametric confidence intervals for functions of several dis-
tributions. Annals of the Institute of Statistical Mathematics, 40, 727–746.

[15] Withers, C. S. (2000). A simple expression for the multivariate Hermite polynomial.
Statistics and Probability Letters, 47, 165–169.

11



A
C

C
E

P
T
E

D
M

A
N

U
S

C
R

IP
T

ACCEPTED MANUSCRIPT

Appendix

Here we give the Euler-McLaurin expansion (Abramowitz and Stegun, 1964, equation
(23.1.30), page 806), and related results. For g : [0, 1]r → R, set

(g)rn = n−r
n∑

i1=1

· · ·
n∑

ir=1

g(i1/n, · · · , ir/n).

Suppose that g has finite derivatives. Then for r = 1 we have the expansion

(g)1n =
∞∑

k=0

α1k(g)n−k, (3.30)

where α10(g) =
∫ 1
0 g(t)dt, α1k(g) =

{
g(k−1)(1)− g(k−1)(0)

}
ekBk/k! for k = 1, 2, 3, . . .,

e1 = −1, ek = 1 for k = 2, 3, . . . and Bk is the kth Bernoulli number, given by the left column
on page 809 of Abramowitz and Stegun (1964): B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30,
· · · and Bk = 0 for k = 3, 5, 7, · · ·. So, α11(g) = {g(1)− g(0)} /2 and α1k(g) = 0 for
k = 3, 5, 7, . . .. Note that (3.30) implies that for `n(t) of (3.29),∫ 1

0
g(t)d`n(t) =

∞∑
k=0

α1,k+1(g)n−k.

Also from (3.30) it follows that

(g)rn =
∞∑

k=0

αrk(g)n−k,

where

αr0(g) =
∫ 1

0
· · ·

∫ 1

0
g(t1, · · · , tr)dt1 · · · dtr,

αr1(g) =
r∑

i=1

{gi(1)− gi(0)}/2,

gi(ti) =
(∫ 1

0

)r−1

g(t1, · · · , tr)dt1 · · · dti−1dti+1 · · · dtr,

(g)rn =
r∏

i=1

(
∞∑

k=0

n−kβik)g(t1, · · · , tr),

where the operator βik is defined by βikg(t1, · · · , tr) = α1k(h) for h(ti) = g(t1, · · · , tr). For
example,

βi0g(t1, · · · , tr) =
∫ 1

0
g(t1, · · · , tr)dti.

So,

αrk(g) =
∑

{β1k1 · · ·βrkrg(t1, · · · , tr) : k1 + · · ·+ kr = k, ki ≥ 0} .
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