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Accurate tests and intervals based on linear cusum statistics

Introduction

Suppose that we are monitoring incoming observations for a change in mean via a cusum test statistic. The usual nonparametric asymptotic methods give a first order approximation in the one-sided case and a second order approximation in the two-sided case, where by Ith order we mean an error of magnitude n -I/2 for n the sample size. We show how to improve on the order of these approximations using simple linear statistics. These are most appropriate when one wishes to ensure against one-sided alternatives like a monotonic trend or jump. We give second order one-sided approximations; when the skewness is known (for example, for a symmetric population) we give third order one-sided and fourth order two-sided approximations.

Set X 0 = 0 and let X = X 1 , X 2 , • • • be independent random variables in R p from some distribution F (x) say, with mean µ, and finite moments. (If p = 1 we denote the rth cumulant by κ r and set σ 2 = κ 2 .) These observations can be considered as a random process which may at some point go "out of control", changing their distribution. We define the average process of the observations as

M n (t) = n -1 S [nt]
(1.1)

for S 0 = 0, S i = i k=1 X k and 0 ≤ t ≤ 1, where [x] is the integral part of x. A change in mean can be tracked by monitoring the average process via some functional of it, say T (M n ), referred to as a cusum statistic.

We denote the mean of the average process (1.1) by m n

(t) = E M n (t) = µ[nt]/n → m(t) = µt as n → ∞ for 0 ≤ t ≤ 1.
Given a functional T , θ = T (M n ) can be thought of as an estimate of θ = T (m). In this way, we can, if desired, use θ to provide an estimate of µ.

For univariate data the most common prospective (or offline) and retrospective (or online) two-sided cusum statistics and functionals are

A n = A(M n ) = n max k=1 |S k -kµ|/n, (1.2) 
B n = B(M n ) = n max k=1 |S k -k Xn |/n (1.3) for A(g) = sup [0,1] |g(t) -tµ| and B(g) = sup [0,1] |g(t) -tg(1)|, where Xn = M n (1) = S n /n. If σ is a consistent estimate of the standard deviation σ, then as n → ∞ σ -1 n 1/2 {M n (t) -tµ} L → W (t), (1.4) 
σ -1 n 1/2 {M n (t) -tM n (1)} L → W 0 (t) (1.5)
for W (t) a Wiener process and W 0 (t) = W (t) -tW (1) a Brownian Bridge. So,

σ -1 n 1/2 A n L → sup [0,1] |W (t)|, (1.6) σ -1 n 1/2 B n L → sup [0,1] |W 0 (t)|. (1.7) 
See [START_REF] Billingsley | Convergence of Probability Measures[END_REF] and [START_REF] Anderson | Asymptotic theory of certain 'goodness of fit' criteria based on stochastic processes[END_REF].

If µ is known, (1.6) is commonly used for monitoring the process online for a change in mean: at the 95% level one concludes that the mean of the observations has changed when, for some predetermined n, LHS(1.6) > the 95% level of RHS (1.6). If µ is not known, then (1.7) is commonly used for monitoring the process retrospectively -that is after the sample is taken. At the 95% level one concludes that the mean of the observations has changed when for some n LHS(1.7) > the 95% level of RHS(1.7).

These asymptotic results are easily extended to functionals like sup{|g(t) -tµ 0 | -b(t)}, that is to test H 0 : µ = µ 0 versus H 1 : µ = µ 0 by rejecting H 0 if M n (t) -tµ 0 crosses a given boundary ±b(t). An alternative is to use the L 1 norm. For example, the onesided test of H 0 : µ = µ 0 versus H 1 : µ > µ 0 one can use 1 0 {g(t) -tµ 0 -b(t)}dt, or equivalently 1 0 g(t)dt = g say. This is an example of the statistics and functionals we consider here: T (M n ) for T (g) = 1 0 g(t)dw(t) or 1 0 w(t)dg(t) = wdg say for w(t) : R → R a given function. These functionals have the advantage of being asymptotically normal, unlike (1.6) and (1.7), and of having distribution, density and quantiles given by their Edgeworth-Cornish-Fisher expansions. In contrast, expansions for the distribution, density and quantiles of the cusum statistics (1.2)-(1.7), are not available.

The basic higher order approximations for a general estimate with standard cumulant expansions are derived from the Edgeworth-Cornish-Fisher expansions in Section 2 in terms of the cumulant coefficients. These coefficients -and the approximations -are given in Section 3 for T (g) linear, including a fourth order confidence interval for µ for the case when the third central moment is known, e.g. for a symmetric population. We would like to point out that the derivations in Section 2 are "formal" in the sense that regularity conditions such as Cramer-type conditions and conditions on differentiability are not explicitly stated. [START_REF] Lai | Control charts based on weighted sums[END_REF][START_REF] Lai | Sequential change point detection in quality control and dynamical systems[END_REF] has useful discussion and references on cusum statistics, in particular on linear statistics of the type considered here. In his context one repeatedly takes a small sample of size m: X i is not the ith observation but a statistic based on this ith sample. For some references on cusum statistics and a first order test based on an alternative one-sided cusum statistic, see [START_REF] Sparks | CUSUM charts for AR1 data: are they worth the effort? Australian and New[END_REF].

Some Higher Order Approximations

Here we derive from the Edgeworth-Cornish-Fisher expansions the basic higher order approximations we shall be using. These are given in terms of the cumulant coefficients.

Let θ be any real estimate whose cumulants have the standard expansion [START_REF] Withers | Asymptotic expansions for distributions and quantiles with power series cumulants[END_REF] that for a 21 = 0,

κ r ( θ) = ∞ i=r-1 a ri n -i (2.8) for r = 1, 2, • • •. It follows from
Y n = (n/a 21 ) 1/2 ( θ -θ), (2.9) 
where θ = a 10 , has Edgeworth-Cornish-Fisher expansions of the form

P n (x) = P (Y n ≤ x) ≈ Φ(x) -φ(x) ∞ r=1 n -r/2 h r (x), p n (x) = dP n (x)/dx ≈ φ(x) 1 + ∞ r=1 n -r/2 hr (x) , Φ -1 (P n (x)) ≈ x - ∞ r=1 n -r/2 f r (x), P -1 n (Φ(x)) ≈ ∞ r=0 n -r/2 g r (x)
for g 0 (x) = x, where Φ(x) and φ(x) are the distribution and density of a unit normal random variable and h r (x), hr (x), f r (x), g r (x) are certain polynomials in x and the standardised cumulant coefficients

A ri = a -r/2 21 a ri . (2.10)
Explicit forms for these polynomials are given in [START_REF] Withers | Asymptotic expansions for distributions and quantiles with power series cumulants[END_REF]. They involve the Hermite polynomials [START_REF] Withers | A simple expression for the multivariate Hermite polynomial[END_REF] for a proof of the second expression for H rx .) For r = 1 and 2 they are as follows.

H rx = φ(x) -1 (-d/dx) r φ(x) = E(x + jN ) r for j = √ -1 and N ∼ N (0, 1): H 1x = x, H 2x = x 2 -1, H 3x = x 3 -3x, H 4x = x 4 -6x 2 + 3, • • • (See
h 1 (x) = f 1 (x) = g 1 (x) = A 11 + A 32 H 2x /6, h1 (x) = A 11 x + A 32 H 3x /6, A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT h 2 (x) = (A 2 11 + A 22 )x/2 + (A 11 A 32 + A 43 /4)H 3x /6 + A 2 32 H 5x /72, h2 (x) = (A 2 11 + A 22 )H 2x /2 + (A 11 A 32 + A 43 /4)H 4x /6 + A 2 32 H 6x /72, f 2 (x) = (A 22 /2 -A 11 A 32 /3)x + A 43 H 3x /24 -A 2 32 (4x 3 -7x)/72, g 2 (x) = A 22 x/2 + A 43 H 3x /24 -A 2 32 (2x 3 -5x)/36.
If θ is lattice there may be correction terms to add.

We shall call a probability statement (such as a confidence interval) based on a normal percentile x, Rth order, if it holds with probability p + O(n -R/2 ), where p = Φ(x) in the one-sided case and p = 2Φ(x) -1 in the two-sided case. We shall generally write such statements in square brackets. For example, since

Y n ≤ P -1 n (Φ(x)) with probability Φ(x), for R = 1, 2, • • • [Y n ≤ y nR (x)] (2.11)
is Rth order, where

y nR (x) = R-1 r=0 n -r/2 g r (x).
For R = 1, (2.11) gives inference on θ when a 21 is known. For R = 2, (2.11) gives inference on θ when, for example, a 11 is a function of θ and a 21 , a 32 are both known. For R = 3, (2.11) gives inference on θ when a 11 is a function of θ and a 21 , a 32 , a 22 , a 43 are known. And so on.

Replacing x by -x, and assuming for convenience that the distribution of θ is continuous, we have for

R = 1, 2, • • • [Y n ≥ y nR (-x)] is Rth order : [Y n ≥ -x] is first order, (2.12) [Y n ≥ -x + n -1/2 g 1 (x)] is second order, (2.13) [Y n ≥ -x + n -1/2 g 1 (x) -n -1 g 2 (x)
] is third order, and so on, since g r (-x) = (-1) r-1 g r (x). So, for

S = R, for R = 1, 2, • • •, [y nR (-x) ≤ Y n ≤ y nR (x)] (2.14)
is Sth order. In fact, by (5.11) of [START_REF] Withers | Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals[END_REF] -see also [START_REF] Withers | Second order inference for asymptotically normal random variables[END_REF][START_REF] Withers | Nonparametric confidence intervals for functions of several distributions[END_REF]) -(2.14) holds for

S = R + 1 if R is odd: [|Y n | ≤ x] is second order, (2.15) [|Y n -n -1/2 g 1 (x)| ≤ x] is second order, (2.16) [|Y n -n -1/2 g 1 (x)| ≤ x + n -1 g 2 (x)] is fourth order.
For θ having a continuous distribution, (2.14) can be written

|Y n - [R/2] r=1 e 2r-1 | ≤ [(R-1)/2] r=0 e 2r
(2.17) for e r = n -r/2 g r (x), where [x] is the integral part of x. Now suppose that g r (x) = g r (x) + O p (n -1/2 ). Set

y nR (x) = R-2 r=0 n -r/2 g r (x) + n -(R-1)/2 g R-1 (x).
Then under regularity conditions one can show that for R = 1, 2,

• • • [Y n ≤ y nR (x)] is Rth order, (2.18) [Y n ≥ y nR (-x)] is Rth order, (2.19) [ y nR (-x) ≤ Y n ≤ y nR (x)] is Sth order, ( 2.20) 
where S = R for R even and S = R + 1 for R odd. Note that (2.20) can be written as (2.17) with g R-1 (x) replaced by g R-1 (x). Now consider the Studentized version of (2.9) Y n0 = (n/ a 21 ) 1/2 ( θ -θ) = n 1/2 θ 0 say. For a wide class of estimates θ with a 21 = a 21 + O p (n -1/2 ), the basic cumulant expansion also holds for θ 0 , say

κ r ( θ 0 ) = ∞ i=r-1 a ri0 n -i .
Let us denote g r (x) for θ 0 by g r0 (x), and the Studentized versions of the approximations (2.11)-(2.20), that is with (Y n , g r ) replaced by (Y n0 , g r0 ), by (2.11) 0 -(2.20) 0 . Now consider the case θ = T (M n ), θ = T (m). So, for inference on θ above we can read inference on µ. In Sections 3 we derive the basic expansion (2.8) for linear statistics. It may be shown that for the Studentized version of θ = T (M n ), a 210 = 1, a 110 = A 11 -γ 10 λ 3 /2 and a 320 = A 32 -3γ 10 λ 3 , so that

g 10 (x) = g 1 (x) -γ 10 λ 3 x 2 /2, (2.21) 
where

λ r = κ r /σ r , γ 10 = (T 1 ) 1 /(T 2 1 ) 1/2 1 (2.22)
for (T i 1 ) 1 = 1 0 T m (t) i dt and T g (t) the (suitably defined) functional derivative of T (g). For T (g) = wdg, γ 10 reduces to γ 10 = w/( w 2 ) 1/2 as in (3.23) below.

Expansions for Linear Functionals of M n

Here we obtain the basic cumulant expansion (2.8) for univariate data and the linear statistics θ = T (M n ), where T (g) = wdg or gdw for a given scalar weight function w : [0, 1] → R. First consider

θ = wdM n = n -1 n i=1 w(i/n)X i . Set w r = ( w r ) 1/r for 0 < r < ∞. So, T (m) = µw 1 and for r = 1, 2, • • • the rth cumulant is κ r ( θ) = n 1-r κ r s n (w r ),
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where w r (t) = w(t) r and

s n (g) = n -1 n i=1 g(i/n = ∞ k=0 n -k α 1k (g)
by the Euler-McLaurin expansion for α 1k (g) of (3.30) in the appendix. So, the basic cumulant expansion (2.8) holds with coefficients a ri = κ r β ri , a r,r-1 = κ r β r,r-1 , a rr = κ r β r,r , a r,r+1 = κ r β r,r+1 and a r,r+2 = 0, • • •, where β ri = α 1,i-r+1 (w r ), β r,r-1 = w r , β r,r = {w(1) r -w(0) r }/2, β r,r+1 = r{w(1) r-1 w .1 (1) -w(0) r-1 w .1 (0)}/12 and w .r (t) is the rth derivative of w(t). So, Y n of (2.9) can be written

Y n = n 1/2 ( wdM n -µw 1 )σ -1 w -1 2 ,
and the standardised coefficients (2.10) are given by A ri = λ r γ ri , where

λ r = κ r /σ r , γ ri = β ri w -r 2 . (3.23) 
Although γ ri and β ri are known, λ r and κ r are generally unknown. Let λ r be a suitably regular estimate satisfying λ r = λ r + O p (n -1/2 ), such as the empirical estimate. Let us consider how the various probability statements of Section 2 can be written as confidence intervals for µ. We first suppose that the variance κ 2 is known, and then the contrary.

Case 1:

w 1 = w = 0
Without loss of generality let us assume that w 1 > 0 and that d nw = w 1 + n -1 {w(1)w(0)}/2 > 0, where w 1 , d nw appear as divisors. Set 

L 1,x = { θ -n -1/2 w 2 σx}/w 1 , (3.24) 
L 2,x (κ 3 ) = { θ -n -1/2 w 2 σx -κ 3 ( w 3 )(nκ 2 w 2 ) -1 H 2x /6}/d nw , (3.25) 
L 3,x (κ 4 ) = L 2,x (κ 3 ) -n -3/2 w 2 σg 2 (x)/d nw . (3.26) 3.1 
) at R = 2 give [L 1,x ≤ µ] and [L 1,-x ≥ µ] are first order, [L 1,x ≤ µ ≤ L 1,-x ], [L 2,x ( κ 3 ) ≤ µ], [L 2,-x ( κ 3 ) ≥ µ],
and 

[L 2,x ( κ 3 ) ≤ µ ≤ L 2,-x ( κ 3 )] are second order. ( 3 
[L 2,x (κ 3 ) ≤ µ], [L 2,-x (κ 3 ) ≥ µ], [L 2,x (κ 3 ) ≤ µ ≤ L 2,x (κ 3 )] are second order, [L 3,x ( κ 4 ) ≤ µ], [L 3,-x ( κ 4 ) ≥ µ], are third order, [L 3,x ( κ 4 ) ≤ µ ≤ L 3,-x ( κ 4 )] is fourth order. (3.28)
Now let us consider briefly some of the tests generated by these confidence intervals. If κ 2 is known but not κ 3 , a second order one-sided test of

H 0 : µ = µ 0 versus H 1 : µ > µ 0 is to reject H 0 if [L 2,-x ( κ 3 ) ≥ µ 0 ], that is (2.19) at R = 2.
For κ 2 known and κ 3 = 0 a fourth order one-sided test of

H 0 : µ = µ 0 versus H 1 : µ = µ 0 is to accept H 0 if [L 3,x ( κ 4 ) ≤ µ 0 ≤ L 3,-x ( κ 4 )],
where

L 3x (κ 4 ) = { θ -n -1/2 w 2 σ(x + n -1 g 2 (x))}/d nw and g 2 (x) = A 22 x/2 + A 43 H 3x /24 = {w(1) 2 -w(0) 2 }w -2 2 x/4 + κ 4 κ -2 2 w 4 4 w -4 2 H 3x /24.
3.2 Case 2: w = 0

In this case the behaviour of Y n can be used either for a test statistic (see below) or to make inference on σ. The equations for Case 1.1 now give for x > 0

[n 1/2 θw -1 2 x -1 ≤ σ] is first order, [-n 1/2 θw -1 2 x -1 ≤ σ] is first order, [n 1/2 | θ|w -1 2 x -1 ≤ σ] is second order, [n 1/2 θw -1 2 /{x + n -1/2 g 1 (x)} ≤ σ] is second order, [-n 1/2 θw -1 2 /{x -n -1/2 g 1 (x)} ≤ σ] is second order, [-x + n -1/2 g 1 (x) ≤ n 1/2 θw -1 2 σ -1 ≤ x + n -1/2 g 1 (x)
] is second order.

The last equation can be written as a two-sided confidence interval for σ.

The other equations, such as those for Case 1.2, can be similarly restated.

Case 3: κ 2 Unknown

Let us denote the Studentized forms of L r,x of (3.24)-(3.26) above by L r,x,0 , that is with σ 2 = κ 2 replaced by its empirical or its unbiased estimate. Then one can use the Studentized forms of (3.27) and (3.28). The Studentised form of

L 1,x (σ) = L 1,x is simply L 1,x,0 = L 1,x ( σ). By (2.21) that for L 2,x (κ 3 ) is L 2,x,0 (κ 3 ) = { θ -n -1/2 w 2 σx -κ 3 (n κ 2 ) -1 [( w 3 )( w 2 ) -1 H 2x /6 -w 1 /2]}/d nw ,
as γ 10 of (2.22) reduces to γ 10 of (3.23). So, we have

3.3.1 Case 3.1: κ 2 , κ 3 Unknown We have [L 1,x,0 ≤ µ] and [L 1,-x,0 ≥ µ] are first order, [L 1,x,0 ≤ µ ≤ L 1,-x,0 ], [L 2,x,0 ( κ 3 ) ≤ µ], [L 2,-x,0 ( κ 3 ) ≥ µ],
and [L 2,x,0 ( κ 3 ) ≤ µ ≤ L 2,-x,0 ( κ 3 )] are second order. 
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(κ 3 ) ≤ µ], [L 2,-x,0 (κ 3 ) ≥ µ], [L 2,x,0 (κ 3 ) ≤ µ ≤ L 2,x,0 (κ 3 )] are second order, [L 3,x,0 ( κ 4 ) ≤ µ], [L 3,-x,0 ( κ 4 ) ≥ µ], are third order, [L 3,x,0 ( κ 4 ) ≤ µ ≤ L 3,-x,0 ( κ 4 )
] is fourth order.

Here L 3,x,0 ( κ 4 ) ≤ µ is a re-arrangement of Y n0 ≤ x + n -1/2 g 10 (x) + n -1 g 20 (x), where g 20 (x) = a 220 x/2 + a 430 H 3x /24 -A 2 32 (2x 3 -5x)/36. However, we shall not give a 220 and a 430 here. The obvious application of Case 3.2 is to symmetrically distributed observations. i(X i -µ), θ = a 10 = µ/2, a 21 = κ 2 /3, β r,r-1 = (r + 1) -1 , β r,r = -2 -1 , A r,r-1 = λ r 3 r/2 /(r + 1), A r,r = -λ r 3 r/2 /2, A r,r+1 = -rλ r I(r > 1)3 r/2 /12, A r,r+2 = 0, Y n = σ -1 (3n) 1/2 ( θ -µ/2), h 1 (x) = f 1 (x) = g 1 (x) = 3 1/2 {-λ 1 /2 + λ 3 H 2x /8}, g 2 (x) = 3{-x + λ 4 H 3x /10 -λ 2 3 (2x 3 -5x)/16}/4, L 1,x = 2 θ -2(3n) -1/2 σx, L 2,x (κ 3 ) = { θ -(3n) -1/2 σx -n -1 σ -2 κ 3 H 2x /8}/d nw , L 3,x (κ 4 ) = L 2,x (κ 3 ) -n -3/2 3 -1/2 σg 2 (x)/d nw , L 2,x,0 (κ 3 ) = { θ -(3n) -1/2 σx -(n κ 2 ) -1 κ 3 (x 2 -3)/8}/d nw , 

d nw = (1 + n -1 )/2.

Note 3 . 1

 31 If we replace w(t) by w (t) = w(1 -t), then in L rx only θ and d nw change:d nw = w 1 + n -1 {w(0) -w(1)}/2.The usual strategy will be to weight recent observations more heavily, as in the following Example 3.1 Take w(t) = t. Set I(A) = 1 or 0 for A true or false. Thenθ = n -2 n i=1 iX i , n θ -(n + 1)µ/2 = n -1 n i=1

Example 3 . 2 ( 1 -

 321 Take w(t) = 1 -t. Then θ = n -2 i/n)X i . So, n θ -(n -1)µ/2 = n -1 n-1 k=1 (S k -kµ)

  3.3.2 Case 3.2: κ 3 Known, κ 2 and κ 4 Unknown Let g 20 (x) denote g 20 (x) with κ 4 replaced by κ 4 . The Studentized forms of (2.11) at R = 2, (2.13), (2.16) and (2.18)-(2.20) at R = 3 give [L 2,x,0
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and θ -µ/2 = 1 0 (M n (t) -µt)dt are one-sided L 1 versions of the two-sided L ∞ statistic A n of (1.2) for a sample of size n -1. (This shows up a weakness in these statistics: one would generally prefer to give recent observations more weight rather than less weight.) Note that β r,r-1 , a r,r-1 , A r,r-1 , A r,r+2 , Y n and L r,x are all as given in the previous example but with d nw = (1 -n -1 )/2 while β r,r , A r,r , A r,r+1 , λ 1 in h 1 (x) = f 1 (x) = g 1 (x) and -x in g 2 (x) all change sign.

The statistic wdM n arises naturally in change point problems. Consider the oneparameter exponential family

where k, θ, δ are unknown. Suppose we assume that k = i with probability p in ∝ p(i/n), i = 2, • • • , n, where p = 1. Then the likelihood ratio of

for µ = EX 1 . For uniform prior p(t) = 1, this gives w p (t) = t, a result due to [START_REF] Kander | Test procedures for possible changes in parameters of statistical distributions occurring at unknown time points[END_REF] for the case a(θ) = θ, and to [START_REF] Chernoff | Estimating the current mean of a normal distribution which is subjected to changes in time[END_REF] for the normal case. [START_REF] Kander | Test procedures for possible changes in parameters of statistical distributions occurring at unknown time points[END_REF] gave the Edgeworth expansion to O(n -3/2 ). For related references and the full likelihood ratio test see Sections 1.8 and 1.5 of [START_REF] Csorgo | Limit Theorems in Change-Point Analysis[END_REF]. They also consider the "epidemic alternative"

where k 1 < k 2 are unknown change points. If one takes a uniform prior on (k 1 , k 2 ) one obtains in the same way the statistic w u dM n , where w u (t) = t -t 2 .

If one only wishes to construct a test of δ = 0 (rather than a confidence interval for µ) one can replace µ by S above in the approximation to A n , giving the statistic wdM n , where w(t) = w p (t) -w p , or in the case of the epidemic alternative, w(t) = w u (t) -w u . In either case one has w = 0. This approach was advocated by [START_REF] Ramanayake | Tests for a change point in the shape parameter of gamma random variables[END_REF] for the case of a gamma distribution with known scale parameter, uniform prior and alternative H 1 . Note 3.2 Lai (1974) considers statistics which are moving averages of the last k observations:

, where 0 < t 0 < 1 and c n-i /n = w(i/n) then Y n /n 2 = w 0 dM n , where w 0 (t) = w(t)I(t 0 < t). His condition that c k are non-increasing is achieved if w(t) is non-decreasing. He also considers exponentially weighted moving average schemes. These correspond to choosing w(t) = p 1-t .
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We now consider the functional gdw firstly for w continuous, and then for w consisting of atoms.

where w(t) = w(1) -w(t). So, we can apply our previous results with w replaced by w. This gives

Finally we show how to deal with gdw for discrete w.

That is, T (g) = gdw, where w puts weight m -1 at

and κ r ( θ) = κ r β rn n 1-r for

So, (2.8) holds with a r,r-1 = κ r β rn and the other a ri = 0. In terms of the standardised cumulants of (3.23), this gives A r,r-1 = λ r γ rn , where γ rn = β rn /β r/2 2n , and the other A ri = 0. Alternatively for

Appendix

Here we give the Euler-McLaurin expansion (Abramowitz and Stegun, 1964, equation (23.1.30), page 806), and related results. For g : [0, 1] r → R, set

Suppose that g has finite derivatives. Then for r = 1 we have the expansion

where α 10 (g) = 1 0 g(t)dt, α 1k (g) = g (k-1) (1) -g (k-1) (0) e k B k /k! for k = 1, 2, 3, . . ., e 1 = -1, e k = 1 for k = 2, 3, . . . and B k is the kth Bernoulli number, given by the left column on page 809 of [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]: 1) -g(0)} /2 and α 1k (g) = 0 for k = 3, 5, 7, . . .. Note that (3.30) implies that for n (t) of (3.29),

where the operator β ik is defined by β ik g(t 1 , • • • , t r ) = α 1k (h) for h(t i ) = g(t 1 , • • • , t r ). For example,