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The M-estimation in a multi-phase random

nonlinear model
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Université Lyon 1, France

Abstract

This paper extends the results of M-estimation in Koul et al. (2003) to a general

nonlinear random design regression model with multiple change-points at unknown

times. The M-estimator of locations of breaks and of regression parameters are

consistent. Convergence rate and asymptotic distribution are obtained.

keywords: multiple change-points, M-estimator, random parametric regression,

asymptotic properties

1 Introduction

The statistics literature contains a vast amount of works on issues related

to the estimation of the change-point for a parametric regression, most of

it specifically designed for the case of a single break. The more used esti-

mators are the maximum likelihood (ML) estimators, the least squares (LS)

estimators or a wider class, the M-estimators. For the LS estimators we refer

to Feder (1975a, 1975b) for continuous two-lines models, Lai et al. (1979),
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Yao and Au (1989) for a step function, Bai and Perron (1998) for multiple

structural changes in a linear model. For the ML estimator, when the design

is random we refer to Koul and Qian (2002) for two lines model, Ciuperca

(2004) for a single jump in a nonlinear model, Ciuperca and Dapzol (2008)

for multiple change-points in linear and nonlinear model. In the general case

of M-estimators, Rukhin and Vajda (1997) consider the change-point estima-

tion problem as a nonlinear regression problem, the model being continuous,

with a single change-point and fixed design. Koul et al. (2003) study the M-

estimators in two lines model with random design.

The present paper makes several contributions to the existing literature. The

considered design is random, the regression function is nonlineary within the

framework of a multi-regime and not lastly, a general method of estimation. We

study the properties of the M-estimator in a multi-phase discontinuous nonlin-

ear random regression model with a general error distribution. We generalize,

among others, the results for the two-phase random linear model of Koul et

al. (2003) obtained by M-estimation, the results obtained by ML estimation of

Ciuperca and Dapzol (2008) for a multiphase random nonlinear model and the

results obtained by LS estimation in a multiple nonrandom linear regression

of Bai and Perron (1998). An important point of the proofs for the linear case

is the relation between the regression function and its derivatives with respect

to regression parameters, due to the fact that these derivatives do not depend

on parameters.
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2 Notations and model

Consider the step-function with K (K ≥ 1) fixed change-points, for x ∈ IR:

fθ(x) = hα0
(x)11x≤τ1 + hα1

(x)11τ1<x≤τ2 + .....+ hαK
(x)11τK<x

where θ1 = (α0, α1, ...., αK) are the nonlinear regression parameters and θ2 =

(τ1, ..., τK), τ1 < τ2 < ... < τK are the change-points. We suppose that, for all

k = 0, 1, ..., K, αk ∈ Γ ⊆ IRd, with Γ compact. We consider θ2 ∈ IRK and we

set θ = (θ1, θ2) ∈ Ω = ΓK+1 × IRK .

Consider the random design model: Yi = fθ(Xi) + εi, for i = 1, ..., n, where

(εi, Xi) is a sequence of continuous independent random variables with the

same joint distribution as (ε,X). The parameter θ1 and the change-points (or

break points) are unknown. The purpose is to estimate θ when n observations

of (Y,X) are available. We denote by θ0
1 = (α0

0, α
0
1, ..., α

0
K) and θ0

2 = (τ 0
1 , ..., τ

0
K),

respectively, the true values of the regression parameters and the true change-

points. Let be also θ0 = (θ0
1, θ

0
2). We assume that θ0

1 is an inner point of the

set ΓK+1.

The random variables X and ε satisfy the following assumptions:

(A1) X has a positive absolutely continuous Lebesgue density ϕ on IR. More-

over, IE(X2) <∞;

(A2) ε has a density absolutely continuous and positive everywhere on IR.

Moreover, IE(ε) = 0, IE(ε2) <∞;

(A3) the random variables Xi and εi are independent.

Remark 1 In the case hα(x) = a + bx, α = (a, b) and K = 1, assumptions

(A1)-(A3) on X and ε are also considered by Koul et al (2003).

In the following, we denote by C a generic positive finite constant not depend-
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ing on n. For a vector v = (v1, ..., vK) we denote by ‖v‖ its Euclidean norm

and we make the convention that |v| = (|v1|, ..., |vK|). For a three dimension

matrix R = (rijk) we can consider the norm ‖R‖1 =
∑

i,j,k |rijk|.

The nonlinear function hα satisfies the conditions:

(B1) for all x ∈ IR, hα(x) is three times differentiable with respect to α;

(B2) for all x ∈ IR, k ∈ {0, 1, ...K}, ‖∂hα0
k
(x)/∂α‖ 6= 0;

(B3) the derivatives ∂3hα(x)/∂α3, exist for x ∈ IR and there exists the func-

tions F0, F1, F2 ∈ L2(ϕ) such that:

sup
α∈Γ

|hα(x)| ≤ F0(x), sup
α∈Γ

‖∂jhα(x)/∂αj‖ ≤ Fj(x), j = 1, 2 (1)

The derivative ∂3hα(x)/∂α3 is a three dimension matrix .

Obviously, in the case hα(x) = a + bx, assumptions (B1), (B2) are verified

and (B3) is transformed in (A1). If hα(x) is a polynomial with degree p, as-

sumption (B3) can be replaced by IE(Xp+1) < ∞. The assumption (B2) is

necessary for obtaining the convergence rate of regression parameters estima-

tor, by considering α in a neighborhood of α0
k.

Let us consider the functions: d(αk,αj)(x) := hαk
(x) − hαj

(x), x ∈ IR, k, j ∈

{0, 1, ...K} and the jump at the true break point: d0
k := d(α0

k
,α0

k−1
)(τ

0
k ). We

make the identifiability assumption that the jump at each τ 0
k is non-zero:

d(αk ,αk−1)(τ
0
k ) 6= 0, ∀αk, αk−1 ∈ Γ, αk 6= αk−1, k ∈ {1, ...K} (2)

a condition which implies that the function fθ is not continuous at the true

break points for all regression parameters in Γ. For θ, θ∗ ∈ Ω, let us denote

by δ(θ,θ∗)(x) := fθ(x) − fθ∗(x) the difference between two models and
.

f θ(x) =

∂fθ(x)/∂θ.

4
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For a function ρ : IR→ IR+, let the M-process be:

Mn(θ) =
n
∑

i=1

ρ (Yi − fθ(Xi))

The following assumptions are considered for the function ρ:

(C1) ρ is convex on IR with right-continuous non-decreasing almost every-

where derivative ψ satisfying IEε[ψ
2(ε + y)] < ∞, ∀y ∈ IR. The function

λ(y) := IEε[ψ(ε + y)], y ∈ IR, is strictly increasing on IR and λ is continuous

at 0 with λ(0) = 0.

(C2) for all c ∈ IR, IE(ε,X)[ψ
2(ε+ c supθ,θ∗∈Ω̄ δ(θ,θ∗)(X))] < ∞, where Ω̄ is the

closure of Ω.

(C3) the function y → IE[|ψ(ε+ c+ y) − ψ(ε)|] is continuous at 0, ∀c ∈ IR.

(C4) the function λ is differentiable in a neighborhood of 0, with derivative

λ′ satisfying λ′(0) 6= 0, and lima→0 a
−1
∫ a
0 |λ′(s) − λ′(0)|ds = 0.

(C5) the random variables ρ(ε± d0
k) − ρ(ε), ∀k = 1, ..., K, are continuous.

(C6) the function ψ is differentiable on IR.

Assumptions (C1), (C2) are necessary for obtaining the consistency of the es-

timators, while (C1)-(C6) are used for obtaining the rate of convergence and

the asymptotic distribution.

Notice that for the two-phase linear regression function: fθ(x) = (a0+b0x)11x≤τ+

(a1 + b1x)11x>τ , Koul et al. (2003) consider assumptions (C1)-(C5). Obviously,

(C2) becomes: IE(ε,X)[ψ
2 + c1 + c2|X|] <∞.

The M-estimator is defined by:

θ̂n :=
(

θ̂1n, θ̂2n

)

= arg min
θ∈Ω̄

Mn(θ) a.s.

For constructing the M-estimator, first we search the regression parameters

estimator and then we localize the change-points. For a given θ2 ∈ IRK , we

5
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set:

θ̃1n(θ2) := arg min
θ1∈ΓK+1

Mn(θ1, θ2)

Since the number K of the change-points is fixed, the estimator θ̃1n(θ2) is

constant in θ2 over any interval of two consecutive ordered Xi’s. The M-

processMn(θ̃1n(θ2), θ2) has only a finite number of possible values with change-

points located at the ordered Xi’s. Second, we find the minimizer θ̃2n of

Mn(θ̃1n(θ2), θ2). This minimizer may be taken as the left end point of the

interval over which it is obtained. Then θ̃2n = θ̂2n and the M-estimator is:

θ̂n = (θ̃1n(θ̃2n), θ̃2n). Obviously, θ̂1n = θ̃1n(θ̃2n).

Remark 2 The considered model and the estimator are very general. The

class of M-estimators includes the LS (ρ(x) = x2), ML (ρ(.) = logϕε(.), with

ϕε the density of ε) and least absolute deviations (LAD) estimators (ρ(x) =

|x|). Examples of distributions satisfying these conditions include Normal for

X, double exponential or Normal for the errors ε if ρ(x) = |x|a, a ∈ {1/2, 2}.

3 Asymptotic properties

In order to simplify the study of the rate of convergence, three processes

defined as the differences between two M-processes are considered. The first

one is the difference between a M-process calculated in a some point θ and a

M-process at the true point θ0:

Dn(θ1, θ2) := Mn(θ1, θ2) −Mn(θ0
1, θ

0
2) (3)

For the second one, the regression parameters vary around θ0
1, for w1 ∈ ΓK+1:

D(1)
n (w1) := Mn

(

θ0
1 + n−1/2w1, θ

0
2

)

−Mn(θ0
1, θ

0
2), the coefficient of w1 being the

rate of convergence of the estimator θ̂1n, and finally the change-points vary:

6
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D(2)
n (θ1, θ2) := Mn(θ1, θ2) −Mn(θ1, θ

0
2).

For certain results of this section the proofs are omitted or we give only their

outline. The full versions can be found in the preprint version of this paper

(Ciuperca (2008)).

For each η > 0, denote the η-neighborhood of θ ∈ Ω by:

Ωη(θ) := {θ∗ = (θ∗1, θ
∗
2) ∈ Ω / ‖θ∗1 − θ1‖ ≤ η, ‖θ∗2 − θ2‖ ≤ η}

The following lemma of uniform convergence will be useful in the consistency

proof.

Lemma 3.1 Under assumptions (A1), (B1), (B3) and (C2), we have

lim
ηց0

IE(ε,X)

[

sup
θ∗∈Ωη(θ)

|ρ (Y − fθ(X)) − ρ (Y − fθ∗(X))|

]

= 0

Proof of Lemma 3.1 We apply a version of the mean value theorem:

ρ (Y − fθ(X))−ρ (Y − fθ∗(X)) = δ(θ,θ∗)(X)
∫ 1

0
ψ
(

Y − fθ(X) + vδ(θ,θ∗)(X)
)

dv

(4)

We begin by showing that:

IEX

[

sup
(θ,θ∗)∈Ωη(θ)

δ2
(θ,θ∗)(X)

]

−→
η→0

0 (5)

Case 1. τk ∈ IR, ∀k = 1, ..., K. We have:

sup
θ∗∈Ω̄η(θ)

∣

∣

∣δ(θ,θ∗)(X)
∣

∣

∣ ≤ C

[

η

∥

∥

∥

∥

∥

sup
α∈Γ

∂hα(X)

∂α

∥

∥

∥

∥

∥

+ 2 sup
α∈Γ

|hα(X)|
K
∑

k=1

11|X−τk|≤η

]

Furthermore IP [|X − τk| ≤ η] → 0 for η → 0. Then, using (B3) we obtain (5).

Case 2. τ1 = −∞ or τK = ∞. Without loss of generality, we consider τ1 =

−∞. Obviously τ ∗1 ≥ τ1. We have |τ ∗1 − τ1| ≤ η. Then:

sup
θ∗∈Ωη(θ)

|δ(θ,θ∗)(X)| ≤ C

[

η

∥

∥

∥

∥

∥

sup
α∈Γ

∂hα(X)

∂α

∥

∥

∥

∥

∥

+ 2 sup
α∈Γ

|hα(X)|

(

11X<τ∗

1
+

K
∑

k=2

11|X−τk|≤η

)]

7
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But IP [X < τ∗1 ] → 0 for η → 0. Using assumption (B3) and the Cauchy-

Schwarz inequality, we obtain relation (5).

On the other hand, using the inequality: ∀x ∈ IR, |ψ(x+ ε)| ≤ |ψ(ε+ |x|)| +

|ψ(ε− |x|)|, by the Cauchy-Schwarz inequality, (C2) and relations (4), (5) we

obtain the conclusion. �

The next theorem establishes the strong consistency of the M-estimator and

shows that the convergence rate of θ̂2n to θ0
2 is n−1 and n−1/2 of θ̂1n to θ0

1.

Theorem 3.1 (i) Under assumptions (2), (A1), (A3), (B1), (B3), (C1) and

(C2) we have: θ̂n
a.s.
−→
n→∞

θ0.

(ii) Under assumptions (2), (A1)-(A3), (B1)-(B3), (C1)-(C6), we have

n‖θ̂2n − θ0
2‖ = OIP (1), n1/2‖θ̂1n − θ0

1‖ = OIP (1) (6)

Proof of Theorem 3.1 Lemma 3.1 is used to show (i). For (ii), Lemmas

3.3, 3.5, 3.6 are needed. The full version of the proof is given in the preprint

version of this paper (Ciuperca (2008)). �

Remark 3 Assumptions (2) is necessary to prove that: e(θ) 6= 0 for all θ 6= θ0

and then we can apply the Huber (1967) method to prove the convergence.

For x, z ∈ IR, τ ∈ IRK , for each k = 1, ..., K, let be functions: νk(x, z) :=

ρ(z + sgn(τk − τ 0
k )d(α0

k
,α0

k−1
)(x)) − ρ(z) and pk(x) := IEε[νk(x, ε)]. Let us con-

sider the functions Gk, Gk,n : IR∗ → (0, 1], where IR∗ = IR \ {0}:

Gk,n(uk) := n−1
n
∑

i=1

11min(τ0
k
,τ0

k
+uk)<Xi≤max(τ0

k
,τ0

k
+uk)

8



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

and its expectation: Gk(uk) := IEX [11min(τ0
k
,τ0

k
+uk)<Xi≤max(τ0

k
,τ0

k
+uk)]. For u =

(u1, ..., uK), we define also the functions G,Gn : IR∗K → IR+,

G(u) :=
K
∑

k=1

Gk(uk), Gn(u) :=
K
∑

k=1

Gk,n(uk)

Lemma 3.2 Under (A1), for each γ > 0, η > 0, there exists a constant

0 < B <∞, such that for all b ∈ (0, 1), and n ≥ [B/b] + 1,

IP [ sup
B/n<‖u‖≤b

|
Gn(u)

G(u)
− 1| < η] > 1 − γ

IP [ sup
B/n<‖u‖≤b

|

K
∑

k=1
Z

(1)
k,n(uk)

G(u)
− 1| < η] > 1 − γ

where Z
(1)
k,n : IR∗ → IR, k = 1, ..., K is defined by:

Z
(1)
k,n(uk) := n−1∑n

i=1 [pk(Xi) − νk(Xi, εi)] 11min(τ0
k
,τ0

k
+uk)<Xi≤max(τ0

k
,τ0

k
+uk)

Proof of Lemma 3.2 See proof of Lemma 4.3 in Ciuperca(2008). �

Let us now given an approximation of the M-process in θ0 in the direction

of the parameters of regression. Let us denote V0 := IEX

[ .

f θ0(X)
.

f θ0(X)t
]

the Fisher information matrix corresponding to the random model in X. We

suppose that the matrix V0 is inversible.

Lemma 3.3 Under assumptions (A1)-(A3), (B1), (B3), (C1), (C4)-(C6), for

each b ∈ (0,∞):

sup
‖w1‖<b

|D(1)
n (w1) + n−1/2wt

1

n
∑

i=1

[
.

f θ0(Xi)ψ(εi)] −
λ′(0)

2
wt

1V0w1| = oIP (1) (7)

Proof of Lemma 3.3 Using (C1), (C4) and (C5), we have that:

D(1)
n (w1) =

n
∑

i=1

[

f(θ0
1
,θ0

2
)(Xi) − f(θ0

1
+n−1/2w1,θ0

2
)(Xi)

]

ψ(εi)

−
1

2

n
∑

i=1

[

f(θ0
1
,θ0

2
)(Xi) − f(θ0

1
+n−1/2w1,θ0

2
)(Xi)

]2
ψ′(εi)(1 + oIP (1))

9
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Since λ(0) = 0 and by assumption (1) we obtain:

D(1)
n (w1) =

{

−n−1/2wt
1

n
∑

i=1

.

f θ0(Xi)ψ(εi) −
1

2
n−1wt

1

n
∑

i=1

.

f θ0(Xi)
.

f
t

θ0(Xi)w1ψ
′(εi)

}

(1+oIP (1))

with oIP (1)) uniformly in w1 and n. In final, taking into account (A1)-(A3) and

(C4), the strong law of large numbers is applied for
n
∑

i=1

.

f θ0(Xi)
.

f
t

θ0(Xi)ψ
′(εi).

�

Lemma 3.4 For any k random variables Z1, ..., Zk we have:

k
∑

i=1

IP [Zi < 0] − (k − 1) ≤ IP

[(

k
∑

i=1

Zi

)

< 0

]

≤
k
∑

i=1

IP [Zi < 0]

Lemma 3.5 Under assumptions (2), (A1)-(A3), (B1), (B3), (C1)-(C5), for

all positive numbers γ and c, there exist γ2, b2 ∈ (0,∞), ̺ ∈ (0, 1), and n2 ∈ IN

such that: γ2b2 infk ϕ(τ 0
k ) > 2c and that:

IP

[

inf
θ∈V̄2b2̺

D(2)
n (θ1, θ2)

nG(|θ2 − θ0
2|)

> γ2

]

> 1 − γ/2, ∀n > n2 (8)

where V2b2̺ = {θ ∈ Ω̺(θ
0);n‖θ2 − θ0

2‖ > b2} for some b2 > 0.

Proof of Lemma 3.5 For each change-point τ 0
k , consider the processes:

S
(1)
k,n(θ1, uk) := n−1∑n

i=1

[

ρ(εi + d(α0
k
,αk−1)(Xi)) − ρ(εi + d(α0

k
,α0

k−1
)(Xi))

]

11min(τ0
k
,τ0

k
+uk)<Xi≤max(τ0

k
,τ0

k
+uk)

S
(2)
k,n(θ1, uk) := n−1∑n

i=1[ρ(εi)−ρ(εi+d(α0
k
,αk)(Xi))]11min(τ0

k
,τ0

k
+uk)<Xi≤max(τ0

k
,τ0

k
+uk)

and the functions: Z
(2)
k,n : IR∗ → IR, k = 1, ..., K:

Z
(2)
k,n(uk) := n−1∑n

i=1 [pk(Xi) − pk(τ
0
k )] 11min(τ0

k
,τ0

k
+uk)<Xi≤max(τ0

k
,τ0

k
+uk)

Let us consider θ2 = θ0
2 + u with u = (u1, ..., uK). Then:

n−1D(2)
n (θ1, θ2) =

∑K
k=1 pk(τ

0
k )Gk(uk) +

∑K
k=1 pk(τ

0
k ) [Gk,n(uk) −Gk(uk)]

+
∑K

k=1

[

Z
(1)
k,n(uk) + Z

(2)
k,n(uk) + S

(1)
k,n(θ1, uk) + S

(2)
k,n(θ1, uk)

]

The lemma will result by showing that the supremum on the set V̄2b2̺ of all

terms on the right-hand side of the last relation, except the first, divided by

10
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G(|θ2 − θ0
2|) is oIP (1) that the first term is strictly positive with the probabil-

ity 1. By Fubini’s lemma, (2), (A2), (C1) and since the function λ is strictly

increasing and λ(0) = 0, we have: pk(τ
0
k ) > 0, for each k = 1, ..., K.

For all uk ≤ ̺: |Z(2)
k,n(uk)| ≤ sup0≤υ≤̺ |pk(τ

0
k + υ) − pk(τ

0
k )|Gk,n(uk). By (C1),

Lemma 3.2, ∀̺ > 0, ∃B1 > 0 such that:

sup
B1/n<‖u‖≤̺

K
∑

k=1

∣

∣

∣Z
(2)
k,n(uk)

∣

∣

∣

G(u)
= oIP (1) for n→ ∞, ̺ց 0

We have a similar relation for Z
(1)
k,n, for a B2 > 0 and n > B2/̺.

On the other hand, for each η > 0:

IP











|
K
∑

k=1
pk(τ

0
k )[Gk,n(uk) −Gk(uk)]|

G(u)
< η











≥ IP

[

K
∑

k=1

|Gk,n(uk) −Gk(uk)|

Gk(uk)
<

η

maxk pk(τ 0
k )

]

≥
K
∑

k=1

IP

[

|Gk,n(uk) −Gk(uk)|

Gk(uk)
<

η

maxk pk(τ 0
k )

]

− (K − 1)

the last inequality is obtained by Lemma 3.4. By Lemma 3.2, ∀η, γ̃ > 0,

∃B5 > 0 such that the probability which intervenes in the last inequality is

bigger than 1 − γ̃. The nonlinearity not occuring in an essential way in the

rest of proof, we prefer omit it (see proof of Lemma 4.5 in Ciuperca(2008)). �

Lemma 3.6 Under assumptions (2), (A1)-(A3), (B1), (B3), (C2), if we de-

fine An(w1, t) := D(2)
n

(

θ0
1 + n−1/2w1, θ

0
2 + n−1t

)

−D(2)
n (θ0

1, θ
0
2 + n−1t), we have,

for every b ∈ (0,∞): sup‖(w1,t)‖≤b |An(w1, t)| = oIP (1)

Proof of Lemma 3.6 See proof of Lemma 4.6 of Ciuperca(2008). �

Let us consider t ∈ IR∗K and w1 ∈ ΓK+1. For Dn defined by (3) as a process

in the standardized parameters, we have the following decomposition:

Dn

(

θ0
1 + n−1/2w1, θ

0
2 + n−1t

)

= D(1)
n (w1) +D(2)

n

(

θ0
1 + n−1/2w1, θ

0
2 + n−1t

)

(9)

11
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Let us consider the random vector:

Zn := n−1/2
n
∑

i=1

.

fθ0(Xi)ψ(εi)

The next theorem gives the joint asymptotic distributions of the M-estimators.

For θ̂1n, the asymptotic approximation expression is similar to that of the

M-estimator in a model without break. The asymptotic distribution of the

change-points estimators depends only on the density of X in the true break

points and on the difference ρ(ε± d0
k) − ρ(ε).

Theorem 3.2 Under assumptions (2), (A1)-(A3), (B1)-(B3), (C1)-(C6), we

have
(

n1/2(θ̂1n − θ0
1), n(θ̂2n − θ0

2)
)

L
−→
n→∞

(Z,Π−), with Z ∼ N(K+1)d

(

0, IEε [ψ2(ε)]λ′(0)−2V −1
0

)

independent of Π− = (Π1−, ...,ΠK−), Πk− = arg mintk∈IR Pk(tk), where, for

k = 1, ..., K:

Pk(tk) = Pk1(tk)11tk≥0 + Pk2(−tk)11tk≤0 (10)

Pk1 and Pk2 are two independent compound Poisson processes on [0,∞) with

rate ϕ(τ 0
k ) and Pk1(0) = Pk2(0) = 0. The distribution of jumps is given by:

ρ(ε+ d0
k) − ρ(ε), respectively ρ(ε− d0

k) − ρ(ε).

Proof of Theorem 3.2 We give the outline of the proof.

Using the approximation results obtained in Lemmas 3.3, 3.6 and also the de-

composition:Mn

(

θ0
1 + n−1/2w1, θ

0
2 + n−1t

)

= Mn(θ0
1, θ

0
2)+Dn

(

θ0
1 + n−1/2w1, θ

0
2 + n−1t

)

we have an asymptotic approximation for the standardized M-process as the

sum of two processes. The first is the quadratic form Qn(w1) in the standard-

ized regression parameters, the second is a empirical process in the standard-

ized change-point parameters:

Mn

(

θ0
1 + n−1/2w1, θ

0
2 + n−1t

)

= Qn(w1) +D(2)
n (θ0

1, θ
0
2 + n−1t) + oIP (1) (11)

12
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where: Qn(w1) = Mn(θ0
1, θ

0
2) − n−1/2wt

1

∑n
i=1

.

f θ0(Xi)ψ(εi) + λ′(0)
2
wt

1V0w1.

Then n1/2(θ̂1n − θ0
1) = [λ′(0)]−1 V −1

0 Zn + oIP (1). Taking into account (C1),

Zn
L

−→
n→∞

N(K+1)d (0, V0IEε[ψ
2(ε)]).

In view of Theorem 3.1 (ii) for the change-point estimator, we have:

n(θ̂2n − θ0
2) = arg min

t∈IRK
D(2)

n

(

θ0
1, θ

0
2 + n−1t

)

+ oIP (1)

For study jointly the distribution of Zn and of D(2)
n we apply Theorem 4.2

of Koul et al. (2003) for fn(X, ε) :=
.

f θ0
1
(X)ψ(ε) and hn(X, ε) := ρ(ε +

d(α0
k
,α0

k−1
)(X)) − ρ(ε). Note that:

D(2)
n (θ0

1, θ
0
2 + n−1t) =

∑n
i=1

∑K
k=1 hn(Xi, εi)11min{τ0

k
,τ0

k
+tk/n}<Xi≤max{τ0

k
,τ0

k
+tk/n}. On

the other hand, for ξn(x, z) := IEε

[

exp
(

in−1/2ztfn(X, ε)
)

|X = x
]

, we have:

|n (1 − ξn(x, z))| ≤
IEε [ψ2(ε)]

2

[

zt
.

f θ0
1
(x)
]2

≤ CIEε

[

ψ2(ε)
]

‖z‖2 sup
α

∥

∥

∥

∥

∥

∂hα(x)

∂α

∥

∥

∥

∥

∥

2

By assumptions (1) and (A1), we obtain that n (1 − ξn(x, z)) is uniformly

integrable with respect to dH(x), where H is the distribution function of X.

Thus n (1 − ξn(x, z)) → IEε [ψ2(ε)] ztΛ(x)z, with: Λ(x) :=
.

f θ0
1
(x)

.

f
t

θ0
1
(x) and

Λ := V0 = IEX [Λ(X)]. Whence:

(

Zn, D
(2)
n (θ0

1, θ
0
2 + n−1t)

)

L
−→
n→∞

(

N(K+1)d

(

0, V0IEε[ψ
2(ε)]

)

,P(t)
)

in IR(K+1)d × D(−∞,∞)K with P(t) :=
∑K

k=1 Pk(tk). The random vector

N(K+1)d (0, V0IEε[ψ
2(ε)]) is independent of Pk, k = 1, ..., K.

We prove now that n(θ̂2n−θ0
2) converges weakly to the smallest minimizer Π−

of the process P and show then that the components of this vector coincide

with the minimizer of Pk(tk), with the probability 1. Seen the Skorokhod space

definition, D(−∞,∞), we consider that change-points vary in a compact of

IRK .

13
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We consider the M-estimator of the change-points: θ̂b
2n := arg mint∈[−b,b]K Mn

(

θ̂1n(t), t
)

and the minimizer of P(t): Πb
− := arg mint∈[−b,b]K P(t), for a fixed b > 0. By

Theorem 3.1, there is a real number b < ∞ such that θ̂2n − θ̂b
2n → 0 a.s. for

n → ∞. More, it also exists a real b < ∞ such that Π− = Πb
− with a proba-

bility arbitrarily large.

Then, we shall first prove that for all b > 0:

n(θ̂b
2n − θ0

2)
L

−→
n→∞

Πb
− (12)

For t ∈ [−b, b]K , b̃ = (b, ..., b) a K-vector, we consider the random process

Pb(t) := P(t)11|t|<b̃ and: M̂ b
n(t) :=

[

Mn

(

θ̂1n(θ0
2 + n−1t), θ0

2 + n−1t
)

−Mn

(

θ̂1n(θ0
2), θ

0
2

)]

11|t|<b̃.

Let also, for v ∈ IR, the random process:

Hk
n(v) =

n
∑

i=1

[

ρ(εi + sign(v)d0
k) − ρ(εi)

]

11min(τ0
k
,τ0

k
+n−1v)<Xi≤max(τ0

k
,τ0

k
+n−1v)

and theirs sum:Hn(t) =
∑K

k=1H
k
n(tk). So by (C3), IE(ε,X)

[

sup‖t‖≤b

∣

∣

∣D(2)
n (θ0

2 + n−1t) −Hn(t)
∣

∣

∣

]

is bounded to upper by

n
K
∑

k=1

∫

|x−τ0
k
|≤n−1b

ϕ(x)IEε

[∣

∣

∣ρ
(

ε+ d(α0
k
,α0

k−1
)(x)

)

− ρ
(

ε+ sign(tk)d
0
k

)∣

∣

∣

]

dx

= n
K
∑

k=1

∫

|x−τ0
k
|≤n−1b

ϕ(x)IEε

[

|d(α0
k
,α0

k−1
)(x) − d0

k| |ψ(ε+ yx)|
]

dx, with yx → 0, for x→ 0

≤ Cn
K
∑

k=1

∫

|x−τ0
k
|≤n−1b

|x− τ 0
k |

(

sup
α

∥

∥

∥

∥

∥

∂hα(x)

∂α

∥

∥

∥

∥

∥

)

ϕ(x)IEε [ψ(ε+ yx)] dx

But ϕ(x) < C and IEε [ψ(ε+ yx)] < C as a continuously function on a com-

pact. Then, by the Cauchy-Schwarz inequality:

IE(ε,X)

[

sup
‖t‖≤b

∣

∣

∣D(2)
n (θ0

2 + n−1t) −Hn(t)
∣

∣

∣

]

≤ Cn
K
∑

k=1

[

∫

|x−τ0
k
|≤n−1b

(x− τ 0
k )2dx

]1/2

= o(1)

Hence: sup‖t‖≤b

∣

∣

∣M̂ b
n(t) −Hn(t)

∣

∣

∣ = oIP (1). Let us consider: Πb
n = arg mint∈[−b,b]K Hn(t).

By Lemmas 4.3 and 4.4 of Koul et al. (2003) we obtain:

n(θ̂b
2n − θ0

2) − Πb
n

L
−→
n→∞

0, Πb
n

L
−→
n→∞

Πb
−. Then relation (12) follows. Because for

14
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two different change-points we have to make of two independent sets of random

variables we have that: arg mint∈[−b,b]K Hn(t)) =
∑K

k=1 arg mintk∈[−b,b]H
k
n(tk)).

The last relation, with (12) and Πb
n

L
−→
n→∞

Πb
−, imply that the asymptotic dis-

tribution of n(θ̂2n − θ0
2) is Π−. �

Remark 4 Consequence of Theorem 3.2, we can find the confidence interval

or make hypothesis test for the parameter θ.

Remark 5 The discontinuity in the change-points of the regression functions

influences the rate of convergence of the change-point estimator. The proved

results are differently from those in the continuous or discontinuous in the

change-points for non-random design cases. For example, Van der Geer (1988)

prove that in the uniform non-random design two-phase, discontinuous, the

limiting distribution of the change-point estimator is determined by a Brow-

nian motion with a linear drift. Rukhin and Vajda (1997) for a continuous

model prove that the change-point M-estimator is asymptotically normal.
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